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Quantum Neural Networks Achieving
Quantum Algorithms

Delphine Nicolay(B) and Timoteo Carletti

Department of Mathematics, Namur Institute for Complex Systems (naXys),
University of Namur, Namur, Belgium

delphine.nicolay@unamur.be

Abstract. This paper explores the possibility to construct quantum
algorithms by means of neural networks endowed with quantum gates
evolved to achieve prescribed goals. First tentatives are performed on
the well known Deutsch and Deutsch-Jozsa problems. Results are promis-
ing as solutions are detected for different sizes and initializations of the
problems using a standard evolutionary learning process. This approach
is then used to design quantum operators by combining simple quantum
operators belonging to a predefined set.

1 Introduction

Quantum computation has generated a lively interest for the last two decades,
since the discovery of a quantum algorithm able to factorize large integers in
polynomial time [11]. In fact, the demand for better performance of computers
strongly increases and quantum computation could be the answer to overcome
the limitations of current computing. However, even in the case of relatively
simple problems, the search for a quantum algorithm is not trivial. This fact is
clearly illustrated by the parcelled development of solutions for the well known
problems of Deutsch [3] and Deutsch-Jozsa [5]. Another complication of quantum
computing is its physical feasibility. Indeed, quantum computing requires the
development of quantum operators working on systems of qubits. Until now,
researchers have been able to physically produce operators dealing with small
systems composed of one or two qubits. Fortunately, it has been proved that any
quantum operator can be built as a combination of these concretely realizable
operators. But, once more, the development of the right combination is not a
trivial problem.

In this work, we study the possibility to make use of networks endowed with
quantum gates to develop appropriate quantum algorithms, i.e. appropriate com-
binations of quantum operators to achieve defined tasks or computations. As the
construction and the learning process of these networks are roughly inspired by
standard artificial neural networks, we decided to name them quantum neural
networks (QNN). They are designed for their specific goals by evolutionary opti-
mization methods. The already mentioned Deutsch and Deutsch-Jozsa problems
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have been the first tasks considered for this study. We show that our method-
ology has led to promising results, as solutions have been detected for different
sizes and initializations of the problems. Then, we have identified a set of univer-
sal quantum operators and we have applied our method to the design of quantum
gates by combining operators from this set. This second phase of the research
highlights an important limitation of our model which is the exponential increase
of the possible combinations.

The paper is organized as follows. In Sect. 2, we remind the basic concepts
of quantum computing and we present our Quantum Neural Network model. In
Sect. 3, we detail the problems of Deutsch and Deutsch-Jozsa and results we get
with our model. We also perform a critical discussion about our optimization
methods. Section 4 presents our attempt of gates development with a set of uni-
versal quantum operators. Section 5 concludes the contribution with a summary
of our results and perspectives for future work.

2 Background to Quantum Computing

2.1 Quantum Bits

The bit is the fundamental unit of classical computation. Quantum computation
is developed upon a similar concept, the quantum bit, also called qubit. These
qubits have basic states |0〉 and |1〉, which correspond to logical states 0 and
1 for classical bits. But, contrary to the latter ones, qubits can also be in a
superposition of states

|ψ〉 = α|0〉 + β|1〉
where α and β are complex numbers constrained by the normalization condition
|α|2 + |β|2 = 1. Usually, a qubit is considered as a vector in C

2 and the basic
states are then seen as a pair of orthonormal basis vector

|0〉 =
[

1
0

]
, |1〉 =

[
0
1

]
.

As qubits are quantum objects, this superposition of states is not observable.
Once the qubit is measured, the superposition is lost and the system will be
found in the state |0〉 with probability |α|2 and |1〉 with probability |β|2.

In the same way, we can define systems with n-qubit as

|xnxn−1 . . . x1〉 where xi ∈ {0, 1} for i = 1, . . . , n.

Such states can be written as a tensor product of qubits but quantum compu-
tation is much richer. Indeed, thanks to the superposition, a 2-qubit can be in
the state

α|00〉 + β|11〉
which can not be constructed using tensor products of qubits. This property
of quantum system is called the entanglement [9] and is proper to quantum
systems.



Quantum Neural Networks Achieving Quantum Algorithms 5

2.2 Quantum Gates

Quantum gates, working on a qubit or an n-qubit system, are obtained using
unitary operators, hence they are reversible and they respect the normalization
condition. They are the basic building blocks, combined to form quantum cir-
cuits. Widely used qubit operators and their matrix representation are presented
below.

• Identity operator I:

I|0〉 = |0〉
I|1〉 = |1〉 I =

[
1 0
0 1

]

• NOT operator X:

X|0〉 = |1〉
X|1〉 = |0〉 X =

[
0 1
1 0

]

• Operator Y :

Y |0〉 = i|1〉
Y |1〉 = −i|0〉 Y =

[
0 −i
i 0

]

• Operator Z:

Z|0〉 = |0〉
Z|1〉 = −|1〉 Z =

[
1 0
0 −1

]

• Hadamard transformation H:

H|0〉 = 1√
2
(|0〉 + |1〉)

H|1〉 = 1√
2
(|0〉 − |1〉) H =

1√
2

[
1 1
1 −1

]

• Phase operator S:

S|0〉 = |0〉
S|1〉 = i|1〉 S =

[
1 0
0 i

]

• π/8 operator T :

T |0〉 = |0〉
T |1〉 =

√
2
2 (1 + i)|1〉 T =

[
1 0
0 eiπ/4

]

The most used 2-qubit operator is the controlled-not operator (Cnot), also
called the 2-qubit XOR gate, which is represented by

Cnot|00〉 = |00〉
Cnot|01〉 = |01〉
Cnot|10〉 = |11〉
Cnot|11〉 = |10〉

C =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ .

Its effect consists in changing the state of the second qubit if and only if the
first one is equal to |1〉. In the same way, we can define other controlled gates by
combining this rule and the qubits presented previously. It has been proved [1]
that the controlled-not gate combined with all qubit gates form a universal set
for quantum computation.
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2.3 QNN Model

Our model of quantum neural networks is based on the model proposed by
Deutsch [4]. The idea is to build a network whose nodes are quantum gates and
connections bring quantum information through qubits. The network is obviously
feedforward and the number of nodes is constant in every layer. Quantum neural
networks are trained by means of heuristic optimization methods.

3 Deutsch and Deutsch-Jozsa Algorithms

3.1 Problems Description

The Deutsch [3] and the Deutsch-Jozsa [5] problems are basic problems in quan-
tum computing. The Deutsch problem consists in deciding if a binary function
f : {0, 1} → {0, 1} is constant using only one function evaluation. It is clear that
this is not possible in the classical framework, where two function evaluations
are needed. To achieve this goal, we have a quantum black box, called oracle, at
our disposal. This oracle computes one of the four possible functions, i.e. form-
ing all the possible couples f(u) = v with u, v ∈ {0, 1}, by applying an unitary
operator Uf defined as

Uf (|x〉|y〉) = |x〉|y ⊕ f(x)〉

where |x〉 and |y〉 are the qubits of the system. The quantum circuit representing
the solution of this problem is presented in Fig. 1. The sequence of operations
described in this figure leads to the final state |ψ〉:

|ψ〉 =

⎧⎨
⎩

±|0〉
[

|0〉−|1〉√
2

]
if f(0) = f(1)

±|1〉
[

|0〉−|1〉√
2

]
if f(0) �= f(1)

A measure of the first qubit is then sufficient to evaluate if the function is
constant (|0〉) or not (|1〉).

Fig. 1. Quantum circuit for the resolution of the Deutsch problem. The first qubit is
initialized to |0〉 while the second one is set to |1〉. Then, an Hadamard gate is applied
to the two inputs before calling the oracle. An Hadamard gate is finally applied on the
first qubit, which is then measured. If it is found in the state |0〉 then the function is
constant, otherwise, namely if the measure determines that the qubit is in the state
|1〉, the function is not constant.
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The Deutsch-Jozsa problem is a generalization of the Deutsch problem for
a binary function f : {0, 1}n → {0, 1}. In this case, we have to decide if the
function is constant or balanced, which means that we get 0 for half of the
function evaluations and 1 for the other half. The resolution is very similar
to the previous one and is presented in Fig. 2. Indeed, the qubits are initialized
similarly i.e. |0〉 for the n first qubits and |1〉 for the last one. Then, an Hadamard
gate is applied on all qubits before the oracle intervention. An Hadamard gate
operates again on each of the n first qubits. The function is constant if all of
them are finally in the state |0〉.

Fig. 2. Quantum circuit for the resolution of the Deutsch-Jozsa problem. The n first
qubits are initialized to |0〉 while the last one is set to |1〉. Then, an Hadamard gate is
applied to all qubits before calling the oracle. An Hadamard gate is finally applied on
the n first qubits, which are then measured. If they are all found in the state |0〉 then
the function is constant, otherwise, namely if at least one of the qubits is in the state
|1〉, the function is balanced.

Even if these two problems are relatively simple, let us remark that find-
ing their solution is not trivial. Indeed, the algorithm originally proposed by
Deutsch [3] was probabilistic. It was successful with a probability of one half. In
[5], Deutsch and Jozsa developed a deterministic algorithm but it required two
oracle calls to succeed. The current solution, with only one function evaluation,
has been proposed by Cleve et al. [2]. This shows that even in relatively simple
cases, there is a need for a general strategy allowing to construct the algorithm
associated to the problem at hand.

3.2 Experimentation and Results

For the trial problems of Deutsch and Deutsch-Jozsa, we have not considered
a set of universal gates. The nodes could only be assigned to one of the three
qubit gates I, X and H or to the oracle. Let us remind that this oracle is only
used in one layer of the network, but has an effect on all qubits of the layer.
Indeed, our n + 1 qubits, handled separately, have to be turned into a (n + 1)-
qubit system used as a whole by the oracle. This transformation is carried out
using the Kronecker tensor product. The inverse operation is then executed after
passing the oracle to recover our n + 1 qubits.

Quantum neural networks are evolved to solve the considered problem by
a genetic algorithm (GA) [6]. The training environment contains the functions
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to classify. The fitness of each individual is defined by the fraction of correct clas-
sifications. As the optimization is heuristic, all experiments have been replicated
10 times. The results presented are means on these 10 simulations1.

The first tests on Deutsch problem have been performed with an initialization
of the first qubit to |0〉 and the second one to |1〉. All simulations led to a correct
solution. The only difference observed among these different solutions concerns
the operator applied on the second qubit in the last layer, as it is shown in Fig. 3.
This difference is not important as only the first qubit is measured to answer
the asked question. This solution was already found at the first generation of
the GA, this fact could be explained by the small number of possible networks
(247).

Fig. 3. Quantum circuits for the resolution of the Deutsch problem obtained with our
model. The only difference among solutions pertains to the last operator applied on
the second qubit, and so has no influence on the state which is measured.

Then, different parameters have been altered to observe the consequences
on the learning and the final algorithm. These parameters are the number of
layers in the network, the initialization of the qubits and the state to measure
to be constant or balanced. When the number of layers is increased, we observe
that a solution is always found even if the number of possible networks increase
exponentially. Indeed, the number of admissible solutions also increase exponen-
tially according to the number of layers. For example, if we consider five layers
in the network, the two networks presented in Fig. 4 have the same effect on the
quantum states.

Fig. 4. Two different solutions for the problem of Deutsch if the network is formed by
five layers. The networks are different but their effect on quantum bits are equivalent.

1 The selection is performed by a roulette wheel selection. The genetic operators are
the 1-point crossover and the uniform mutation. Their respective rates are 0.9 and
0.01. The population size is 100 and the maximum number of generations is 10000.
The survival of best individuals is ensured by elitism.
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If we exchange the initialization of the two qubits, we have to consider a
network of at least four layers to find a solution. And, most of the time, the
solution consists in replacing the network in the previous initialization, which
means that a NOT operator is applied to each qubit in the first layer. Results
are similar if we alter the initialization by setting both qubits to |0〉 or |1〉.

In case we switch the states to measure to have a constant (|1〉) or balanced
(|0〉) function, we can find a solution whatever we take as initialization of our
qubits. The smallest network, given in Fig. 5, is obtained if both qubits are
initialized to |1〉. In other cases, the solution is made of four layers. We have also
tried to look for a solution if we measure the second qubit instead of the first one
but it has not worked whatever the considered initialization and configuration.
This result seems consistent as such a solution has never been introduced in the
literature.

Fig. 5. Quantum circuit for the resolution of the Deutsch problem if a constant function
is given by a measure of the first qubit equal to |1〉. Even if less frequently met, this
scheme has already been presented in the literature [8].

Concerning the Deutsch-Jozsa problem, we have tested different sizes of the
problem. Let n be the number of variables of the function, then the number of
input states of the function is 2n and the number of possible balanced functions
is given by the number of combinations of 2n−1 units taken among 2n. Figure 6
presents the number of possible networks according to n and the mean number
of generations to reach the solution with our GA for each of this dimension. We
can see in our two graphs that the increase according to n is exponential.

From n = 3, we have remarked that our (n + 1)-qubit systems could not
always be split into n + 1 qubits. This is due to the property of entanglement of
quantum states. Indeed, some qubits that are combined with the tensor product
are modified by the oracle in such a way that they can no more be separated
properly. In this case, we have considered either to keep all functions or to exclude
functions that lead to entangled states. In the first case, we could hardly get a
fitness of 1. In the second case, we have obtained a fitness of 1 but simulations
were longer as a preliminary test was needed to remove this type of functions.

3.3 Discussion on the Used Optimization Methods

Before going further, we have considered the possibility of using optimization
methods different from genetic algorithms. In this way, we have implemented
a simulated annealing (SA) [7] and a random search (RS). Figure 7 shows the
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Fig. 6. Number of possible quantum networks (left panel) and number of generations
to reach the solution for the Deutsch-Jozsa problem (right panel) according to the
number of variables in the function.

number of iterations required by each method to reach the solution for different
sizes of the Deutsch-Jozsa problem. We can observe that these numbers are very
similar for the random search and the simulated annealing. Regarding our genetic
algorithm, the number of required iterations is divided by a factor 100. However,
this smaller number of iterations is offset by the number of function evaluations
at each iteration, which is 1 for RS and SA and 100 for GA. In conclusion, the
genetic algorithm and the simulated annealing do not appear more efficient than
the random search.

This fact could be explained by our way of coding and modifying our model
of quantum neural networks. Indeed, the shift of the oracle from one layer to
another because of the application of a mutation for the GA leads to important
changes in networks. This remark also holds for SA, as the oracle can be shifted
during the exploration of the space of solutions. Because networks are pretty
small, these big changes can modify them as strongly as it is made by random
search.

Another explanation could be glimpsed by the analysis of two indicators,
namely the fitness distance correlation coefficient and the autocorrelation of
the function landscape [7]. As it is indicated by its name, the fitness distance
correlation coefficient measures the correlation between the objective function of
a candidate and its distance to the optimal solution. As for the autocorrelation,
it measures the correlation between neighboring candidates. Results of these
two measures for different sizes of the Deutsch-Jozsa problem are presented in
Fig. 8. We can see that these two coefficients are quite low, whatever the size
of the problem. This observation reinforces our intuition that GA and SA are
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Fig. 7. Comparison of the number of iterations required by each algorithm to reach the
solution. This comparison is performed for different sizes of the Deutsch-Jozsa problem.
The simulated annealing and the random search required similar number of iterations
while it is divided by a factor 100 for the genetic algorithm.

no more efficient than RS for this application. Indeed, if correlation does not
exist between the distance to the solution and the objective function, it can not
be assumed that the best individual will be found by crossovers and mutations
on good individuals. Similarly, the absence of correlation between neighbors
removes any advantage to an optimization method such as SA that travels from
one candidate to its neighbors.

4 Quantum Gates Construction

Our methodology enables us to develop quantum algorithms solving problems of
Deutsch and Deutsch-Jozsa without requiring any particular knowledge except
the function to reproduce. Indeed, the appropriate algorithm appears following
the learning process applied to a network composed by standard gates. Given
the difficulty to develop quantum algorithms and the small number of such
algorithms, we think that our results are promising even if the increase according
to the number of variables is exponential. Consequently, we have considered to
exploit our methodology for the implementation of quantum gates.

Our idea was to identify a set of universal gates and to develop other gates
by combining those belonging to this set. We followed the statement of Nielsen
and Chuang [10] and worked with a set made of 6 qubit gates to whom the
controlled-not gate has been added. The qubit gates are I, H, S, T and their
adjoint. As I and H are self-adjoint, we only have to add S∗ and T ∗.
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Fig. 8. Indicators analysis for different sizes of Deutsch-Jozsa problem. Left panel:
fitness distance correlation coefficient. In our case, the distance between two quantum
gates is fixed to 1. Moreover, we do not consider the last operator applied on the
last qubit as it has any influence on the final result of the algorithm. Right panel:
Autocorrelation of the objective function landscape. For this measure, we consider
neighbors at distances from 1 to 5.

Before starting our optimizations, we have analyzed the two indicators pre-
sented above in order to choose the most appropriate method. For this, we have
considered the objective function of the controlled-Z gate and the Toffoli gate,
which is a generalization of the controlled-not for three qubits. The correlation
coefficients for these two problems are respectively equal to 0.1048 and 0.2010.
The autocorrelation of the function landscape is represented in Fig. 9. Once
more, these measures are pretty low. Consequently, we have decided to replace
our genetic algorithm by a simulated annealing. Indeed, the genetic algorithm
requires more CPU time due to crossover and mutation process for analogous
results. Our simulated annealing has a temperature that decreases very slowly2,
with the aim to explore the space of solutions as much as possible.

Firstly, we used our QNN model and our simulated annealing to design the
qubit gates that were not part of the defined set, i.e. the X (NOT), Y and Z
gate. The Z gate is quite easy to rebuild as it only requires a sequence of two
Hadamard gates. On the contrary, X and Y respectively claim 4 and 6 layers
and are represented in Fig. 10. Such a number of layers seems quite expensive
for so simple gates. Then, we have succeeded in recreating the 2-qubit gates
controlled-Y and controlled-Z, which are also represented in Fig. 10. Although it
has been proved theoretically that all these gates could be rebuilt from a set of
universal gates, let us note that we hereby provide their explicit scheme for the
first time.

Nevertheless, we have quickly been confronted to one big limitation of our
model, which is the exponential increase of the number of possible networks

2 The temperature is initialized to 1, in such a way that a candidate decreasing the
objective function by 0.5 has a probability of 2

3
to be accepted. The cooling parameter

is fixed to 0.99995 for a slow diminution of this probability.
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Fig. 9. Autocorrelation analysis for the objective function of two quantum gates. We
consider neighbors at distances from 1 to 5. Left panel: Controlled-Z gate. Right panel:
Toffoli gate.

Fig. 10. Design of qubit gates with our model starting from the set of universal quan-
tum gates. Right panel: Not (X) and controlled-Y gates. Left panel: Y and controlled-Z
gates.

according to its size. Indeed, we know that a Toffoli gate requires 13 layers of
three qubits to be designed from our predefined set [10]. With our model, even if
we consider that we know the number of needed controlled-not gate, the number
of possible networks among which the solution has to be found is superior to 1026.

5 Conclusion

Quantum computation attracts considerable interest as it can be an answer to
the limitations of current computers. Nevertheless, it remains difficult to elab-
orate quantum algorithms or quantum operators working on systems made of
more than two qubits. Our aim is to study the possibility to develop a general
framework based on neural networks endowed with quantum gates and evolu-
tionary computation to tackle this difficulty.

Our approach was first used on the Deutsch and Deutsch-Jozsa problems.
Results are positive as solutions were found for different configurations and dif-
ferent sizes of these problems. However, we have observed that our optimization
method, a genetic algorithm, was no more efficient than a random search among
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the space of solutions. This fact can be explained by the low values of the fitness
distance correlation coefficient and the autocorrelation of the landscape, as well
as by our way of coding the networks. In a second time, our QNN model has
been trained to achieve quantum gates from a set of universal quantum gates.

This research highlights two limitations of our approach. The first one is
linked to the entanglement property of quantum systems. Indeed, once a state
is turned into a entangled state by an oracle or a controlled-not gate, we are
no longer able to manage with it. The second one, and the most important for
us, is the exponential increase of the networks number according to the size
of this network. This increase, combined with the absence of correlation given
by our indicators for the objective function, makes the resolution impossible in
reasonable time for networks with more than about 15 gates.

Despite these limitations, we can envisage to improve the efficiency of our
method. Firstly, we can decrease the number of possible networks by fixing the
number of controlled-not gates, and stronger, by fixing the number of one qubit
gates that differ from the identity. But, even with these constraints, the size
of the resolvable networks will be limited. Another option would be to add a
quantum operator to our set as soon as we find its breakdown. Improvements
can also be imagine on the learning process. For example, we can consider the
addition of a penalty in order to avoid useless sequences of operations.
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