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a b s t r a c t

Crystallized nanoporous TiO2 thin films were synthesized by combining reactive magnetron sputtering
and Glancing Angle Deposition (GLAD). The growth temperature, the bias voltage and the rotation speed
of the substrate were studied with the aim to grow nanoporous films presenting anatase constitution
which are suitable for Dye Sensitive Solar Cells (DSSC) applications.

By fixing the tilt angle at 85�, we have shown that an increase of the growth temperature up to 450 �C
leads to the formation of nanoporous anatase film with a grain size up to 24 nm while by applying a bias
voltage leads to a densification of the films as evidenced by scanning electron microscopy and by X-ray
diffraction. On the other hand, by rotating the substrate (from 0.1 to 10�/s) during the deposition process,
films with larger columns and higher surface roughness (from 45 to 60 nm) were obtained due to an
enhanced shadowing effect.

Preliminary dye impregnation experiments have shown that the highest light absorption values are
obtained for the films prepared without bias and with no rotation, which is supported by the micro-
structure of these films presenting the highest porosity. These films, presenting an anatase constitution,
are potentially good candidates as an anode in DSSC applications.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, the efficient use of renewable energies represents a
major economic and environmental issue. This is obviously also
true for the solar energy, by far the most important of them in term
of quantity. In this context, among the many advantages of the dye-
sensitive solar cells (DSSC), their cheap production cost and good
performance at low illumination and high temperatures are very
interesting [1e5]. The highest efficiencies [2] are around 10% and,
more recently, the fabrication of solid state DSSCs with 15.0% effi-
ciency was announced by Graetzel [6]. Much of the shortfall is due
to the poor absorption of low-energy photons by available dyes.
Considerable efforts have been made to develop dyes and dye
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mixtures that absorb better at long wavelengths but, so far, with
little success [7]. Another option for improving the absorption of
red- and near-infrared light is by thickening the nanoparticle-based
film to increase its optical density. This approach is unsuccessful
because the film thickness begins to exceed the electron diffusion
length through the nanoparticle network [8]. Indeed, the photo-
anode of a DSSC is often composed of an array of TiO2 nano-
particles. In the latter situation, the charge transport is limited by
trappingedetrapping processes in which both morphological dis-
order and energy play a role [9]. The structural disorder at the
nanoparticle boundaries enhances the scattering of free electrons
and thus reduces the electron mobility [10]. So, even if these
nanoporous TiO2 films have large surface areas (around 56 m2/g for
P25 [11]) and allow an efficient collection of photons, the electron
transport is a limiting factor for the conversion efficiency. Ideally,
the porous film must have interconnected particles, to allow the
percolation of the injected electrons [12].

A potential alternative would be a porous crystalline TiO2 thin
film with nanoscale ordered photo-anode architectures, such as
nanotubes [12e14], nanorods [15e17] and nanowires [8,18]. The
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Fig. 1. Experimental setup diagram of the deposition chamber.
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main potential advantage of these structures relies on a better
collection of charges as they provide amore direct path towards the
external circuit so that recombination at the boundary grains and
exposure to the electron acceptors in the electrolyte is avoided. In
this way, faster transport and a slower recombination rate lead to a
minimization of charge losses. However, the synthesis of these
porous materials by sol-gel method [8,19], anodic oxidation [20], or,
electron beam evaporation [21], usually leads to amorphous
structures which require additional annealing treatments to crys-
tallize TiO2 films.

The crystalline constitution of TiO2 is also important in order to
optimize the charge separation and transport in a DSSC. The
anatase phase of TiO2 is usually preferred as the electron acceptor
in DSSCs, partly due to the difference in the band-gap value of
anatase and rutile TiO2 polymorphs. The anatase conduction band
is 0.2 V more negative than that of rutile, a larger maximum photo-
voltage can be thus obtained for anatase (assuming that the same
redox mediator is employed) [22,23]. Nevertheless, it has been
shown that a mixture of rutile and anatase TiO2 crystals could
enhance the photo-current and the overall solar conversion effi-
ciency [24]. In this work, the best photo-current and overall solar
conversion efficiency were obtained for a rutile content in the film
around of 13% by weight. This was explained by a synergistic effect
between anatase and rutile crystal. Interfacial electron transfer
occurs from rutile to anatase: photo-excited electrons injected into
rutile can be transferred to the conduction-band of anatase [24].
With anatase and rutile in close contact, photo-excited electrons
and holes are preferentially trapped in the anatase and the rutile
phases inhibiting the detrimental electronehole recombination
[25]. However, the increase of the rutile concentration above this
percentage appears to be detrimental to the DSSCs because the
diffusion coefficient of conduction-band electrons in rutile is
significantly smaller than that in anatase [26].

In order to generate such a porous coating while controlling the
phase constitution, we combined Reactive Magnetron Sputtering
(RMS) and Glancing Angle Deposition (GLAD). The magnetron
sputtering process allows precise control of the microstructure and
related properties of the film such as its density, adhesion, surface
roughness and crystallinity and it is also cost effective for industrial
applications, overcoming the current barriers in other film depo-
sition processes [27]. Anatase TiO2 thin films have already been
grown successfully at room temperature on glass substrates using
dc magnetron sputtering in reactive mode [28]. The crystallization
of TiO2 films at room temperature is mainly promoted by energetic
particle bombardment (electrons, atoms, ions, molecules and even
charged clusters) during sputtering. It has been demonstrated that
deposition parameters have great impact on the properties of these
films. Indeed, a sputtered thin filmwhich is crystallized by a supply
of energy will be dense and therefore the use of GLAD is necessary
in this case. Ballistic shadowing is the foundation of GLAD-based
thin film engineering. Such shadowing is only possible if the
incoming vapour flux is well collimated. In this method, the sub-
strate can be tilted with an angle (a) and/or rotated with an angle
(4) step by step or with a continuous angular speed (4s) in order to
generate a columnar porous thin film (Fig. 1). The GLAD process
enables the growth of columnar thin films with specially engi-
neered nanostructures. These films are extremely porous and
consist of isolated columns that can take the form of, for example,
helices, vertical posts and polygonal spirals [29]. The porosity (in-
ter-columnar space) and the columnar tilt angle (b) can be tuned to
have open pores (mesopores) to increase the specific surface area
and improve the dye and electrolyte penetration in the case of
specific DSSC applications [30,31].

The combination of MS and GLAD techniques have already been
used to synthesize nanostructured thin films comprising different
types of materials such as chromium [32,33], titanium [34e36], and
titanium dioxide [37,38]). Z. Michal�cík et al. [37] prepared TiO2 thin
films by the MS and GLAD methods in order to increase the pho-
tocatalytic activity. Their nanostructured films were characterized
by a higher surface roughness and a substantially higher relative
specific surface compared with films prepared by conventional MS.
For the application of the anatase films as photo-anodes in dye-
sensitized solar cells, Su-Il In et al. [38] prepared vertically
aligned anatase TiO2 nanowire arrays on FTO (Fluorine doped Tin
Oxide) coated glass substrates via pulsed DC MS at low tempera-
ture. They found a preliminary photo-conversion efficiency of 1.07%
for their nanowire-based photo-anode 3.6 mm thick. This is slightly
more efficient than single crystals or flat electrodes of poly-
crystalline films of tin-oxide or titanium-oxide used like a photo
anode. In spite of the efficient electron injection into the semi-
conductor, the light harvesting efficiency was very small and the
efficiencies of the solar cells were extremely low (below 1%)
[39,40]. Nanostructures, such as vertically aligned nanowires, pro-
vide direct pathways for electron transport and, when used as
photo electrodes, improve the electron diffusion-length, electron
life-time and diffusion-coefficient. However, they have a funda-
mental disadvantage: they do not provide the necessary specific
surface area for dye adsorption, resulting in DSSCs with poor effi-
ciencies. Therefore, in this work, the interrelated and nonlinear
parameters of bothMS and GLADwere varied in order to determine
an experimental window allowing the growth of porous TiO2 films
presenting an anatase and/or rutile crystalline structure that allow
significant grafting of dye molecules, which were a conjugated
polymer, namely regioregular poly(3-hexylthiophene, P3HT), in
this work.

Conjugated polymers are a special class of material gathering
the advantages of plastics and semiconductor properties [41]. The
conjugated double-bonds in the main chain can interact with light
and determine the optoelectronic properties of the polymers
[42,43]. Among conjugated polymers, P3HT is of major interest
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[43e45] for its high hole mobility, absorption in the visible range,
good solubility in organic solvents, low toxicity and chemical and
thermal stability.

The crucial point is the incompatibility between the hydrophilic
surface of the metal oxide and the hydrophobic nature of the
conjugated polymer. The segregation phase between both organic
and inorganic components, in fact, reduces the interface between
the donor and acceptor materials and, consequently, the charge-
transfer efficiency (4). Groups with carboxylic acid functions con-
jugated to the polymer improve the interactions at the interface
polymer-inorganic substrate, increasing the photo-induced elec-
tron transfer [46].

2. Experimental details

All experiments were carried out in a cylindrical stainless steel
chamber (height: 60 cm, diameter: 42 cm). The chamber was
evacuated by a turbo-molecular pump (Edwards nEXT400D 160W),
backed by a dry primary pump, down to a residual pressure of
10�4 Pa.

An unbalanced magnetron cathode was installed at the top of
the chamber facing the substrate at a distance of 80 mm (Fig. 1). A
2-inch in diameter and 0.25-inch thick Ti target (99.99% purity) was
used. The target was sputtered in DC mode using an Advanced
Energy MDK 1.5 K power supply. A mixture of argon (8 sccm) and
oxygen (2 sccm) was injected in the chamber in order to grow
stoichiometric TiO2 film (poisoned regime). Conductive silicon
wafers (100) and Indium tin oxide (ITO) coated glasses were used as
substrates, cleaned with detergent (RBS) solution and rinsed with
ultra-pure water. ITO-coated glass is the substrate that will be used
in the DSSC stack and it was used here to characterize the ab-
sorption in the UVevisible range. The substrates were tilted to
a ¼ 85� with respect to the cathode axis in order to induce ballistic
shadowing and consequently the growth of nanostructured films.

The rotation speed (4s), the bias voltage (Ub) and the substrate
temperature (Ts) were varied in order to study their influence on
the thin film properties. The different values utilized are reported in
Table 1. The total pressure and the sputtering power were kept
constant at 0.1 Pa and 150 W, respectively. The deposition rate
measured by profilometry is 2 ± 0.4 nm/min for these conditions
and is reduced by a factor of approximately 2 when biasing or
rotating the substrate. The substrate temperature has no influence
on the rate.

The phase constitutionwas determined by Grazing Incidence X-
ray Diffraction (GIXRD) analysis (Panalytical Empyrean) with a Cu
Ka 1 source (1.5406 Å) and 8046 keV. The X-ray source voltage was
fixed at 45 kV and the current at 40 mA. The Scherrer equation was
used to evaluate the grain size. The morphology was characterized
with a field emission gun scanning electron microscope (FEG-SEM
Hitachi SU8020). In order to compare the films, their thickness was
kept constant at 230 ± 20 nm. The latter was measured by a Dektak
150 profilometer. An AFM Bruker Multimode microscope with
Nanoscope IIIa Controller (Etched Si probes (Ref. PPP-NCHR,
Nanosensors GmbH)) was used to determine the root mean
square (RMS) roughness over a 5 mm2 surface by an average peak-
valley height.
Table 1
Deposition process parameters with their variation range.

Parameters Variation range

Bias voltage (Ub) 0, �50, �100, �150, �200 V
Substrate temperature (Ts) 100, 250, 350, 450 �C
Rotation speed (4s) 0.1, 1.0, 10 �/s
Finally, the TiO2 surface was grafted with a dye by dip coating
using a 10 mg per ml solution of P3HT-COOH (with ~30 thiophene
units) in chloroform. The films were then rinsed with chloroform to
remove ungrafted P3HT-COOH molecules. To characterize the
adsorption of the dye on the TiO2, the optical absorption of the thin
film before and after grafting was measured by using a UVevisible
spectrophotometer (UVeVISeNIR Cary G5) in the 350e800 nm
wavelength range.

The regioregular polymer Br-P3HT-H (Mn,GPC ¼ 5400 g/mol; ÐM
1.08) was achieved by GRIM polymerization [47e50]. The aldehyde
functionalization was realized by VilsmeiereHaack reaction [51,52]
followed by a Witting reaction [46]. The 4-((bromo-
triphenylphosphoranyl) methyl)benzoic acid useful for the Wittig
reaction was synthesized in accord to the state-of-the-art [53].

3. Results

A preliminary study aiming to determine the experimental
window in which the deposition rate was reasonably high allowed
the determination of the following deposition conditions: 0.1 Pa,
150 W and a ¼ 85�, which have been considered as the reference
conditions for this work. Therefore these parameters were kept
constant for all experiments. Typical film structure as obtained in
these conditions is presented in Fig. 2.

A fibrous columnar structure which is typical of sputtered thin
film could be observed. This structure corresponds to the Zone 1 in
the Structure Zone Model of Thornton [54]. The structure of vapour-
deposited coatings grown under these conditions is typically
columnar, characterized by voided open boundaries, and is super-
imposed on a microstructure which may be polycrystalline or
amorphous. Its occurrence is a fundamental consequence of atomic
shadowing acting in concert with the low adatom mobility that
characterizes low T/Tm deposition [55]. In our case the shadowing
effectwas exacerbated by a grazing deposition at a¼ 85� to generate
highly porous thin films with increasing the void between columns.

3.1. Influence of substrate bias

All deposition processes were performed within 180 min. The
substrates were not intentionally heated but, due to the sputtering
process, the substrate temperature could reach 100 �C as measured
by a thermocouple connected to the substrate holder.
Fig. 2. Cross-section SEM images of TiO2 nanostructured thin film synthesize in
grazing mode (a ¼ 85�) at 0.1 Pa and 150 W without substrate bias polarization or
heating.



Fig. 4. XRD patterns of the TiO2 films deposited for different Ub values. A and R denote
anatase and rutile phase, respectively.
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In Fig. 3 the cross-section SEM images of the TiO2 nanostructured
thin films deposited for extreme values of Ub (�50 V and �200 V)
are presented. The corresponding morphological characteristics,
plotted as a function ofUb (from�50 V to�200 V), are also reported.
When applying a substrate bias, the surface is smoothened and the
roughness consequently decreases from 30 nm to 10 nm. The width
of the columns increases and the inter-columnar space is reduced to
zero due to the merging of the columns. The columnar tilt angle (b)
increases from 60� to 75� as Ub is varied from 0 V to �50 V and
remains fairly constant for higher values. These data could be un-
derstood by considering the increase of the ion energy impinging
the surface which improves the adatommobility and is likely to lead
to a column merging process but a larger b angle [56] leading to a
densification of the films and, therefore, to a decrease of the specific
surface area. This is in agreement with previously reported results
[57,58]. Sorge and Brett demonstrated by variable angle spectro-
scopic ellipsometry (VASE) measurements, that films grown at a
substrate angle a ¼ 85� show a dramatic increase in density from
0.20 to 0.51 under ion bombardment as the column tilt angle (b) was
increased from 44� to 62�. Film density values are normalized
relative to that of a film deposited at normal vapour incidence
(a ¼ 0). It was explained that the open void structure allows better
penetration of ions into the pores and enhance the redistribution of
surface atoms by sputtering [58].

Fig. 4 shows the X-ray diffraction patterns of the TiO2 films
deposited for different Ub. In addition to the peaks corresponding to
Si, anatase and rutile, other peaks are present depending the value
of Ub. At 0 V, only the anatase phasewas observedwith (101), (200),
(105) and (211) characteristic peaks [59]. For Ub ¼ �50 V, both
anatase and the rutile (110) phases are observed. Above �100 V,
only the rutile phase is observed. As mentioned before, when Ub
increases, the ion energy bombarding the substrate surface in-
creases which allows for the high temperature stable phase of TiO2,
rutile, to be formed at relatively low temperature [60]. Increasing
Fig. 3. Cross-section SEM images of TiO2 nanostructured thin film for extreme values of U
columnar space (nm), c) the columnar tilt b (B) and c) the roughness of the thin film (nm
further the bias voltage to �200 V allows the texture of the rutile
phase to change in both (101) and (111) preferential orientations.

Fig. 5 shows how the grain size changes as a function of Ub.
Rutile grains are generally smaller (up to 10 nm at �200 V) than
anatase grains which could be explained by the fact that anatase is a
fast-growing phase in comparison to rutile [60]. The grain size
depends strongly on the nucleation ratewhich can be influenced by
the process conditions. Overall, the anatase and rutile grain size
becomes larger at a higher deposition Ub due to an enhanced
diffusion process on the growing film. From these results it is
demonstrated that rutile-containing films can be made even at low
b and the respective morphologies with a) the width of columns (nm), b) the inter-
).



Fig. 5. Grain size of TiO2 films deposited at different substrate bias voltages. Fig. 7. XRD patterns of the TiO2 films deposited at different substrate temperatures. A
denotes anatase diffraction peaks.
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temperatures if the film growth is assisted by ion bombardment.
Nevertheless, these films correspond to the less porous structures
and are thus characterized by the lowest specific surface area.

3.2. Influence of the substrate temperature

The substrate was heated during the deposition and all other
parameters were kept constant as described in the experimental
part. The substrate temperature (Ts) ranged from 100 �C to 450 �C.
Fig. 6 shows that the roughness and the columnar tilt are not
significantly affected by Ts and are 30 nm and 60�, respectively. On
the other hand, when increasing Ts, the thin columns very close to
one another, obtained at low Ts, become larger (from 18 to 42 nm)
and more distant from each other; from 10 to 21 nm. These
Fig. 6. Cross-section SEM images of TiO2 nanostructured thin film for extreme values of su
(nm), b) the inter-columnar space (nm), c) the columnar tilt b (B) and d) the roughness o
observations are explained considering the effect of Ts on the
nucleation processes [61]. An increase inTs leads to larger and fewer
nuclei with a larger spatial separation for the same substrate
coverage. The latter implies that a larger area behind an individual
nucleus is shadowed. This allows promotion of the growth in the
direction towards the flux. Therefore, a smaller number of thicker
columns can grow on the substrate surface from the first nuclei
[61].

In addition to the microstructural modifications, an increase of
Ts is also expected to promote the crystallization of the growing
film. The XRD spectra of nanostructured TiO2 films deposited for
different Ts on Si substrates are presented on Fig. 7. All films reveal a
dominating (101) anatase crystalline constitution. However, the
(211) anatase peak increases with Ts.
bstrate temperature Ts and the respective morphologies with a) the width of columns
f the thin film (nm).



Fig. 8. Cross-section SEM images of nanostructured TiO2 thin films for three substrate rotation speeds: 0.1, 1.0 and 10�/s.
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The (211) anatase orientation has larger grain size than the (101)
orientation. This is why the global value of the grain size increases
from 13 to 24 nm (not shown here) for Ts ¼ 450 �C which is
consistent with previous studies [60,62].

3.3. Influence of substrate rotation speed

The rotation speedwas varied (4s¼ 0.1,1.0 and 10�/s) keeping all
other parameters constant. In order to grow crystallized nano-
structured TiO2 films with large open pores, all depositions were
performed while heating the substrate at 450 �C and without bias.
All films present an anatase crystalline constitution.

Fig. 8 shows the SEM pictures of the cross-sectional views of
TiO2 films synthesized with three angular substrate rotation speeds
(4s) increasing from 0.1 to 10.0 �/s. The pictures reveal vertical
columns characterized by a significant roughness, from 44.5 to
59.3 nm for 0.1 and 10�/s, respectively. With increasing 4s, the
number of turns of the helical column increase proportionally,
resulting in an elongated morphology of the column and a decrease
of the film porosity due to the self-shadowing effect [63]. Thus, the
helical pitch (the height of one “turn” of a helix) may be varied by
choosing the rotation speed.

This microstructure is explained as follows: the growth process
starts with the development of single spiral fibres. As the growth
continues, those fibres eventually merge to form broader struc-
tures. In this case, the substrate temperature fixed at 450 �C leads to
the merging of the first helicoidal structures due to the increased
diffusion rate of the adatoms. This observation is in agreement with
previously published studies [64] which have shown that the sur-
face diffusion has a strong impact on i) the merging behaviour of
nanospirals, ii) the diameter of single nanostructure features and
iii) overall density of the deposited film. At high rotation speed, the
helical pitch becomes very small and, ultimately, if the helical pitch
is less than the characteristic surface adatom diffusion length, the
helix degenerates into a straight vertical pillar. The vertical columns
arise because of the rapid rotation speed of the substrate, which
allows the particle flux to arrive evenly from all angles 4 so the
columns will not grow preferentially in any given direction [34].
Fig. 9. Cross-section SEM images of TiO2 a) nanostructured thin film and b) plane (
3.4. Dye adsorption efficiency

The adsorption efficiency of the P3HT-COOH dye on the nano-
structured TiO2 films has been evaluated using UVevisible ab-
sorption. The experimental conditions leading to TiO2 films with
the highest porosity, i.e. highest inter columnar space, were chosen.
Indeed, this is expected to provide a high specific surface area and
thus enhance the adsorption and the surface coverage efficiency of
the dye i.e. the number of P3HT-COOHmolecules that are adsorbed.
A TiO2 film was therefore deposited on ITO glass (necessary for the
absorption measurements) using the following conditions: 0.1 Pa,
150 W during 240 min with a ¼ 85�, 4s ¼ 0�/s and Ts ¼ 450 �C. Our
data demonstrates that the use of an ITO covered glass substrate did
not influence significantly the properties of the deposited films. As
an example, the cross-section SEM image is presented in Fig. 9a
which is completely comparable to the one reported on the Si wafer
in Fig. 6. As expected the film exhibits large open pores. A TiO2 film
was deposited with the same experimental conditions but using
a ¼ 0�. This was also evaluated in terms of dye absorption for
comparison since the film is dense and does not present observable
porosity as shown in Fig. 9b.

The UVevisible absorption spectra, of both dye sensitized TiO2

films, are shown on Fig. 10 on which it appears that the absorption
of light is significantly higher; by one order of magnitude on the
nanostructured TiO2 film. The maximum of absorption is located
around l ¼ 500 nm corresponding to the maximum absorption
wavelength of the P3HT-COOH molecule [46]. This increased ab-
sorption is clearly observable with the naked eye (Fig. 10).

Table 2 reports the relative intensities of the dye absorption
peak at 500 nm for other TiO2 thin films. It can be seen that heating
the substrate during the growth does not affect the dye absorption
while increasing the bias and the rotation speed reduce it
dramatically. These data are perfectly correlated to the micro-
structure of the films which is much denser when biasing or
rotating the substrate.

Overall when considering the need to crystallize the material for
a use as an anode in DSSC, the thin films synthesized using
Ts ¼ 450 �C are the best candidates.
non-structured) thin film synthesized on ITO-coated glass substrates at 450 �C.



Fig. 10. UVevisible absorption spectra of dye sensitized TiO2 nanostructured a) and
plane thin film b) along with the corresponding pictures.
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4. Conclusions

TiO2 thin films were prepared by combining GLAD (a ¼ 85�) and
reactive DCmagnetron sputtering in order to obtain nanostructured
and crystallized thin films whichmay be used as the photo-anode in
DSSCs. The effect of the substrate bias voltage, the substrate tem-
perature, and the substrate rotation speed on the TiO2 film micro-
structure and crystalline constitution has been investigated.

It has been observed that, when applying a bias voltage, the
phase constitution of TiO2 films can be controlled from pure
anatase to pure rutile films. Nevertheless, the use of the bias leads
to a merging of the nano-columns reducing significantly the
porosity of the layer which is detrimental for DSSC applications. By
heating the substrate, only the anatase phase was observed in the
studied range of temperature (from 100 to 450 �C) while the
microstructure of the films was not affected and presented a
nanoporous structure.

A vertical columnar structure was obtained by rotating the
substrate at different speeds. In order to obtain the anatase phase,
Table 2
Relative intensities of the dye absorption peak at 500 nm with the corresponding
deposition conditions at a ¼ 85� .

Substrate bias
voltage (�V)

Substrate
temperature
(�C)

Substrate
rotation (�/s)

Relative dye
absorbed

Crystalline
structure

0 RT 0 0.27 A
0 450 0 0.25 A
50 RT 0 0.09 A/R
50 450 0 0.22 A/R
0 450 0.1 0.14 A
0 450 10 0.13 A
the substrate temperature was fixed at 450 �C. However, heating
the substrate increases the adatommobility and leads to a merging
of the helicoidal structure synthesized at slow rotation speed. At
high rotation speed, elongated vertical columns were obtained.

Adsorption efficiency for the dye (P3HT) was evaluated for the
different films. The highest absorption has been observed for the
film synthesized without bias and without rotation, as expected
from the microstructure of the latter. From the present study, we
can conclude that heating the substrate at 450 �C, without any
substrate rotation, allows a large dye adsorption with an important
crystalline domain to be obtained; an essential requirement for an
efficient solar cell.
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