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Abstract—Label noise-tolerant machine learning techniques
address datasets which are affected by mislabelling of the
instances. Since labelling quality is a severe issue in particular
for large or streaming data sets, this setting becomes more and
more relevant in the context of life-long learning, big data and
crowd sourcing. In this contribution, we extend a powerful online
learning method, soft robust learning vector quantisation, by a
probabilistic model for noise tolerance, which is applicable for
streaming data, including label-noise drift. The superiority of the
technique is demonstrated in several benchmark problems.

I. INTRODUCTION

In current’s digital age, two major challenges of machine
learning are posed by the size and the quality of modern
datasets [1]: The total amount of data in the digital universe
has been estimated to 4.4 zettabytes (4.4×1021 bytes) in 2013
[2]. While the amount of available data has been continuously
increasing in many fields such as the medical domain, web,
or personal electronic devices, the data sources themselves
are often becoming less reliable. Real-world databases contain
around five percent of labeling errors, when no specific mea-
sures are taken [3], [4]. In recent advances like crowdsourcing,
experts are replaced by online communities which are cheaper,
but much less reliable [5], [6]. Hence modern algorithms need
to deal with both, large data sets and noisy instances. In a
nutshell, we will address both challenges in this contribution
by proposing an online, label-noise tolerant classifier which
is capable of dealing with label-noise drift.

Online learning methods offer a competitive solution for
large datasets given limited memory resources [7]. They also
come with an inherent ability to deal with data streams, like in
web applications that continuously produce data and require
lifelong learning. Sometimes, data are produced so fast that
they cannot be stored and must be used on the fly. One
particular challenge in such domains is posed by concept drift,
i.e. the assumption of data being i.i.d. is violated [8], [9].
While powerful machine learning methods exist, which are
capable of dealing with various type of concept drift, models
which specifically tackle label noise drift are rare [10]–[13].

In this contribution, we focus on online learning techniques
which are suited for large or streaming datasets. Such data
occur naturally e.g. in the context of crowd-sourcing or product
personalisation where different humans label data with a sub-
jective bias. We will address prototype-based classification, as

one popular model for life-long learning [14], [15]. Prototype-
based methods such as learning vector quantization (LVQ)
have been proposed more than two decades ago, accompanied
by success stories from diverse application domains [16],
[17]. They share similarities with nearest neighbours methods
which are popular to deal with data streams [18]–[20]. Modern
LVQ variants can be accompanied by strong mathematical
guarantees [21], [22]. We will focus on probabilistic versions
because they can elegantly be robustified to label-noise.

Diverse noise-tolerant machine learning models have been
proposed for label, attribute, or more general measurement
noise [23], [24]. This paper focuses on label noise, which
occurs due to insufficient information, expert mistakes, or
encoding errors [25], [26]. Label noise can have detrimental
effects on learning, including lower prediction performance
and higher model complexity. A few approaches can naturally
deal with uniform label noise but this property does not trans-
fer to other noise models [27]. Many algorithmic variations
exist to robustify a training pipeline in the context of label
noise [25], [26]. Online learning for label noise, however, has
solely been studied for the linear perceptron so far [12], [13].

This paper aims for a robust label-noise tolerant mecha-
nism which can deal with streaming settings including label-
noise drift. We extend robust soft learning vector quantization
(RSLVQ) since (i) it is representative for a large class of online
methods, (ii) it handles multiclass datasets and can be extended
to non-vectorial data, and (iii) it obtains state-of-the-art results
[22], [28], [29]. As we will see in Section V, it is sensitive to
label noise, but it can be robustified.

We rely on a probabilistic modelling developed by [30]
which has been shown to be effective [31]–[33]. We provide
an extension of RSLVQ, which enables its use in batch as
well as online scenarios subject to label-noise. Interestingly,
it is also suitable in online scenarios subject to label noise
drift, i.e. varying degrees of label noise. We conduct various
experiments to support these claims.

II. LABEL NOISE AND THE NEED FOR
ROBUST CLASSIFICATION METHODS

Label noise occurs when instances are mislabelled. This
section briefly reviews label noise and robust online methods,
as well as one fundamental probabilistic treatment. More
details can be found in the recent surveys [25], [26].



A. Sources and Consequences of Label Noise

Mislabelling can be due to several issues, such as in-
sufficient information about the objects to be labelled [34],
inter-expert variability in labeling in the context of subjective
classes [35], or encoding and communication problems [23].
A taxonomy of label noise has been proposed in [25], based
on the statistical dependency between the observed label, the
true class and the features. In practice, label noise has several
consequences: (1) The accuracy of classifiers decreases, as
extensively shown theoretically and empirically, see e.g. [36],
[37]. (2) More training instances may be required and the
complexity of models may increase [34]. (3) Model estimates
may be biased resulting in wrong frequency estimations or
model validation [38]. Other tasks like feature selection may
also be impacted by label noise [32].

B. Dealing with Label Noise

Three main approaches exist to deal with label noise [39]–
[42]. (1) Label noise-robust algorithms mainly rely on over-
fitting avoidance rather than noise modelling. However, many
common loss functions are not completely robust to label noise
and, in consequence, label noise-robust algorithms are still
affected. (2) Label noise cleansing uses heuristics to detect and
remove (or correct) mislabelled instances. Typical examples
detect mislabelled instances based on their neighbours. How-
ever, such instance selection methods may remove too many
instances and may be sensitive to class imbalance. (3) Label
noise-tolerant models either use a (probabilistic) model of
label noise or rely on algorithms which have been specifically
modified to reduce the influence of mislabelled instances. For
example, classical AdaBoost gives large weights to mislabelled
instances; a simple noise-tolerant extension limits the size
of instance weights. Such approaches are grounded in a
theoretical approach and allow us to use the knowledge gained
by the analysis of the consequences of label noise, at the cost
of an increased complexity of learning algorithms. This paper
focuses on a probabilistic label noise-tolerant model.

C. Probabilistic Modelling of Label Noise

Lawrence et al. [30] propose an elegant treatment of label
noise in a general probabilistic model, which has been suc-
cessful in classification, sequence segmentation, and feature
selection [31]–[33], [43]. This treatment will form the base
for our approach which we will introduce in the next section.
Assume data of the form (xi, yi), i = 1, . . . ,m are observed
with real vectors x ∈ Rd as inputs and observed discrete
class labels y ∈ Y as output. These values are instances
of the random variables X and Y . It is assumed that each
instance (x, y) is associated to a true hidden label ỹ ∈ Y
which is instance of the unobserved random variable Ỹ . Its
probability distribution is characterized by the form P (Y =
y|Ỹ = ỹ, X = x) := P (Y = y|Ỹ = ỹ), i.e. we assume
stochastic independence of the observation from the variable
X to avoid overfitting. P (Y 6= ỹ|Ỹ = ỹ) is the probability that
a mislabelling occurs (probability of error). The advantage to
distinguish hidden true labels and observed, potentially wrong

labels is to separate label noise modelling and classification.
The conditional probability becomes

P (Y = y|X = x) =
∑
ỹ∈Y

P (Y = y|Ỹ = ỹ)P (Ỹ = ỹ|X = x).

(1)
Probabilistic label noise tolerant algorithms can then aim for
an explicit model of the prediction P (Ỹ |X) and label noise
P (Y |Ỹ ) based on observations of (X,Y ). In this paper, we
will use this approach to robustify RSLVQ.

D. Batch Learning and Label Noise

In [30], such a model is used for model inference, based
on the general principle to optimize the conditional data log
likelihood with respect to model parameters θ:

log

m∏
i=1

P (Y = yi|X = xi,θ)

=

m∑
i=1

log
∑
ỹi∈Y

P (Y = yi, Ỹ = ỹi|X = xi,θ), (2)

for which a closed-form solution does not exist in general due
to the sum over values of the latent variable Ỹ . In the literature,
often, an EM scheme is used, i.e. a consecutive computation
of the expectation of the complete data log-likelihood and its
maximization [44], [45]. This scheme, however, is applicable
only in batch mode and cannot deal with streaming data
or label noise drift. While relying on the initial modeling
of Lawrence et al. for LVQ, we will aim for an alternative
online optimization scheme, which is capable of dealing with
streaming data and label noise drift.

E. Online Learning and Label Noise

In the literature, only few online-learning approaches have
proposed to deal with label noise. All of them are related
to the perceptron algorithm. The standard perceptron learning
rule adapts the weight vector and bias of a perceptron in case
of an error, where the resulting perceptron solution may be
biased by mislabelled instances. Label noise-tolerant variants
typically change the condition of weight adaptation: The λ-
trick [13] modifies the adaptation criterion if an instance has
been misclassified, to prevent mislabelled instances to trigger
updates. The α-bound [12] does not update the weights if the
presented instance has already been misclassified α times.

III. ONLINE LEARNING WITH ROBUST SOFT
LEARNING VECTOR QUANTIZATION

In this section, we motivate and review the RSLVQ model
and derive its robustification in Section IV.

A. RSLVQ in a Nutshell

We aim for a label noise tolerant probabilistic model which
enables online training without resorting to an EM scheme.
As a base classifier, we consider learning vector quantization
(LVQ) models, which have been widely studied in the litera-
ture [46]. We focus on robust soft learning vector quantization
(RSLVQ) as a probabilistic LVQ technique [22], [29]. LVQ



models can be trained in online mode, offering linear time
and limited memory models.

RSLVQ relies on a data generating Gaussian mixture model.
The jth prototype wj ∈ Rd with label c(wj) ∈ Y corresponds
to the isotropic Gaussian component with density function

p(x|j) :=
1

(2πσ2)
d
2

e
−‖x−wj‖

2

2σ2 (3)

where the bandwidth σ is considered to be identical for
each component. Provided k prototypes are present, unlabelled
instances are distributed according to a mixture distribution

p(x) :=
1

k

k∑
j=1

p(x|j) (4)

assuming equal prior P (j) := 1
k of all prototypes. Similarly,

labelled instance are distributed according to

p(x, y) :=
1

k

∑
j|c(wj)=y

p(x|j). (5)

Provided prototypes and bandwidths are chosen, an RSLVQ
model induces the classification prescription

x 7→ argmaxyp(x, y) (6)

which is often approximated by a simple winner takes all
scheme, mapping x to the label of its closest prototype.

RSLVQ training typically takes place by an optimization of
the conditional log likelihood with respect to model parame-
ters:

m∑
i=1

log p(yi|xi) =

m∑
i=1

log
p(xi, yi)

p(xi)
(7)

For its optimization, typically, a gradient ascent or related
numerical schemes are used. This has the benefit that it can
be used in streaming scenarios, by using successive gradient
steps triggered by the incoming data point. Upon presentation
of the instance i, prototypes are updated according to

∆wj =

{
α
σ2 (Pyi(j|xi)− P (j|xi)) (xi −wj) if c(wj) = yi

− α
σ2P (j|xi)(xi −wj) if c(wj) 6= yi

(8)
for each j ∈ 1 . . . k where α > 0 is a learning rate,

P (j|xi) :=
p(xi|j)∑k

j′=1 p(xi|j′)
(9)

is the probability that xi is assigned to the jth component and

Pyi(j|xi) :=
p(xi|j)∑

j′|c(wj′ )=yi
p(xi|j′)

(10)

is the probability that xi is assigned to the jth component if the
label yi is observed. The bandwidth σ can also be optimised
online [47], but we use a simple cross-validation here.

IV. LABEL NOISE-TOLERANT ONLINE LEARNING

This section derives a label noise-tolerant variant of RSLVQ
in order to deal with label noise in an online way. The goal is
to be able to tackle large and streaming noisy datasets. This
method is experimentally assessed in Section V.

A. Label Noise-Tolerant RSLVQ

Since RSLVQ is a probabilistic classifier, the Lawrence and
Schölkopf probabilistic methodology can be used to reduce
the effects of label noise. Whereas the definition (3) of the
isotropic Gaussian components and the expression (4) of the
probability density function of an unlabelled instance remain
unchanged, the probability density function (5) of a labelled
instance becomes

p(x, y) :=
∑
ỹ∈Y

P (y|ỹ)

1

k

∑
j|c(wj)=ỹ

p(x|j)

 (11)

=
1

k

k∑
j=1

P (y|c(wj))p(x|j) (12)

where P (y|c(wj)) is the probability of observing label y if the
true label is c(wj). When mislabelling errors do not occur, i.e.
P (y|ỹ) = δ(y, ỹ), Equation (12) is equivalent to the expression
(5). As with standard RSLVQ, we aim for a model which
maximises the conditional log likelihood

m∑
i=1

log p(yi|xi) =

n∑
i=1

log
p(xi, yi)

p(xi)

=

m∑
i=1

log

∑k
j=1 P (yi|c(wj))p(xi|j)∑k

j=1 p(xi|j)
(13)

As before, independence of label noise P (Y = y|Ỹ = ỹ) to
the input is assumed. This representation of the costs enables
us to treat the quantities wj , and P (yi|ỹ) for yi, ỹ ∈ Y (and σ,
if desired) as parameters of these costs and directly optimize
the costs by means of a stochastic gradient ascent. Taking
derivatives yields the online update rules apon the presentation
of instance xi with label yi:

∀j ∈ 1 . . .m : ∆wj =
α

σ2
(Pyi(j|xi)− P (j|xi)) (xi −wj)

(14)
where α > 0 is a learning rate,

P (j|xi) :=
p(xi|j)∑k

j′=1 p(xi|j′)
(15)

is the probability that xi is assigned to the jth component and

Pyi(j|xi) :=
P (yi|c(wj))p(xi|j)∑k

j′=1 P (yi|c(wj′))p(xi|j′)
(16)

is the probability that xi is assigned to the jth component if the
label yi is observed. Note that (16) vanishes for yi 6= c(wj)
if mislabeling does not occur, yielding update rule (8). The
update for σ, if required, is

∆σ2 = α

k∑
j=1

(Pyi(j|xi)− P (j|xi))
‖xi −wj‖2

2σ4
. (17)



B. Estimation of the Level of Label Noise

Since there is usually no prior knowledge to characterise
label noise, the parameters P (yi|ỹ) have to be learned from the
observed data. The update rule for the labelling probabilities
can be obtained by using a projected stochastic gradient
descent of the conditional likelihood (13) with derivative

∂ log p(yi|xi)
∂P (yi|ỹ)

=
∂ log p(xi, yi)

∂P (yi|ỹ)
− ∂ log p(xi)

∂P (yi|ỹ)

=
∂

∂P (yi|ỹ)

log

1

k

k∑
j=1

P (yi|c(wj))p(xi|j)


=

∑
j|c(wj)=ỹ p(xi|j)∑k

j=1 P (yi|c(wj))p(xi|j)
(18)

and update rule

∀ỹ ∈ Y : ∆P (yi|ỹ) = α
P (ỹ|xi, yi)
P (yi|ỹ)

(19)

where

P (ỹ|xi, yi) :=

∑
j|c(wj)=ỹ P (yi|ỹ)p(xi|j)∑k
j=1 P (yi|c(wj))p(xi|j)

(20)

is the probability that the true hidden label is ỹ. This is
followed by projection to assure

∑
y∈Y P (y|ỹ) = 1. It is

mandatory to initialize mislabelling probabilities to non-zero
values for initial symmetry breaking.

In our experiments in section V, we even go a step further
and constrain the mislabeling probability to a parametric form
given by

P (y|ỹ) =

{
1− pe (ỹ = y)
pe
|Y|−1 (ỹ 6= y)

(21)

in terms of the expert error probability pe, which constitutes
a parameter of the model. The update rule is obtained by a
derivative w.r.t. pe as

∆pe = α

 1

|Y| − 1

∑
ỹ 6=yi

P (ỹ|xi, yi)
P (yi|ỹ)

− P (yi|xi, yi)
P (yi|yi)

 (22)

Normalisation is no longer required, but a projection to 0 ≤
pe <

1
2 . This parametric model is based on the assumption

that mislabelling probabilities are independent from the label
itself. This is a reasonable assumption unless prior knowledge
is available. A more complex model could also be used, but
carrying a high risk of overfitting the label noise in exchange
for a (possibly too) simple classification model.

C. Links with Existing Methods

We aim for label noise robustness with online learning for
large and streaming datasets. As discussed in Section II-E,
known models restrict to extensions of the simple perceptron
algorithm by reducing the frequency of updates triggered
by mislabelled instances with heuristics. In this paper, these
models are extended by a theoretically well-founded approach
to robustify the nonlinear online RSLVQ learning algorithm.

As discussed in Section II-C, using a probabilistic model
to handle label noise is not a new idea. Consequently, the
proposed approach shares some similarities with existing
methods, although none of them are designed for online
learning. The seminal work [30] also considers Gaussian con-
ditional class distributions, but contrarily to RSLVQ, each class
corresponds to only one Gaussian. This limitation is removed
in the mixture-based approaches [40], [43], but these works
all maximise the maximum likelihood

∑n
i=1 log p(xi|y,θ),

whereas the posterior likelihood
∑n
i=1 logP (yi|xi) is used

in the case of RSLVQ. In that sense, the proposed method is
similar to the label noise-tolerant logistic regression proposed
in [33], since it is also a discriminative classifier. However, as
discussed in section IV-A, the proposed approach avoids the
use of the EM algorithm reviewed in section II-D and directly
maximises the costs in an online way.

V. EXPERIMENTS

This section experimentally assesses the label noise-tolerant
online method proposed in Section IV-A, which we refer to
as LNT-RSLVQ (or LNT for short). Experiments are first per-
formed on standard datasets to validate the proposed method,
then we address a streaming situation which incorporates
varying levels of label noise, i.e. label noise drift.

A. Experimental Settings for Standard Datasets

This section shows results obtained for LNT-RSLVQ and
plain RSLVQ for several datasets. Table I describes the data
set characteristics [48]. For each dataset, artificial label noise is
added by randomly selecting different percentages of training
instances and flipping their labels. This allows controlling the
amount of label noise, which is a common practice in the
literature [25]. The information which labels are noisy is not
used for training but for evaluation only.

The RSLVQ and LNT-RSLVQ algorithms have been used
with 3 prototypes per class. Online learning is performed for
50 epochs and the bandwidth σ is optimised by 10-fold cross-
validation. The accuracies are computed by a random splitting
in a 70% training set and a 30% test set, and 100 repeats.

B. Assessment of LNT-RSLVQ for Standard Datasets

Figure 1 shows the evolution of the accuracy for five of
the datasets when the percentage of (artificially) mislabelled
instances increases from 0% to 25%. Higher levels of label
noise are unrealistic. Obviously, plain RSLVQ is always af-
fected by label noise: the accuracy decreases when more label
noise is added. When 25% training instances are mislabelled,
the accuracy is decreased by more than 10%. In contrast, LNT-
RSLVQ is quite tolerant to label noise. In two cases (optdigits
and wdbc), the accuracy does hardly decrease. In two other
cases (ionosphere and sonar), the accuracy decreases more
slowly with LNT-RSLVQ than with RSLVQ. In the case of
Breast tissue, LNT-RSLVQ is slightly less efficient when there
are only very few mislabelled instances, which may be due
to the small size of this dataset: there are only 106 instances
divided in 6 classes. Figure 1f shows a supervised visualisation



TABLE I
CHARACTERISTICS OF THE DATASETS AND PERCENTAGE OF

MISLABELLED INSTANCES THAT ARE CORRECTLY IDENTIFIED.

name |Y| size dim. proportions detection
of classes (%) 10% / 20%

Bupa 2 345 6 [42 58] 27.44 / 23.20
Haberman 2 306 3 [26 74] 52.45 / 44.53
Ionosphere 2 351 34 [36 64] 68.56 / 61.18

Mammographis 2 830 5 [51 49] 56.05 / 60.85
Optdigits 2 1125 64 [49 51] 99.08 / 98.90

Parkinsons 2 195 22 [25 75] 60.50 / 56.11
Pima 2 768 8 [65 35] 52.20 / 52.33
Sonar 2 208 60 [47 53] 46.00 / 42.63
Votes 2 435 16 [39 61] 81.23 / 80.03
Wdbc 2 569 30 [63 37] 91.70 / 90.64

Iris 3 150 4 [33 33 33] 55.27 / 59.43
Glass 3 175 9 [17 40 43] 63.08 / 62.96
Wine 3 178 13 [27 33 40] 91.23 / 90.00

Vertebral 3 310 6 [19 48 32] 53.18 / 60.25
Waveform 3 5000 40 [34 33 33] 86.59 / 85.27

Vehicle 4 752 18 [24 24 26 25] 49.87 / 56.48
Wall robot 4 5456 24 [15 38 40 6] 79.73 / 80.95

Ecoli 5 327 6 [6 44 24 16 11] 86.87 / 85.74
Breast tissue 6 106 9 [20 14 17 15 13 21] 79.25 / 77.93

of the Breast tissue dataset obtained with Fisher t-SNE [49],
[50]. Whereas some of the classes are clearly separable,
others overlap. In these settings, LNT-RSLVQ overestimates
the number of mislabelling for small amounts of label noise
such that the overall result gets affected.

Table II shows the accuracy obtained for all datasets de-
scribed in Table I with 10% and 20% of label noise. For each
dataset, the results for the 100 repetitions are averaged and
the Wilcoxon rank-sum [51] statistic is used to assess whether
the different accuracy distributions are similar or not. Small p-
values mean that those distributions are significantly different
with threshold 0.05. This test is used because the accuracy
values may be non-Gaussian [51]. The proposed LNT-RSLVQ
is often significantly better than the standard RSLVQ. Con-
trarily, results show that RSLVQ is never significantly better
than LNT-RSLVQ. Table I shows the percentage of correctly
identified mislabelled instances.

C. Experimental Settings for Streaming Data

One of the advantages of online learning algorithms is that
they can deal with data streams. In such a case, learning
goes on forever and models have to continuously adapt since
concept drifts can occur. Here we consider a particular type
of drift which occurs in the context of label noise: when the
labeller is replaced by another more (less) reliable labeller,
the probability of mislabelling decreases (increases). This sec-
tion assesses whether LNT-RSLVQ can deal with successive
mislabelling probability drifts during a streaming session, by
explicitly varying the label noise ratio of the data generating
model for the training data stream. For the datasets used
in Section V-B, LNT-RSLVQ is compared with the standard
RSLVQ algorithm. Also, three larger datasets described in
Table III are used in this section to be more realistic. For those
datasets, LNT-RSLVQ is compared with the state-of-the-art
multiclass online kernel-based method Projectron++ [52]. This

TABLE II
ACCURACY OF RSLVQ AND LNT-RSLVQ (LNT) WITH 10% AND 20%

OF LABEL NOISE. ACCURACIES IN BOLD INDICATE SIGNIFICANTLY
BETTER MODELS ON 100 REPETITIONS W.R.T. A WILCOXON RANK-SUM

TEST.

name 10% of label noise 20% of noise of noise
RSLVQ LNT p-value RSLVQ LNT p-value

Bupa 66.50 68.43 0.00 63.76 65.06 0.09
Haberman 72.64 73.91 0.03 70.35 73.02 0.00
Ionosphere 81.67 86.41 0.00 76.05 82.38 0.00

Mammographis 81.65 81.76 0.75 80.28 80.87 0.13
Optdigits 94.81 99.69 0.00 90.97 99.60 0.00

Parkinsons 79.40 80.55 0.20 71.67 77.22 0.00
Pima 73.88 73.83 0.90 71.50 72.44 0.04
Sonar 73.19 77.39 0.00 65.05 73.73 0.00
Votes 89.49 94.09 0.00 85.24 92.04 0.00
Wdbc 90.02 96.06 0.00 86.02 95.14 0.00

Iris 94.42 94.98 0.26 90.60 94.02 0.00
Glass 71.00 74.88 0.00 67.81 73.90 0.00
Wine 87.08 96.72 0.00 78.15 95.19 0.00

Vertebral 78.99 81.03 0.00 75.66 79.60 0.00
Vehicle 77.93 77.64 0.47 75.14 75.15 0.99
Ecoli 81.63 84.07 0.00 78.43 83.23 0.00

Breast tissue 59.90 60.65 0.56 54.65 59.61 0.00

algorithm has the advantage over incremental support vector
machines [53] to have a support set of bounded size. Also,
Projectron++ does not require as many instances as the very
fast decision trees [54] designed for high-speed data streams.

Again, LNT-RSLVQ is used with 3 prototypes per class. The
learning rate is kept constant for streaming data: α = 10−2

for the prototypes and α = 10−4 for the probability of
error. This ensures that the label noise model can quickly
adapt to labeller changes. In order to simulate data streaming
conditions, several datasets were split in training and test
sets. The data streams consists of instances sampled from
the training set only. Label noise is introduced by flipping
labels like in Section V-A, except that labels are flipped on
the fly. This implies that an instance can have different labels if
presented several times. In order to simulate labeller changes,
the probability of error first increases from 0% up to 20% and
then decreases again to 0% by steps of 5% that last for 3000
streamed instances. The bandwidth σ is optimised with the
training set and is kept constant.

D. Assessment of LNT-RSLVQ in a Data Streaming Situation

For the datasets optdigits, ionosphere, IJCNN1 and MNIST,
Figure 2 shows the evolution of the accuracy and the estimated
probability of error. Whereas the accuracy of LNT-RSLVQ
remains stable, the accuracy of RSLVQ and Projectron++ is
much more unstable. Also, LNT-RSLVQ is able to quickly
update the estimated probability of error after a labeller
change. Even if the estimate of the amount of artificial label

TABLE III
DESCRIPTION OF THE THREE LARGER DATASETS, SEE [52] FOR DETAILS.

name |Y| size dim. proportions of classes (%)
a9a 2 32561 123 [76 24]

IJCNN1 2 35000 22 [90 10]
MNIST 10 60000 780 [10 11 10 10 10 9 10 10 10 10]
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Fig. 1. (a-e) Evolution of the classification accuracy in terms of the level of label noise for several datasets. The accuracy is averaged on 100 repetitions (plain
line) and 95% confidence intervals are shown (dashed lines). Grey and dark lines corresponds to results obtained with RSLVQ and LNT-RSLVQ, respectively.
(f) Projection of the 9-dimensional Breast tissue dataset with 106 instances. Each different symbol and color corresponds to one of the six classess.

noise is not always completely accurate, the tendencies clearly
appear and correspond to what one would expect.

Table IV shows the accuracy obtained for all datasets, during
(i) the first step of 3000 instances with 10% of label noise,
(ii) the step of 3000 instances at the middle of the streaming
session with 20% of label noise and (iii) the second step of
3000 instances with 10% of label noise. For each dataset, 100
streaming sessions are performed. For each session and each of
the three above-mentioned periods with a level of label noise
of 10% and 20%, we measure the average, 25% percentile and
75% percentile of the accuracy. The Wilcoxon rank-sum [51]
statistic is used to assess whether the accuracy distributions are
similar when RLSLVQ and LNT-RSLVQ are used. Small p-
values mean that those distributions are significantly different;
in this analysis, the significance threshold is 0.05. The results
show that the proposed LNT-RSLVQ is often significantly bet-
ter than the standard RSLVQ. More interestingly, the average
difference between the 25% and 75% accuracy percentiles is
often much smaller with LNT-RSLVQ: the proposed algorithm
obtains more stable results. Similar results are obtained when
LNT-RSLVQ is compared with Projectron++ on three larger
datasets (a9a, IJCNN1 and MNIST) in bottom part of Table IV.
Indeed, LNT-RSLVQ obtains better and more stable accuracies
than Projectron++ when label noise is introduced.

Table IV displays worse results for some datasets during
the first period (10% label noise) than during the second
one. A possible explanation is that a constant learning rate
slows down the initial convergence phase of LNT-RSLVQ. A
solution could be an adaptive learning rates for streaming data.

VI. CONCLUSION

The goal of this contribution was to address label noise
in online learning. Powerful prototype-based methods have
been extended to label noise-robust techniques, which are
suitable in particular for streaming data with varying noise
level. By focussing on RSLVQ, we could rely on a model
based probabilistic approach as introduced by [30] and derive
learning rules by conditional likelihood maximisation. The
resulting technique, LNT-RSLVQ, allows an online adaptation
of the noise level in addition to the prototypes. The technique
has been tested in offline and online benchmarks with varying
characteristics. While RSLVQ accuracy deteriorates in the
context of label noise, this effect can be widely prohibited
with LNT-RSLVQ. In particular LNT-RSLVQ is able to dy-
namically adapt to a varying level of label noise for streaming
data. Up to our knowledge, this is one of the first results
which investigates such a streaming scenario for a nonlinear
classifier, and which explicitly addresses drift of the level of
label nose. Since prototype-based techniques are particularly
suited for online learning for big data sets [14], [15], this
opens the possibility of an efficient inference of classification
models from large and possibly low quality data sets such as
web sources. The method was also compared with the state-
of-the-art online Projectron++.

So far, LNT-RSLVQ has been tested for a comparably
simple model of label noise, which assumes independence
of the noise level for the class label. This simplification is
based on the observation that too complex noise models carry
a high risk of an oversimplification of the classifier itself in
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Fig. 2. Evolution of the classification accuracy during a streaming session with changing level of label noise. Upper part of each plot shows the accuracy
averaged on 100 repetitions for RSLVQ (grey light line), Projectron++ (grey dark line) and LNT-RSLVQ (plain dark line). Lower part of each plot shows the
true level (dashed grey line) and the estimated level (dashed dark line) of label noise, averaged on 100 repetitions. Left and right axes correspond to accuracy
and mislabelling probability, respectively. Each step of the streaming session lasts for 3000 instance presentations, i.e. a total of 27000 instances are presented.

return of a complex noise model. While the presented model
is reasonable, it can easily be extended to more complex noise
models and according online learning rules based on likelihood
optimisation. We will test this capability in future work.

Another simplification is the choice of a constant learning
rate for the noise level and, hence the underlying assumption
of a sufficiently slow change of the level of noise. This
assumption can be unrealistic in practical settings, and it might
be worthwhile to investigate adaptive learning rules which
are controlled by the observed changes of the noise level.
This would also open the possibility of model adaptation
to different types of drift, which affects the label noise but
also the underlying classifiers itself [15]. Albeit it is known
that prototype based techniques can deal with diverse types
of drift [15], it is not clear whether a robust technique can
simultaneously adapt to trends in the data and the noise level.

Another interesting line of research is to extend the pro-
posed findings to kernelised RSLVQ methods (KRSLVQ) such
as proposed in [29]. These techniques extend the applicability
of efficient prototype-based approaches to more general data
structures which are characterised in terms of pairwise kernel
values only. While maintaining its foundation in terms of a
likelihood maximisation technique, it is not immediate arrive
at efficient models, since prototypes are represented implicitly
as linear combinations of data in the feature space only, i.e. the
representation changes if new data are becoming available.
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[46] D. Nova and P. Estévez, “A review of learning vector quantization
classifiers,” Neural Comput Appl., vol. 25, no. 3-4, pp. 511–524, 2014.

[47] P. Schneider, M. Biehl, and B. Hammer, “Hyperparameter learning in
probabilistic prototype-based models,” Neurocomputing, vol. 73, no. 7–
9, pp. 1117–1124, 2010.

[48] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007.
[49] Maaten, “Visualizing High-Dimensional Data Using t-SNE,” J. Mach.

Learn. Res., vol. 9, pp. 2579–2605, 2008.
[50] A. Gisbrecht, A. Schulz, and B. Hammer, “Parametric nonlinear dimen-

sionality reduction using kernel t-sne,” Neurocomputing, vol. 147, no. 0,
pp. 71–82, 2015.

[51] R. Riffenburgh, Statistics in Medicine. Academic Press, 2012.
[52] F. Orabona, J. Keshet, and B. Caputo, “Bounded kernel-based online

learning,” J. Mach. Learn. Res., vol. 10, pp. 2643–2666, Dec. 2009.
[53] G. Cauwenberghs and T. Poggio, “Incremental and decremental support

vector machine learning,” in Advances in Neural Information Processing
Systems 13, Vancouver, Canada, Dec. 2001, pp. 409–415.

[54] P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proc.
6th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining,
Boston, MA, Aug. 2000, pp. 71–80.


