
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Survey of software visualization systems to teach message-passing concurrency in
secondary school
Libert, Cédric; Vanhoof, Wim

Published in:
Highlights of Practical Applications of Cyber-Physical Multi-Agent Systems - International Workshops of PAAMS
2017, Proceedings

DOI:
10.1007/978-3-319-60285-1_33

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication
Citation for pulished version (HARVARD):
Libert, C & Vanhoof, W 2017, Survey of software visualization systems to teach message-passing concurrency
in secondary school. in F Lopes, J Bajo, P Novais, K Hallenborg, E Del Val, V Julian, Z Vale, P Pawlewski, ND
Duque Mendez, J Holmgren, AP Rocha & P Mathieu (eds), Highlights of Practical Applications of Cyber-Physical
Multi-Agent Systems - International Workshops of PAAMS 2017, Proceedings. Communications in Computer
and Information Science, vol. 722, Springer, pp. 386 - 397, Porto, Portugal, 21/06/17.
https://doi.org/10.1007/978-3-319-60285-1_33

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198271593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-60285-1_33
https://researchportal.unamur.be/en/publications/survey-of-software-visualization-systems-to-teach-messagepassing-concurrency-in-secondary-school(b2262eff-9cd0-4aff-a0c5-ac70140dff89).html

DRAFT

Survey of software visualization systems to teach
message-passing concurrency in secondary school

Cédric Libert and Wim Vanhoof

University of Namur, Belgium

Abstract. In this paper, we compare 27 software visualization systems
according to 8 criteria that are important to create an introduction to
programming course based upon message passing concurrency.

Keywords: message passing, concurrency, teaching

Introduction

In Europe, more and more countries want to teach programming to primary and
secondary school students. A 2014 report confirms that 15 European countries
either already do or were about to do so [8]. The first programming course
is an important issue in the IT curriculum. It is the core of many other IT
courses, and it improves essential skills such as problem solving, abstraction and
decomposition [3, p.41].

This preliminary study aims at finding software visualization systems (SVS)
to use in an introductory programming course with 16- to 18-year-old students.
This course will have new content, concurrent programming, and a corresponding
teaching method, the microworld approach. This method consists in integrating a
mini programming language into an SVS where agents show the execution of the
code and where the teacher can add new programming concepts progressively.
To implement this course, we need to find an SVS that fits with concurrency.
The experimentation in situ costs a lot of time, so this preliminary work is a
first step. Here we intend to justify, in light of the literature, the criteria used to
evaluate SVSs.

In section 1, we justify the benefits of a course based on concurrency and
an SVS. We present a particularly suitable concurrency model to teach, namely
message passing, and show how it helps to improve programming skills and
computational thinking. We then define the concept of an SVS and describe
the advantages of such systems for teaching. In particular, we talk about one
particular kind of system: microworlds. In section 2 we define some criteria for
comparing SVSs with each other, build a comparison table of 27 SVSs and use
it to categorize and compare existing systems. In the last section we select two
good candidates for our course, and we explain why they are close to what we
need and how we will manage to make them fulfil our requirements.

DRAFT

1 Why a concurrency course with a SVS?

The purpose of our research is to evaluate the efficiency, in terms of the improve-
ment of programming skills and computational thinking, of a first programming
course based on message passing. We want this course to use the microworld
pedagogical approach [41], based on an SVS. In this section, we justify these
choices.

1.1 Advantages of the message passing concurrency model

Teaching concurrency in an introductory course is usually seen as harder than
teaching sequential programming [49,10,12]. But the students live in a concurrent
world, so some authors conjecture that this technique may be more intuitive to
them [49,10,12], at least with an appropriate teaching method. Furthermore, for
some tasks, concurrency allows an easier decomposition into subproblems [49].

The 2013 ACM Computer Science Curricula report [3, p.44] is in favour of
teaching concurrency starting in the first programming course because evolution
in three main IT fields (hardware, software and data) requires concurrency. At
the hardware level, multicore processors make it possible to physically execute
some instructions in parallel and make the most of concurrent programming.
In software, reactive user interfaces need concurrency to allow many events to
happen and to be dealt with at the same time. Concerning data, thay are so
abundant that they need distributed storage and concurrent processing on dif-
ferent computers. Therefore, according to the ACM, teaching needs to support
these evolutions, especially with concurrency early in the curriculum.

Message passing, a simple concurrent paradigm We present and compare
two main concurrency models: message passing and shared-state concurrency. We
focus on the former, because the latter, mostly used in imperative and object-
oriented languages, has some drawbacks we hope to avoid. Indeed, shared-state
concurrency is based on the concepts of threads, interacting by modifying shared
variables and protected by some mutual exclusion mechanism to avoid race con-
ditions and data corruption. This way to deal with concurrency is very low-level,
which doesn’t appear to be efficient in the learning process. This concurrency
model seems harder to understand by students [39] than message passing and is
considered to be a pessimistic concurrency control, which requires a lot of effort
to organize.

Message passing concurrency is a paradigm encompassing the three concepts
of higher order functions, threads and ports (unidirectional communicating chan-
nels). A program consists in a set of concurrent agents, each one in its own thread.
They communicate through the ports with messages containing arbitrarily com-
plex data. They react to messages according to their behaviour, which is a func-
tion. Programming in this paradigm consists mostly in defining concurrent agent
behaviours and the messages that they send and receive asynchronously.

One of the first languages to exploit this paradigm was Erlang [7]. This lan-
guage, used in some highly distributed applications such as WhatsApp [14] and

DRAFT

some parts of GitHub [31], showed the advantages of message passing concur-
rency over the shared state concurrency model. The encapsulation of code into
isolated but communicating agents avoids programming problems due to shared
variables, because each agent is the only one that can modify his own state and,
since they are higher level entities, the students do not need to understand how
the machine works in order to be able to use them.

Message passing to improve programming skills The first programming
paradigm taught has a large impact on the mental representation of the learner,
and thus on how he will be able to learn programming techniques. Some authors
show, for instance, the differences between procedural and object-oriented ap-
proaches in tackling a first course. Furthermore, according to White [53], there
may even be interferences between two paradigms. For instance, learning object-
oriented after procedural programming seems harder for students than the other
way round.

The idea of concurrency in the first programming course dates back to the
90’s. Feldman and Bachus show novices can learn concurrency [17]. Lynn Andrea
Stein thinks we need to code in a different way, shifting from the "computation
as calculation" paradigm, where a program is a function, to the "computation
as interaction" metaphor [21], where a program is a community of concurrent
agents communicating with each other by exchanging messages. This model also
corresponds better with high level systems such as operating systems and the
internet [48]. Furthermore, in 1997, Moström et al. [35] showed on a small sample
of 8 novices that the novices found it easier to use concurrent language than
sequential language to solve the problems they submitted. This doesn’t show
that concurrency is easier, because it is hard to generalize from this experiment,
but that concurrency, and message passing in particular, may be easy to use,
depending on the problem to be solved.

Message passing to improve computational thinking According to Wing,
computational thinking is a skill involving problem solving, system design and
human behaviour understanding [55]. Thus it needs important programming con-
cepts. Computational thinking allows people to answer the questions: how hard
is a particular problem to solve ? What is the best way to solve it ? Furthermore,
computational thinking makes it possible to reformulate a hard problem in order
to be able to solve it with reduction, composition, etc. It is also an abstraction
skill, i.e. the "replacement of a complex and detailed real-world situation [with]
an understandable model within which we can solve a problem" [4].

Some researchers [11,22] and the ISTE (International Society for Technol-
ogy in Education) [25] formalized computational thinking as the following set
of skills: abstracting and generalizing, automating and repeating actions, under-
standing and using concurrency, decomposing problems, handling conditional
structures, using symbols to represent data, processing data in a systematic
way, defining algorithms and procedures, knowing the efficiency and the perfor-

DRAFT

mance constraints of a solution, debugging and systematically detecting errors
and executing simulations.

Very few papers describe empirical results about expanding computational
thinking in terms of these skills with programming. According to most of them,
computational thinking skills do not increase with the ability to program [52,23,51,18].
But they tend to focus on imperative, object-oriented or event-based (Scratch)
paradigms, without really focusing on concurrency. For each of these skills, mes-
sage passing concurrency should be able to increase computational thinking.

Indeed, message passing concurrency consists in writing automatic proce-
dures to solve problems. It makes it possible to abstract, generalize and autom-
atize. Thus, the concurrency concept makes it possible to get a good idea of
parallelism and decomposition into independent subproblems. Message passing
makes the data processing and the information representation obvious. And the
conditional structures are used very early to define the agent behaviours. Finally,
the use of a software visualization system, that fits completely with concurrency,
helps to understand performance, simulation and debug.

1.2 Software visualization systems and teaching

A software visualization system is a pedagogical tool whose purpose is to help
students in a programming class to learn by addressing their common difficul-
ties [47]. The SVS is supposed to show different programming concepts dynam-
ically by linking code and its execution to visual events. It makes it easier for
the students to understand the notional machine, the abstract computer corre-
sponding to the particular paradigm or language they use. It makes it easily to
see the step by step execution of the program in order to trace and check the
states.

Sorva et al. created a taxonomy of SVSs with three main categories [47]. We
propose to extend this taxonomy with the programming game subcategory. We
end up with this taxonomy: program animation (textual language generating
visual animations), visual programming (visual language, often made of blocks
that the student combine to create the program), algorithm visualization systems
(algorithms are written as a flowchart) and programming games (subcategory of
program animation consisting in making some actors move or act to go through
a predefined game).

Advantages of software vizualisation systems Software visualization sys-
tems offer some advantages over textual-only programming languages.

First, the visual nature of these systems makes it easier to understand the
programs. Indeed, the human perception requires less translation to represent
visual concepts than textual ones [46].

A second advantage is that students feel involved in the system [38], so they
tend to assimilate concepts easier. There are some positive experiments with
SVSs like App Inventor used by college students [45,24], Scratch [32,19] or Al-
ice [36].

DRAFT

A third advantage is that it makes concurrency and step-by-step debugging
easier [37] thanks to the visual support. The former is obviously important for
us, and some studies show that such graphic systems tend to encourage the
use of concurrency [5] and have been used by professionals in order to more
easily implement concurrent and parallel system [57]. The latter, the debugger, is
useful for two reasons. Some teachers, such as Cross et al. [16], use the debugger
as a teaching tool to show step by step execution of a program to students.
But students can also use it to develop some useful skills [15,30], as long as
they have good debugging strategies. We also saw that debugging is part of the
computational thinking aptitudes described in section 1.1.

Microworld pedagogical approach Programming is hard to teach, because
it requires many skills and all relevant concepts are intertwined. Furthermore,
students usually see this course as boring and hard, especially when the language
is not specifically designed for teaching and when it uses an unnatural syntax.
The microworld pedagogical approach, based on SVSs, solves these problems.

A microworld is "a subset of reality or a constructed reality whose structure
matches that of a given cognitive mechanism so as to provide an environment
where the latter can operate effectively" [42, p.204]. This improves students’
exploration and understanding of new concepts. In a programming course, a mi-
croworld is composed of a programming language and an SVS. Both are usually
integrated in a unified interface with a script editor and a visualization window.

The main advantage of this kind of environment is that it deals with many
pedagogical problems that arise when using a traditional language. Stelios Xino-
galos [56] and Linda Mciver [33] note some of these problems. First, there are too
many instructions in programming languages, compared to microworlds where
the vocabulary is more limited and progressively enriched. Second, students tend
to focus on syntax of full languages, while microworlds usually offer a simpler
syntax. Third, the execution of the program is usually hidden, as opposed to the
microworld where agents act according to the script. Usually, students seem to
understand programming concepts better with the use of microworlds, according
to Selios Xinogalos [56].

2 Comparison of software visualization systems

We now define exactly what visualization system we want. We first define and
describe comparison criteria and use them to build a comparison table containing
27 SVSs. We then cluster the table into four categories of systems. We finally
select the systems employing concurrency, message passing and microworlds.

2.1 Criteria

In order to select the software visualization system that could help us to build a
first programming course based on message passing concurrency, we define some
comparison criteria based partially on criteria found in the literature [28,13,29]
and on the need we described in section 1.

DRAFT

Extrinsic criteria These criteria, such as the release and last update dates, do
not concern the nature of the system or the language itself. The release and last
update dates are important to us, as we prefer to use a maintained and up-to-
date system with modern graphics. We also focus on the license type, because
we favour open source software because it does not restrict the installation of
software on many computers in a secondary school and at home, and it reduces
the cost and is potentially able to be adapted to our needs.

Visual Nature This criterion constitutes the main advantage of a software
visualization system over a textual one for learning, as we saw in section 1.2.
We identify categories of visualization environments, and evaluate visual func-
tionalities. The categories of SVSs we identify are adapted from the taxonomy
developed by Sorva et al. [47] and were explained in section 1.2.

Languages, paradigms and concepts Each programming visualization sys-
tem helps to teach a particular language in a particular paradigm defined by a
set of concepts. The language used may be an already existing language, like
Java or Python, or a language designed for this particular system. Many lan-
guages that we encountered in visualization systems are a mix of some of these
imperative, object-oriented, event-based, functional and logic paradigms.

Some of these paradigms are not suitable for teaching based on concurrency:
imperative and object oriented paradigms, as we saw in section 1.1, seem to be
less efficient for teaching concurrency because they usually implement the shared
state concurrency model; the event-based paradigm, although conceptually ap-
pealing, does not allow asynchronous message delivery in the way described in
section 1, and sometimes limits the message structure to something very simple,
like a string or an atom.

Despite all of this, we also want to know, independently of the paradigm,
whether or not each of these languages is concurrent, because this is the core
concept we want to teach.

Debugger As seen in section 1.2, easy access to a debugger is a double ad-
vantage for the teacher demonstrating the execution of the program and for
students learning to diagnose programming problems in a visual way. We thus
prefer systems that come with a debugger.

DRAFT

Table 1. A comparison of 27 software visualization systems in four categories: concurrent visual programming (CVP), sequential visual
programming (SVP), concurrent program animation (CPA) and sequential program animation (SPA)

.

Name Visual Nature Concurrency Paradigm Debugger Language License Creation Update

C
V
P

App Inventor visual programming language yes Event-based yes Blockly open source 2010 2017
Snap visual programming language yes Event-based, functional yes Snap open source 2011 2015
Starlogo nova visual programming language yes Event-based,object-oriented, agents yes Starlogo nova open source 1996 2014
Kedama visual programming language yes Object-oriented yes Squeak/Smalltalk open source 2005 ?
Scratch visual programming language yes Event-based no Scratch open source 2006 2015
Blockly visual programming language yes Imperative no Blockly open source 2012 2017
Alice 3 visual programming language yes Object-oriented no Java open source 1998 2016
ToonTalk visual programming language yes Concurrent constraint programming yes Toontalk proprietary 1995 2009
AgentSheets visual programming language yes Active objects no Visual AgenTalk proprietary 1989 2012

SV
P

Etoys visual programming language no Object-oriented yes Squeak/Smalltalk open source 1996 2012
Amici visual programming language no Imperative ? Amici open source 2011 2013
Raptor algorithm visualization system no Imperative no pseudocode proprietary 2015 2016
LARP algorithm visualization system no Imperative no pseudocode proprietary 2004 2008

C
PA

Robot Code programming game yes Object-oriented yes Java open source 2001 2017
Karel J Robot program animation system yes Object-oriented yes Java open source 2005 2016
Processing program animation system yes Object-oriented yes Java open source 2001 2016
Greenfoot program animation system yes Object-oriented oui Java open source 2004 2015
NetLogo program animation system yes Agent-based no Logo + agents open source 1999 2015
Multilogo program animation system yes Object-oriented and concurrent ? Logo+LEGO open source 1990 ?
Microworlds Ex program animation system yes ? ? Microworlds proprietary 2003 2007

SP
A

Guido van Robot program animation system no Imperative yes Python open source 2009 2010
Karel++ program animation system no Object-oriented yes Karel++ open source 1997 1998
Karel the Robot program animation system no Imperative no Karel open source 1981 2000
Löve program animation system no Imperative no Lua open source 2008 2016
Kojo program animation system no Object-oriented, functional no Scala open source 2010 2015
Logo program animation system no Imperative ? Logo open source 1967 2002
Jeroo program animation system no Object-oriented yes Jeroo (like Java) proprietary 2004 2014

DRAFT

2.2 Categories

Table 1, contains the result of applying the defined criteria to 27 software visu-
alization systems. We group them in categories based on two main criteria:

– Do users need to write textual code? This refers to a dichotomy among
program animation system, where students need to write code themselves,
and visual programming, where they only move code blocks;

– Can users use them to write concurrent programs or only sequential pro-
grams? Since we want to teach concurrency, we prefer that they can.

Sequential (no concurrency) program animation systems (SPA) This
category gathers some of the oldest systems for teaching programming, like Logo
and Karel. These systems aren’t up-to-date compared to other categories. Most
them are imperative, but some are object-oriented. Kojo [40], although clearly
in this category, seems to be an outsider for two reasons. Firstly, although it
isn’t a visual programming language, the user doesn’t have to write all the code
himself, because she can click on predefined instructions to add them into the
editor. Secondly, since it is based on Scala, it is also a functional language (a
rare paradigm in this kind of visual system). Since Scala includes the Akka [9]
library for concurrent actors, this system could become very interesting at some
point for teaching concurrency if Akka was integrated into Kojo and the graphical
interface. But there have been few experiments on the use of Kojo (and, generally,
Scala) as a first language. The challenges of this language, as Regnell et al.
write [43], are the error messages that are hard to understand and the type
system (supposedly harder for slower learner).

Concurrent program animation systems (CPA) Theses systems are mostly
based on Java and Logo, and most are object-oriented. One exception is Net-
logo [50], where the agent-based paradigm prevails. This language adds con-
currency to the old Logo language and has been used to model some complex
systems such as patterns emerging in nature [54] or, more lately, street rob-
bery [6]. Unfortunately, there are two drawbacks to this system. First of all,
syntax seems a bit hard to learn for novices, because there are many keywords
they need to know from the beginning in order to command agents. The second
drawback concerns these agents: it seems impossible to define their behaviour,
or to define new messages. There are four implemented agent types [1] and they
can only react to some predefined "ask" instructions.

Sequential visual programming languages (SVP) This category contains
three imperative and one object-oriented language based on Squeak, a SmallTalk
dialect. We prefer not to use object-oriented and imperative languages because
they make it harder to add a concurrency model based on message passing.

DRAFT

Concurrent visual programming languages (CVP) This category contains
the most up-to-date systems and representatives of the most diverse paradigms.
Though many of them look interesting, here we focus on the open source sys-
tems offering a debugger and implementing an inherently concurrent paradigm.
The concurrent constraint programming language ToonTalk [26] allows users
to handle not only concurrency concepts like actor spawning and termination
and sending and receiving messages through unidirectional channels but also
constraint/logic programming concepts such as clause, guards and body [27], in
a 3D playful city microworld. Some experiments with ToonTalk were conducted
with kindergarten children [34] but the author did not mention any statistical
result. This language is a good candidate for us, but its target audience, as
they mention on their website, is "children", so it might not be suitable for sec-
ondary school students. The event-based App Inventor for Android [2], unlike
ToonTalk, has been successfully used by high school students [45,24] and uni-
versity students [20]. This language aims at coding Android applications easily.
Unfortunately, this language is not really close to the microworld approach we
want to use, since it does not imply any agent acting in an environment, but
handles sensors and panels of the phone directly. Star Logo Nova [44] is sim-
ilar to NetLogo, but with blocks. Finally, Snap! is derived from Scratch, with
agents whose behaviour has to be defined according to some event occurring (it
has also influenced Scratch, whose procedure blocks derive from Snap!). Scratch
was extended by adding higher order functions concept in order to allow stu-
dents to become more familiar with functional programming. Unfortunately, as
in Scratch, the "messages" that agents can send are limited to a simple label,
and can only be broadcasted, which seems too limited for what we intend to do.
Furthermore, since the reception of a message is an event, the agent stops the
task he is currently executing when he receives a new one. There is no "mailbox"
that allows agents to receive messages asynchronously.

Conclusion: which SVS to choose?

In this paper, we conjecture the importance of teaching concurrency properly in
order to improve programming skills and computational thinking. We described
software visualization systems because the microworld pedagogical approach is
convenient to teach concurrency, and because a microworld is an SVS. We fi-
nally compared 27 SVSs with respect to six defined criteria and created a table
in which we identified four categories, of which the most interesting for our needs
seems to be the category of visual programming languages allowing concurrency.
This category includes languages whose code is not textual but consists of blocks
that the user has to put together to create the program, and where the lan-
guages have concurrency concepts. Two SVSs where identified as the best in this
category, because they implement interesting paradigms and have a debugger:
ToonTalk and Snap!. But are these systems able to address our needs?

Snap! is event-based. This means that its message transfer is not asyn-
chronous. It also does not use a unidirectional channel from one agent to another,

DRAFT

but rather a broadcast system. Finally, messages may only contain labels, which
is a great limitation because we want to be able to transfer complex data struc-
tures between agents in the message passing concurrency model.

ToonTalk seems good with its constraint based concurrency paradigm, in-
cluding unidirectional channels, complex messages and concurrent actors. But
since the target audience is children, secondary students might consider it too
childish. So far, no experiment has used this system with teenagers.

The next steps after this preliminary work are to precisely evaluate how
difficult it would be to add a proper message passing concurrency model to
Snap! and to collect teenage students’ perception of ToonTalk. Then we will be
able to choose the language that fulfils the requirements of a secondary level
introduction to programming course based on message passing concurrency and
microworlds.

References

1. Netlogo user manual version 6.0. https://ccl.northwestern.edu/netlogo/docs/.
2. Abelson, H.: App inventor for android. Google Research Blog (2009)
3. ACM/IEEE-CS Joint Task Force on Computing Curricula: Computer science cur-

ricula 2013. Tech. rep., ACM Press and IEEE Computer Society Press (2013)
4. Aho, A.V., Ullman, J.D.: Foundations of Computer Science, C Edition. Computer

Science Press / W. H. Freeman (1992)
5. Aivaloglou, E., Hermans, F.: How kids code and how we know: An exploratory

study on the scratch repository. In: Proceedings of the 2016 ACM Conference on
International Computing Education Research. pp. 53–61. ICER ’16, ACM (2016)

6. Amrutha, S., Idicula, S.M.: Agent based simulation of street robbery. Department
of computer science, Royal college of engineering and technology Thrissur, India
(2014)

7. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

8. Balanskat, A., Engelhardt, K.: Computing Our Future: Computer Programming
and Coding-Priorities, School Curricula and Initiatives Across Europe (2014)

9. Bonér, J., Klang, V., Kuhn, R., et al.: Akka library. http://akka.io
10. Brabrand, C.: Constructive Alignment for Teaching Model-Based Design for Con-

currency, pp. 1–18. Springer Berlin Heidelberg (2008)
11. Brennan, K., Resnick, M.: New frameworks for studying and assessing the develop-

ment of computational thinking. In: Proceedings of the 2012 annual meeting of the
American Educational Research Association, Vancouver, Canada. pp. 1–25 (2012)

12. Carro, M., Herranz, A., Mariño, J.: A model-driven approach to teaching concur-
rency. Trans. Comput. Educ. 13(1), 5:1–5:19 (2013)

13. Castillo-Barrera, F.E., Arjona-Villicana, P.D., Ramirez-Gamez, C.A., Hernandez-
Castro, F.E., Sadjadi, S.M.: Turtles, robots, sheep, cats, languages what is next
to teach programming? a future developer’s crisis? In: Proceedings of the Inter-
national Conference on Frontiers in Education: Computer Science and Computer
EngineeringMTDL. p. 1. The Steering Committee of The World Congress in Com-
puter Science, Computer Engineering and Applied Computing (2013)

14. Chechina, N., Hernandez, M.M., Trinder, P.: A scalable reliable instant messenger
using the sd erlang libraries. In: Proceedings of the 15th International Workshop
on Erlang. pp. 33–41. Erlang 2016, ACM (2016)

DRAFT

15. Chmiel, R., Loui, M.C.: Debugging: from novice to expert. ACM SIGCSE Bulletin
36(1), 17–21 (2004)

16. Cross, J., Hendrix, T.D., Barowski, L.A.: Using the debugger as an integral part
of teaching cs1. In: Frontiers in Education. vol. 2, pp. F1G–F1G. IEEE (2002)

17. Feldman, M.B., Bachus, B.D.: Concurrent programming can be introduced into
the lower-level undergraduate curriculum. SIGCSE Bull. 29(3), 77–79 (1997)

18. Fox, R.W., Farmer, M.E.: The effect of computer programming education on the
reasoning skills of high school students. Frontiers in Education: Computer Science
and Computer Engineering (FECS’11) (2011)

19. Franklin, D., Conrad, P., Boe, B., Nilsen, K., Hill, C., Len, M., Dreschler, G.,
Aldana, G., Almeida-Tanaka, P., Kiefer, B., Laird, C., Lopez, F., Pham, C., Suarez,
J., Waite, R.: Assessment of computer science learning in a scratch-based outreach
program. In: Proceeding of the 44th ACM Technical Symposium on Computer
Science Education. pp. 371–376. SIGCSE ’13, ACM (2013)

20. Gestwicki, P., Ahmad, K.: App inventor for android with studio-based learning.
Journal of Computing Sciences in Colleges 27(1), 55–63 (2011)

21. Goldin, D., Wegner, P.: The interactive nature of computing: Refuting the strong
church–turing thesis. Minds and Machines 18(1), 17–38 (2008)

22. Grover, S., Pea, R.: Computational thinking in k–12. a review of the state of the
field. Educational Researcher 42(1), 38–43 (2013)

23. Gülbahar, Y., Kalelioğlu, F., et al.: The effects of teaching programming via scratch
on problem solving skills: A discussion from learners’ perspective. Informatics in
Education-An International Journal (Vol13_1), 33–50 (2014)

24. Honig, W.L.: Teaching and assessing programming fundamentals for non majors
with visual programming. In: Proceedings of the 18th ACM Conference on Inno-
vation and Technology in Computer Science Education. pp. 40–45. ITiCSE ’13,
ACM (2013)

25. ISTE, CSTA: Nsf. computational thinking teacher resources, 2011
26. Kahn, K.: Toontalk tm—an animated programming environment for children.

Journal of Visual Languages & Computing 7(2), 197–217 (1996)
27. Kahn, K.M.: From prolog and zelta to toontalk. In: ICLP. pp. 67–78 (1999)
28. KIPER, J.D., HOWARD, E., AMES, C.: Criteria for evaluation of visual program-

ming languages. Journal of Visual Languages & Computing 8(2), 175 – 192 (1997)
29. Li, F.W., Watson, C.: Game-based concept visualization for learning program-

ming. In: Proceedings of the Third International ACM Workshop on Multimedia
Technologies for Distance Learning. pp. 37–42. MTDL ’11, ACM (2011)

30. Lister, R.: Objectives and objective assessment in cs1. In: ACM SIGCSE Bulletin.
vol. 33, pp. 292–296. ACM (2001)

31. Lutz, M.J.: The erlang approach to concurrent system development. In: Frontiers
in Education Conference, 2013 IEEE. pp. 12–13. IEEE (2013)

32. Maloney, J.H., Peppler, K., Kafai, Y., Resnick, M., Rusk, N.: Programming by
choice: Urban youth learning programming with scratch. SIGCSE Bull. 40(1), 367–
371 (2008)

33. McIver, L.: The effect of programming language on error rates of novice program-
mers. In: 12th Annual Workshop of Psychology of Programmers Interest Group
(PPIG). pp. 181–192 (2000)

34. Morgado, L., Cruz, M.G.B., Kahn, K.: Working in toontalk with 4-and 5-year olds.
In: International Association for Development of the Information Society-IADIS
International Conference e-Society 2003. p. 988 (2003)

35. Moström, J.E., Carr, D.: Programming paradigms and program comprehension by
novices. Luleå tekniska universitet (1997)

DRAFT

36. Mullins, P., Whitfield, D., Conlon, M.: Using alice 2.0 as a first language. J. Com-
put. Small Coll. 24(3), 136–143 (2009)

37. Myers, B.A.: Taxonomies of visual programming and program visualization. Jour-
nal of Visual Languages & Computing 1(1), 97–123 (1990)

38. Naps, T.L.: Jhavé: Supporting algorithm visualization. IEEE Computer Graphics
and Applications 25(5), 49–55 (2005)

39. Ortiz, A.: Teaching concurrency-oriented programming with erlang. In: Proceed-
ings of the 42nd ACM technical symposium on Computer science education. pp.
195–200. ACM (2011)

40. Pant, L., Pant, V., Pant, N.: Kojo homepage. http://www.kogics.net/kojo.
41. Papert, S.: Computer-based microworlds as incubators for powerful ideas. In: The

Computer in the school : tutor, tool, tutee. Teachers College Press (1980)
42. Papert, S.: Computer-based microworlds as incubators for powerful ideas. The

computer in the school: Tutor, tool, tutee pp. 203–210 (1980)
43. Regnell, B., Pant, L., Kogics, D.: Teaching programming to young learners using

scala and kojo. LTHs Pedagogiska Inspirationskonferens 8, 4 (2014)
44. Resnick, M.: Starlogo: An environment for decentralized modeling and decentral-

ized thinking. In: Conference companion on Human factors in computing systems.
pp. 11–12. ACM (1996)

45. Roy, K.: App inventor for android: Report from a summer camp. In: Proceedings
of the 43rd ACM Technical Symposium on Computer Science Education. pp. 283–
288. SIGCSE ’12, ACM (2012)

46. Smith, D.C.: Pygmalion: a creative programming environment. Tech. rep., DTIC
Document (1975)

47. Sorva, J., Karavirta, V., Malmi, L.: A review of generic program visualization
systems for introductory programming education. Trans. Comput. Educ. 13(4),
15:1–15:64 (2013)

48. Stein, L.A.: Challenging the computational metaphor: Implications for how we
think (1999)

49. Sutter, H.: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software. Dr. Dobb’s Journal 30(3) (2005)

50. Tisue, S., Wilensky, U.: Netlogo: Design and implementation of a multi-agent mod-
eling environment. In: Proceedings of the Agent2004 Conference (2004)

51. Unuakhalu, M.F.: Enhancing problem-solving capabilities using object-oriented
programming language. Journal of Educational Technology Systems 37(2), 121–
137 (2008)

52. VanLengen, C., Maddux, C.: Does instruction in computer programming improve
problem solving ability ? Journal of IS Education 12 (1990)

53. White, G., Sivitanides, M.: Cognitive differences between procedural programming
and object oriented programming. Inf. Technol. and Management 6(4), 333–350
(2005)

54. Wilensky, U.: Modeling nature’s emergent patterns with multi-agent languages.
Citeseer

55. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
56. Xinogalos, S.: An evaluation of knowledge transfer from microworld programming

to conventional programming. Journal of Educational Computing Research 47(3),
251–277 (2012)

57. ZHANG, K., HINTZ, T., MA, X.: The role of graphics in parallel program devel-
opment. Journal of Visual Languages & Computing 10(3), 215 – 243 (1999)

	Survey of software visualization systems to teach message-passing concurrency in secondary school

