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The aim of this work is to present the initial exploration of a behavioural Dynamic Traffic Assignment model, particularly suitable 
to be used and implemented in agent-based micro-simulations. The proposal relies on the assumption that travellers take routing 
policies rather than paths, leading us to introduce the possibility for each simulated agent to apply, in real time, a strategy allowing 
him to possibly re-route his path depending on the perceived local traffic conditions, jam and/or time spent. 
 
The re-routing process allows the agents to directly react to any change in the road network. For the sake of simplicity, the agents’ 
strategy is modelled with a simple neural network whose parameters are determined during a preliminary training stage. The inputs 
of such neural network read the local information about the route network and the output gives the action to undertake: stay on the 
same path or modify it. As the agents use only local information, the overall network topology does not really matter, thus the 
strategy is able to cope with large networks. 
 
Numerical experiments are performed on various scenarios containing different proportions of trained strategic agents, agents with 
random strategies and non-strategic agents, to test the robustness and adaptability to new environments and varying network 
conditions. The methodology is also compared against MATSim and real world data. The outcome of the experiments suggest that 
this work-in-progress already produces encouraging results. 
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1. Introduction 

Traffic flows simulation represents a central part of traffic micro-simulators such as MATSim Meister et al. (2010), 
DynaMIT Ben-Akiva et al. (1998) and AIMSUN Barceló and Casas (2005) as well as the traffic modelling part of 
UrbanSim Waddell (2002) and ILUTE Salvini and Miller (2005) integrated simulators. This module is in charge of 
executing the daily plans of simulated individuals in a physical environment, i.e. representing the traffic flows 
dynamics on a road network. 

In recent decades, dynamics traffic assignment (for short DTA in the following) models emerged for solving this 
problem (see Chiu et al. (2011) for an extensive description of these techniques), which either aim at reaching a steady-
state (user equilibrium) of the considered system or at simulating the agents route choice behaviours. 

DTA techniques can also be distinguished by their analytical or simulation-based nature. Analytical methods 
formulate the traffic assignment as non-linear programming and optimisation problems or variational inequalities 
instead of focusing on the agents’ behaviours. Examples of such works include Friesz et al. (1993), Merchant and 
Nemhauser (1978a) and Merchant and Nemhauser (1978b). Even though they have demonstrated their usefulness and 
are grounded on sound mathematical theories, their complexity and computational cost make their application to large-
scale scenarios difficult Peeta and Ziliaskopoulos (2001). 

Hence simulation-based methods, which explicitly model the individuals’ mobility behaviours, have recently 
gained more attention in the literature (Nagel and Fltter ¨od (2009), Bazghandi (2012) and Ben-Akiva et al. (2012)). 
The underlying idea is to compute a user equilibrium by means of an iterative process. These successive steps generate 
traffic flows until the travel time of every agent becomes stationary, i.e. reaches a user equilibrium. This class of 
models is more suited to an agent-based approach than the analytical ones because of their very first assumption of 
focusing on agents’ mobility behaviour rather than optimising a complex objective function. Nevertheless, due to their 
iterative nature they are also endowed with computational issues. Indeed if the road network and the number of agents 
involved are large, the DTA algorithms of this type may converge slowly to an equilibrium state Pan et al. (2012). 

We can observe that both categories of DTA methods for steady-state solutions are not suited to temporal networks 
as the agents’ lacks of real-time response to network modifications. For instance if an accident occurs at some point 
of an agent’s trip, if the number of agents in the network changes, or if the network is modified by adding/removing 
streets, the whole optimisation/iterative stages must be repeated to compute a new equilibrium. Moreover these steady 
states approaches rely on strong assumptions and have several limitations now well identified. We refer the reader to 
Dehoux and Toint (1991) for a discussion of these limitations and why these models should be avoided in favour of 
purely behavioural models such as the ones proposed in PACSIM Cornélis and Toint (1998), FREESIM Rathi and 
Nemeth (1986) and CARSIM Benekohal and Treiterer (1988). The interested reader may find a recent review of these 
schemes in Pan et al. (2012). 

The aim of this work is to present an original behavioural DTA model which is particularly appropriate in the 
context of agent-based micro-simulation. The proposal relies on the assumption that travellers take routing policies 
rather than paths Gao et al. (2010), leading us to introduce the possibility for each simulated agent to apply a strategy 
allowing it to possibly re-route his path depending on perceived local traffic conditions. This re-routing process allows 
the agents to directly react to any change in the road network, which removes the need of restarting the whole 
simulation process and consequently decreases the computational cost. For the sake of simplicity, we decide to model 
the agents strategy with a simple neural network whose parameters are determined during a preliminary learning stage. 
Of course more complex structures can be considered. 

The paper is organised as follows. Section 2 formally details the design of the agents’ strategies and their 
optimization process. The resulting mobility behaviour is then illustrated under various scenarios, testing the 
robustness of the strategies, in Section 3. Finally concluding remarks and perspectives are discussed in Section 4. 
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formulate the traffic assignment as non-linear programming and optimisation problems or variational inequalities 
instead of focusing on the agents’ behaviours. Examples of such works include Friesz et al. (1993), Merchant and 
Nemhauser (1978a) and Merchant and Nemhauser (1978b). Even though they have demonstrated their usefulness and 
are grounded on sound mathematical theories, their complexity and computational cost make their application to large-
scale scenarios difficult Peeta and Ziliaskopoulos (2001). 

Hence simulation-based methods, which explicitly model the individuals’ mobility behaviours, have recently 
gained more attention in the literature (Nagel and Fltter ¨od (2009), Bazghandi (2012) and Ben-Akiva et al. (2012)). 
The underlying idea is to compute a user equilibrium by means of an iterative process. These successive steps generate 
traffic flows until the travel time of every agent becomes stationary, i.e. reaches a user equilibrium. This class of 
models is more suited to an agent-based approach than the analytical ones because of their very first assumption of 
focusing on agents’ mobility behaviour rather than optimising a complex objective function. Nevertheless, due to their 
iterative nature they are also endowed with computational issues. Indeed if the road network and the number of agents 
involved are large, the DTA algorithms of this type may converge slowly to an equilibrium state Pan et al. (2012). 

We can observe that both categories of DTA methods for steady-state solutions are not suited to temporal networks 
as the agents’ lacks of real-time response to network modifications. For instance if an accident occurs at some point 
of an agent’s trip, if the number of agents in the network changes, or if the network is modified by adding/removing 
streets, the whole optimisation/iterative stages must be repeated to compute a new equilibrium. Moreover these steady 
states approaches rely on strong assumptions and have several limitations now well identified. We refer the reader to 
Dehoux and Toint (1991) for a discussion of these limitations and why these models should be avoided in favour of 
purely behavioural models such as the ones proposed in PACSIM Cornélis and Toint (1998), FREESIM Rathi and 
Nemeth (1986) and CARSIM Benekohal and Treiterer (1988). The interested reader may find a recent review of these 
schemes in Pan et al. (2012). 

The aim of this work is to present an original behavioural DTA model which is particularly appropriate in the 
context of agent-based micro-simulation. The proposal relies on the assumption that travellers take routing policies 
rather than paths Gao et al. (2010), leading us to introduce the possibility for each simulated agent to apply a strategy 
allowing it to possibly re-route his path depending on perceived local traffic conditions. This re-routing process allows 
the agents to directly react to any change in the road network, which removes the need of restarting the whole 
simulation process and consequently decreases the computational cost. For the sake of simplicity, we decide to model 
the agents strategy with a simple neural network whose parameters are determined during a preliminary learning stage. 
Of course more complex structures can be considered. 

The paper is organised as follows. Section 2 formally details the design of the agents’ strategies and their 
optimization process. The resulting mobility behaviour is then illustrated under various scenarios, testing the 
robustness of the strategies, in Section 3. Finally concluding remarks and perspectives are discussed in Section 4. 
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2. Methodology 

2.1. A neural-network based strategy 

Once each agent has received his own source and destination, he initially computes the shortest-path to perform is 
trip by assuming he can travel at free-flow speed, that is very diluted traffic conditions. This hypothesis can be relaxed 
by assuming each agent endowed with some baseline path, not necessarily the shortest - in time - one. 

We represent each agent as a neural network whose inputs are the local information about the route network and 
whose output is the action to undertake: stay on the same path or modify it (keeping unchanged the destination). The 
take things simple, we assume the design of the neural network presented in Figure 1. The input nodes 𝑥𝑥1 and 𝑥𝑥2 
respectively reads 

 
 the normalised1 time spent from the source up to the current position; 
 and normalised2 number of cars in the next link on the path. 

 
The binary output node 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜  gives 1 if the agent strategy is to change its path, or 0 otherwise. Thus the output is given 
by 

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 𝛩𝛩(𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼)𝑥𝑥1 + 𝑐𝑐𝑠𝑠𝑠𝑠(𝛼𝛼)𝑥𝑥2 − 𝜃𝜃)  (1) 

where Θ is the Heaviside function, cos(𝛼𝛼) and sin⁡(𝛼𝛼) are synapses weights and 𝜃𝜃 the threshold of the output node. If 
the agent chooses the re-routing, then he computes a new shortest-path avoiding the congested link between his current 
location and his destination. 
 

Fig. 1. The neural network design for strategic agents. Left panel: schematic representation of the neural network, the input layer consists of 
nodes 𝑥𝑥1 and 𝑥𝑥2 which are respectively weighted by cos⁡(𝛼𝛼) and sin⁡(𝛼𝛼). If their weighted combination exceeds a threshold 𝜃𝜃 then output node is 
activated and 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 1; otherwise 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 0. Right panel: the strategy, depending of the parameters 𝛼𝛼 and 𝜃𝜃, each agent, measuring 𝑥𝑥1 and 𝑥𝑥2, 
decides to re-route or not his path. The dashed area corresponds to values of number of cars and time already spent for which the agent will re-
route his trip. 

More sophisticated neural network could be considered by adding hidden layers or more inputs (see Bonsall, 1992). 
Nevertheless we focused on a simple strategy in the present work in order to reach a trade-off between simplicity and 
efficiency of the strategy. Moreover this strategy seems reasonably behaviourally consistent and previous research 
works (such asWachs, 1967), Ueberschaer, 1971 and Bonsall and May, 1986) highlighted the fact that if an agent 

 

 
1 Normalised means divided by the nominal time one should have spent, i.e. in free flow conditions. 
2 Normalised means divided by the link capacity. 
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already spent a larger amount of time en-route than it should have taken, and if he perceives congestion on the next 
road he intends to take, then the agent may reconsider a re-routing to avoid it. 

2.2. Strategy learning with genetic algorithm 

In our context we aim to minimise the time needed to perform a given source-destination trip. Stated differently, 
the goal is to allow the agent to choose the best links, i.e. the less congested ones on his path taking into account the 
dynamically varying traffic conditions in order to minimize his loss of time due to congestion. 

The neural network has two strategy parameters to be determined, the weight 𝛼𝛼 and the threshold 𝜃𝜃. The resulting 
strategy, i.e. the networks with its parameters, is then associated with a fitness value ∈ [0,1] that reflects how optimal 
it is: the higher the fitness, the lower the travel time. Assuming that (𝑙𝑙1, … , 𝑙𝑙𝑑𝑑) is the sequence of links covered by the 
agent as to reach his destination, then his fitness is given by 

𝑓𝑓(𝑎𝑎𝑠𝑠) = ⁡∑ 𝑇𝑇(𝑙𝑙𝑖𝑖)
𝑆𝑆(𝑙𝑙𝑖𝑖)

𝑑𝑑
𝑖𝑖=1 ,  (2) 

where 𝑇𝑇(𝑙𝑙𝑖𝑖) is the free-flow travel time of the link 𝑙𝑙𝑖𝑖 and 𝑆𝑆(𝑙𝑙𝑖𝑖) the time actually needed to cover this link with a speed 
that depends on the traffic condition and on the link type. 

We decided to solve this optimisation problem using a Genetic Algorithm3, because of their simplicity and 
robustness, but other choices could be possible. 

In Figure 2 we illustrate a possible fitness function for a particular learning scenario involving a small congested 
network, computed for fine mesh of values for the parameters 𝛼𝛼 and 𝜃𝜃. We can observe that the objective function 
presents a large number of local maxima and it is highly oscillating, which further justifies the use of a genetic 
algorithm to explore the parameters space. 

Fig. 2. Fitness value as a function of 𝜃𝜃 ∈ [−1,1] and 𝛼𝛼 ∈ [0, 𝜋𝜋] for one learning scenario. 

 

 
3 We refer the reader to Eiben and Smith (2003) for a detailed overview of this methodology. 
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the goal is to allow the agent to choose the best links, i.e. the less congested ones on his path taking into account the 
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𝑓𝑓(𝑎𝑎𝑠𝑠) = ⁡∑ 𝑇𝑇(𝑙𝑙𝑖𝑖)
𝑆𝑆(𝑙𝑙𝑖𝑖)

𝑑𝑑
𝑖𝑖=1 ,  (2) 

where 𝑇𝑇(𝑙𝑙𝑖𝑖) is the free-flow travel time of the link 𝑙𝑙𝑖𝑖 and 𝑆𝑆(𝑙𝑙𝑖𝑖) the time actually needed to cover this link with a speed 
that depends on the traffic condition and on the link type. 

We decided to solve this optimisation problem using a Genetic Algorithm3, because of their simplicity and 
robustness, but other choices could be possible. 

In Figure 2 we illustrate a possible fitness function for a particular learning scenario involving a small congested 
network, computed for fine mesh of values for the parameters 𝛼𝛼 and 𝜃𝜃. We can observe that the objective function 
presents a large number of local maxima and it is highly oscillating, which further justifies the use of a genetic 
algorithm to explore the parameters space. 

Fig. 2. Fitness value as a function of 𝜃𝜃 ∈ [−1,1] and 𝛼𝛼 ∈ [0, 𝜋𝜋] for one learning scenario. 

 

 
3 We refer the reader to Eiben and Smith (2003) for a detailed overview of this methodology. 



1242 Johan Barthélemy et al. / Transportation Research Procedia 25C (2017) 1238–1248 Author name / Transportation Research Procedia 00 (2017) 000–000 5 

2.3. Traffic dynamic 

The resulting traffic on the road network is simulated using a queue model where the links are modelled as simple 
first-in-first-out (FIFO) queues. This mesoscopic model, also retained by MATSim, is vehicle-based and has been 
known to offer a satisfactory representation of the travel times as well as excellent computational efficiency 
(Charypar et al., 2015). Consequently it offers a suitable compromise to more detailed and computationally costly car-
following models. 

Every link 𝑙𝑙 ∈ 𝐿𝐿 is a queue characterized by the following properties: 
 

 a free flow travel time 𝑙𝑙𝑡𝑡; 
 a length 𝑙𝑙𝑙𝑙 and number of lanes 𝑙𝑙𝑛𝑛 defining the queue storage capacity; 
 a flow capacity 𝑙𝑙𝑐𝑐, i.e. the maximum number of vehicles per km per hour on the link; 
 the number of agents currently in the queue 𝑙𝑙𝑣𝑣. 

 
The traffic dynamic is then performed by updating the state of each queue at every time step: for each 𝑙𝑙 ∈ 𝐿𝐿 such 

that 𝑙𝑙𝑣𝑣 > 0, if the following conditions yield for the first agent of the queue 
 

 it has spent at least a duration of 𝑙𝑙𝑡𝑡 on the link; 
 𝑙𝑙𝑐𝑐 has not been exceeded during the current time step; 
 and the next link on its route has free storage capacity 

 
then the agent is removed from l and put in the next link of its route. It must be noted that the time step retained in this 
work is one second. 

This approach insure that the specifications of the network are accounted for as the flow capacity and the storage 
capacity constraints may cause congestion on the links (which can spill-back). Additionally it can easily be extended 
to capture congestion shock waves using for instance Newell’s simplified model for kinematic waves (Newell, 1993; 
Zhou et al., 2014). 

3. Results 

The goal of this Section is to present some results concerning the robustness of the optimized strategies with respect 
to new environments and with respect to the impact of the proportion of strategic agents present in the population. A 
comparison with a classical user equilibrium approach is then conducted. Finally we examine the performance of the 
strategic agents against a well-known and validated agent-based traffic micro-simulator. 

3.1. Impact of the strategic agents proportion 

We firstly conducted experiments over three different scenarios, whose details are given in Table 1 and illustrated 
in Figure 3, with different proportions of strategic agents to test their adaptability to new conditions: 

 
 an artificial network designed to represent 2 urban centres linked by 3 roads possibly responsible of bottlenecks 
in transfers among centres. This network was also used during the learning stage. 

 a second artificial network consisting of 3 urban centres surrounded by main roads and joined by highways. 
This case somehow generalise the previous one by adding high, medium and low capacity routes. 

 the Chicago road network, available at http://www.bgu.ac.il/∼bargera/tntp/. Note that the original capacities of 
the Chicago network have been downscaled to obtain congestion with less agents in order to keep reasonable 
computation times. 

 
In order to compare the DTA resulting from our model we repeated each simulation twice on each scenario: a first 

time with agents trained on the 2 cities network and a second one with random strategic agents (i.e. with strategy 
whose weights are randomly drawn). 
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   Table 1. Scenarios characteristics. 

 Scenario 

Parameter 2 cities 3 cities Chicago 

nodes 59 99 933 

slow links (50 km/h) 182 264 354 

medium links (90 km/h) 0 54 2,532 

fast links (120 km/h) 0 6 64 

total length (km) 196 504 12,190 

network total capacity (agent/hour) 390 5,820 46,718 

mean capacity per km (agent/hour) 1.9 11.5 5.7 

number of agents 100 750 4,000 

 

Fig. 3. Networks. Left panel: 2 cities. Centre panel: 3 cities (slows, medium and fast links are respectively black, blue and red). Right panel: 
Chicago. 

Let us now examine how the proportion of strategic agents in the population impacts the average fitness of every 
agents. In the experiments we considered the following proportions 𝑝𝑝 ∈ {0%, 10%, 25%, 50%, 75%, 100%}  of 
strategic agents. The evolution of the fitness, for each scenario, is reported in Figure 4. One can observe that the 
proportion of strategic agents (both optimised and random) does have an impact on the agents’ average fitness, more 
precisely: 

 
 for every tested scenario there is an increase of the average fitness for proportions of optimised agents up to 50% 

of the total number of agents, indicating that the strategy is efficient. Moreover a proportion from 75% up to 100% 
of such agents has a more relevant and strong impact in the scenario involving the most congested road networks, 
i.e. with lower mean capacities (2 cities and Chicago). For less congested network (3 cities), in case the number of 
optimised agents is high, the overall performance may not increase and even drop. Indeed when they perform re-
routing, they may encounter links being more congested than the initial ones; 

 agents performing random re-routing experience a decrease of the overall performance as their proportion increases 
with the exception of the 3 cities scenario. This behaviour is certainly imputable to the uncongested nature of the 
network; 

 additionally, the trained agents perform better than the random agents in term of average fitness for a majority of 
the conducted experiments, demonstrating that the learning process is necessary and produces efficient strategies. 
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Fig. 4. Evolution of the agent average fitness with respect to the proportion of strategic agents in various scenarios. The average fitness is 
computed at the end of each simulation. The solid lines represent the agents provided with a strategy optimised while the dashed lines correspond 
to agents with random strategies. 

These observations show that the provided strategy, optimised with a preliminary learning process, is effective 
compared to random behaviours and even with respect to agents without any strategy, i.e. performing the shortest path 
trip. Moreover these findings hold even if the learning phase has been performed on a small network compared to the 
simulated network. 

3.2. Comparison with an user-equilibrium approach 

In order to assess the validity of the proposed approach, we compare our results with the ones generated by the 
Origin-Based Assignment (OBA) algorithm developed by Bar-Gera (2002). This algorithm determines the classical 
deterministic user equilibrium as defined by Wardrop (1952). The retained network for these experiments is the well-
known Sioux-Falls network4 represented in Figure 5. 

Fig. 5. Sioux-Falls road network: 24 nodes, 76 links (60 km/h) and 360600 trips. 

 

 
4 Available at http://www.bgu.ac.il/∼bargera/tntp/ 
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Figure 6 shows the impact of the proportion of strategic agents on various indicators on the Sioux-Falls network. 
We can observe that 

 
 as the proportion of strategic agents increases, the average fitness, the ratio of used streets (i.e. the average load of 

the network) and the agents average speed slightly improve; 
 the number of time steps required for every agents to reach his destination also decreases as the proportion of 

strategic agent increase up to 75%. 

Fig. 6. Evolution of some performance indicators with respect to the proportion of strategic agents in the Sioux-Falls network. 

The comparison is performed by computing the average and maximum absolute deviations between the traffic flows 
produced by our approach and the ones determined by the OBA algorithm. These deviations, respectively denoted by 
𝐷𝐷𝑎𝑎 and 𝐷𝐷𝑚𝑚, are formally defined by 

𝐷𝐷𝑎𝑎 = ∑ |𝑣𝑣𝑙𝑙−𝑣𝑣𝑙𝑙∗|
𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘∈𝐿𝐿      and    𝐷𝐷𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘∈𝐿𝐿
|𝑣𝑣𝑙𝑙 − 𝑣𝑣𝑙𝑙∗|  (2) 

where 𝐿𝐿 is the set containing the 𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡 network links, 𝑣𝑣𝑙𝑙  the number of agents going through 𝑙𝑙 ∈ 𝐿𝐿 during the simulation 
and 𝑣𝑣𝑙𝑙∗ the traffic flow computed by the OBA algorithm for the same link. 

Figure 7 illustrates the behaviour of 𝐷𝐷𝑎𝑎 and 𝐷𝐷𝑚𝑚 as a function of the proportion of strategic agents. Indeed for a 
proportion of 75%, 𝐷𝐷𝑎𝑎 is less than 0.5% while 𝐷𝐷𝑚𝑚 is about 1.6%, showing that the solution of our approach produces 
results close to the theoretical ones. Hence the strategy computed with the genetic algorithm is close to the optimal 
one. 

3.3. Comparison with MATSim 

MATSim is an agent-based traffic micro-simulator which has been used in several applications all around the world 
(see http://www.matsim.org/scenarios for a listing of different scenarios). The simulator initially assigns to every agent 
a plan for each of his trip, i.e. a pre-defined path, a time to leave and a desired arrival time. Then MATSim tries to 
reach a user equilibrium by repeating K times the following iterative process: 

 
 each agent carries out his plans (simulation step); 
 after the simulation step, MATSim assesses the performance of every agent; 
 MATSim then modify the plans of the agents with the worst performance. 
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Fig. 7. Average and maximum absolute deviations (in percent) between theoretical flows computed by the Origin-based assignment algorithm 
and the proposed approach as a function of the proportion of strategic agents. 

In this Section we compares the results of our strategic agents-based simulator (using 25% of strategic agents) 
against the ones generated by MATSim for Namur, a city in the Walloon Region of Belgium (after 10 iteration, only 
allowing the modification of the pre-defined paths for 10% of the agents). The simulation involved 100,000 agents 
performing a total of 439,500 trips over a typical weekday in a road network made of 23,000 nodes and 36,700 links. 
The travel demand generation is fully detailed in Barthelemy (2014) and Barthelemy and Toint (2015). A snapshot of 
the simulated traffic at 8:00 am is illustrated in Figure 9. 

A comparison of the simulated daily counts on each link by the two approach is shown in Figure 9. One can easily 
observe the strong positive correlation (0.905) between the counts, indicating that our methodology and MATSim 
produce similar traffic patterns. 

Fig. 8. Saturation of the Namur road network at 8:00 am - 100,000 agents, 360,000 trips, road network made of 25,000 nodes and 17,000 links. 
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Fig. 9. Strategic agents traffic counts (x axis) against MATSim traffic counts (y axis). Each dot represents a link and the daily traffic volume 
predicted by the proposed model and MATSim. For a perfect match the dots should be aligned on a diagonal line. Pearson correlation 
coefficient = 0.905. 

4. Conclusions 

In this work we presented the premise of a novel alternative model to existing simulation-based dynamic traffic 
assignments models by endowing the travelling agents with a strategy. The proposed strategy is coded using a neural 
network whose inputs rely on the current trip duration and the perceived traffic conditions. Instead of fine tuning the 
neural network parameters, we decided to use a training phase using a standard genetic algorithm allowing us to derive 
the optimal neural network parameters. The trained agents can then use their own strategy to face to changing 
conditions and new environments. 

In the conducted experiments, the strategic agents have demonstrated an efficient behaviour. The robustness and 
adaptability to new environments have also been demonstrated and thus indicate promising results. A key advantage 
of this approach is that it does not require several computationally expensive iterations to take account of network 
modifications or changing traffic conditions. As a result this model seems well-suited to large-scale applications. This 
last property will be investigated in further works, as well as testing different neural networks formulations. 

Acknowledgements 

The authors would like to thank Eric Cornelis, Guillaume Deffuant and Philippe Toint for their insightful comments 
and their suggestions. Helpful corrections from Nam Huynh, Laurie Hollaert, Jonathan Dehaye and MarieMoriamé 

are also gratefully acknowledged. Computational resources have been provided by the Consortium des équipements 
de Calcul Intensif (CCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant 
No. 2.5020.11. Finally we gratefully acknowledge the support of NVIDIA Corporation with the donation of the 
TITAN X used for this research. 

References 

Bar-Gera, H., 2002. Origin-based algorithm for the traffic assignment problem. Transportation Science 36, 398–417. 
Barcel ´o, J., Casas, J., 2005. Dynamic network simulation with AIMSUN, in: Simulation Approaches in Transportation Analysis. Springer, pp. 

57–98. 



 Johan Barthélemy et al. / Transportation Research Procedia 25C (2017) 1238–1248 1247 Author name / Transportation Research Procedia 00 (2017) 000–000 9 

Fig. 7. Average and maximum absolute deviations (in percent) between theoretical flows computed by the Origin-based assignment algorithm 
and the proposed approach as a function of the proportion of strategic agents. 

In this Section we compares the results of our strategic agents-based simulator (using 25% of strategic agents) 
against the ones generated by MATSim for Namur, a city in the Walloon Region of Belgium (after 10 iteration, only 
allowing the modification of the pre-defined paths for 10% of the agents). The simulation involved 100,000 agents 
performing a total of 439,500 trips over a typical weekday in a road network made of 23,000 nodes and 36,700 links. 
The travel demand generation is fully detailed in Barthelemy (2014) and Barthelemy and Toint (2015). A snapshot of 
the simulated traffic at 8:00 am is illustrated in Figure 9. 

A comparison of the simulated daily counts on each link by the two approach is shown in Figure 9. One can easily 
observe the strong positive correlation (0.905) between the counts, indicating that our methodology and MATSim 
produce similar traffic patterns. 

Fig. 8. Saturation of the Namur road network at 8:00 am - 100,000 agents, 360,000 trips, road network made of 25,000 nodes and 17,000 links. 

10 Barthélemy and Carletti / Transportation Research Procedia 00 (2017) 000–000 

 

Fig. 9. Strategic agents traffic counts (x axis) against MATSim traffic counts (y axis). Each dot represents a link and the daily traffic volume 
predicted by the proposed model and MATSim. For a perfect match the dots should be aligned on a diagonal line. Pearson correlation 
coefficient = 0.905. 

4. Conclusions 

In this work we presented the premise of a novel alternative model to existing simulation-based dynamic traffic 
assignments models by endowing the travelling agents with a strategy. The proposed strategy is coded using a neural 
network whose inputs rely on the current trip duration and the perceived traffic conditions. Instead of fine tuning the 
neural network parameters, we decided to use a training phase using a standard genetic algorithm allowing us to derive 
the optimal neural network parameters. The trained agents can then use their own strategy to face to changing 
conditions and new environments. 

In the conducted experiments, the strategic agents have demonstrated an efficient behaviour. The robustness and 
adaptability to new environments have also been demonstrated and thus indicate promising results. A key advantage 
of this approach is that it does not require several computationally expensive iterations to take account of network 
modifications or changing traffic conditions. As a result this model seems well-suited to large-scale applications. This 
last property will be investigated in further works, as well as testing different neural networks formulations. 

Acknowledgements 

The authors would like to thank Eric Cornelis, Guillaume Deffuant and Philippe Toint for their insightful comments 
and their suggestions. Helpful corrections from Nam Huynh, Laurie Hollaert, Jonathan Dehaye and MarieMoriamé 

are also gratefully acknowledged. Computational resources have been provided by the Consortium des équipements 
de Calcul Intensif (CCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant 
No. 2.5020.11. Finally we gratefully acknowledge the support of NVIDIA Corporation with the donation of the 
TITAN X used for this research. 

References 

Bar-Gera, H., 2002. Origin-based algorithm for the traffic assignment problem. Transportation Science 36, 398–417. 
Barcel ´o, J., Casas, J., 2005. Dynamic network simulation with AIMSUN, in: Simulation Approaches in Transportation Analysis. Springer, pp. 

57–98. 



1248 Johan Barthélemy et al. / Transportation Research Procedia 25C (2017) 1238–1248
 Author name / Transportation Research Procedia 00 (2017) 000–000 11 

Barthelemy, J., Toint, P., 2015. A stochastic and flexible activity based model for large population. Application to Belgium. Journal of Artificial 
Societies and Social Simulation 18, 15. URL: http://jasss.soc.surrey.ac.uk/18/3/15.html. 

Barthélemy, J., 2014. A parallelized micro-simulation platform for population and mobility behaviour-Application to Belgium. Ph.D. thesis. 
University of Namur. 

Bazghandi, A., 2012. Techniques, advantages and problems of agent based modeling for traffic simulation. International Journal of Computer 
Science 9. 

Ben-Akiva, M., Bierlaire, M., Koutsopoulos, H., Mishalani, R., 1998. Dynamit: a simulation-based system for traffic prediction, in: DACCORS 
Short Term Forecasting Workshop, The Netherlands, Citeseer. 

Ben-Akiva, M.E., Gao, S., Wei, Z., Weng, Y., 2012. A dynamic traffic assignment model for highly congested urban networks. Transportation 
Research Part C: Emerging Technologies 24, 62–82. 

Benekohal, R.F., Treiterer, J., 1988. Carsim: Car-following model for simulation of traffic in normal and stop-and-go conditions. Transportation 
Research Record 1194. 

Bonsall, P., 1992. The influence of route guidance advice on route choice in urban networks. Transportation 19, 1–23. 
Bonsall, P., May, A.D., 1986. Route choice in congested urban networks, in: Research for Tomorrow’s Transport Requirements. Proceedings of 

the Fourth World Conference on Transport Research. 
Charypar, D., Axhausen, K., Nagel, K., 2015. Event-driven queue-based traffic flow microsimulation. Transportation Research Record: Journal of 

the Transportation Research Board . 
Chiu, Y., Bottom, J., Mahut, M., Paz, A., Balakrishna, R., Waller, T., Hicks, J., 2011. Dynamic traffic assignment: A primer. Transportation 

Research E-Circular E-C153. 
Cornélis, E., Toint, P.L., 1998. Pacsim: a new dynamic behavioural model for multimodal traffic assignment, in: Labbé, M., Laporte, G., Tanczos, 

K., Toint, P.L. (Eds.), Operations Research and Decision Aid Methodologies in Traffic and Transportation Management, Springer Verlag, 
Heidelberg, Berlin, New York. pp. 28–45. 

Dehoux, P., Toint, P., 1991. Some comments on dynamic modelling, in the presence of advanced driver information systems, in: Argyrakos, G., 
Carrara, M., Cartsen, O., Davies, P., Mohlenbrink, W., Papageorgiou, M., Rothengatter, T., Toint, P.L. (Eds.), Advanced Telematics in Road 
Transport, Commission of the European Communities - DG XIII. pp. 964–981. 

Eiben, A., Smith, J.E., 2003. Introduction to Evolutionary Computing. Springer. 
Friesz, T.L., Bernstein, D., Smith, T.E., Tobin, R.L.,W.Wie, B., 1993. A variational inequality formulation of the dynamic network user equilibrium 

problem. Operations Research 41, 179–191. 
Gao, S., Frejinger, E., Ben-Akiva, M., 2010. Adaptive route choices in risky traffic networks: A prospect theory approach. Transportation Research 

part C: Emerging Technologies 18, 727–740. 
Meister, K., Balmer, M., Ciari, F., Horni, A., Rieser, M.,Waraich, R.A., Axhausen, K.W., 2010. Large-scale agent-based travel demand optimization 

applied to switzerland, including mode choice. paper presented at the 12th World Conference on Transportation Research. 
Merchant, D.K., Nemhauser, G.L., 1978a. A model and an algorithm for the dynamic traffic assignment problems. Transportation Science 12, 183–

199. 
Merchant, D.K., Nemhauser, G.L., 1978b. Optimality conditions for a dynamic traffic assignment model. Transportation Science 12, 200–207. 
Nagel, K., Fltteröd, G., 2009. Agent-based traffic assignment: going from trips to behavioral travelers, in: 12th International Conference on Travel 
Behaviour Research (IATBR), Jaipur. 
Newell, G.F., 1993. A simplified theory of kinematic waves in highway traffic, part i: General theory. Transportation Research Part B: 

Methodological 27, 281–287. 
Pan, J., Khan, M.A., Popa, I.S., Zeitouni, K., Borcea, C., 2012. Proactive vehicle re-routing strategies for congestion avoidance, in: Distributed 

Computing in Sensor Systems (DCOSS), 2012 IEEE 8th International Conference on, IEEE. pp. 265–272. 
Peeta, S., Ziliaskopoulos, A.K., 2001. Foundations of dynamic traffic assignment: The past, the present and the future. Networks and Spatial 

Economics 1, 233–265. 
Rathi, A.K., Nemeth, Z.A., 1986. Freesim: A microscopic simulation model of freeway lane closures (abridgment). Transportation Research Record 

1091. 
Salvini, P., Miller, E.J., 2005. Ilute: An operational prototype of a comprehensive microsimulation model of urban systems. Networks and Spatial 

Economics 5, 217–234. URL: http://dx.doi.org/10.1007/s11067-005-2630-5, doi:10.1007/s11067-005-2630-5. 
Ueberschaer, M.H., 1971. Choice of routes on urban networks for the journey to work. Highway Research Record 369. 
Wachs, M., 1967. Relationships between drivers’attitudes toward alternate routes and driver and route characteristics. Highway Research Record 

197, 70–87. 
Waddell, P., 2002. Urbansim: Modeling Urban Development for Land Use, Transportation and Environmental Planning. Journal of the American 

Planning Association 3, 297–314. 
Wardrop, J., 1952. Some theoretical aspects of road traffic research. Proceedings of the Institute of Civil Engineers, part II 1, 325–378. 
Zhou, X., Taylor, J., Pratico, F., 2014. Dtalite: A queue-based mesoscopic traffic simulator for fast model evaluation and calibration. Cogent 

Engineering 1, 961345. 
 


