
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Mild mitochondrial uncoupling induces HSL/ATGL-independent lipolysis relying on a
form of autophagy in 3T3-L1 adipocytes
Demine, Stéphane; Tejerina Vargas, Silvia Veronica; Bihin, Benoît; Thiry, Marc;
Nagabushana, Reddy; Renard, Patricia; Raes, Martine; Jadot, Michel; Arnould, Thierry
Published in:
Journal of Cellular Physiology

DOI:
10.1002/jcp.25994

Publication date:
2018

Link to publication
Citation for pulished version (HARVARD):
Demine, S, Tejerina Vargas, SV, Bihin, B, Thiry, M, Nagabushana, R, Renard, P, Raes, M, Jadot, M & Arnould,
T 2018, 'Mild mitochondrial uncoupling induces HSL/ATGL-independent lipolysis relying on a form of autophagy
in 3T3-L1 adipocytes' Journal of Cellular Physiology, vol. 233, no. 2, pp. 1247-1265.
https://doi.org/10.1002/jcp.25994

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

https://doi.org/10.1002/jcp.25994
https://researchportal.unamur.be/en/publications/mild-mitochondrial-uncoupling-induces-hslatglindependent-lipolysis-relying-on-a-form-of-autophagy-in-3t3l1-adipocytes(70f1b4f0-9903-4491-afc5-f1c4ba8fcd14).html


Received: 8 July 2016 | Accepted: 8 May 2017

DOI: 10.1002/jcp.25994

ORIGINAL RESEARCH ARTICLE
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Obesity is characterized by an excessive triacylglycerol accumulation in white

adipocytes. Variousmechanisms allowing the tight regulation of triacylglycerol storage

and mobilization by lipid droplet-associated proteins as well as lipolytic enzymes have

been identified. Increasing energy expenditure by inducing a mild uncoupling of

mitochondria in adipocytesmight represent a putative interesting anti-obesity strategy

as it reduces the adipose tissue triacylglycerol content (limiting alterations caused by

cell hypertrophy) by stimulating lipolysis through yet unknown mechanisms, limiting

the adverse effects of adipocyte hypertrophy. Herein, the molecular mechanisms

involved in lipolysis induced by a mild uncoupling of mitochondria in white 3T3-L1

adipocytes were characterized. Mitochondrial uncoupling-induced lipolysis was found

to be independent from canonical pathways that involve lipolytic enzymes such asHSL

andATGL. Finally, enhanced lipolysis in response tomitochondrial uncoupling relies on

a form of autophagy as lipid droplets are captured by endolysosomal vesicles. This new

mechanism of triacylglycerol breakdown in adipocytes exposed to mild uncoupling

provides new insights on the biology of adipocytes dealingwithmitochondria forced to

dissipate energy.

K E YWORD S

adipocytes, ATGL, autophagy, glycerol, HSL, lipid metabolism, lipolysis, mitochondrial

uncoupling

1 | INTRODUCTION

Obesity can be defined as an excessive storage of lipids (as

triacylglycerols, TAGs) in white adipose tissue leading to a body

mass index higher than 30 (Guh et al., 2009). It is also often associated

with other features such as dyslipidemia, hypertension, hyperinsuli-

nemia, insulin resistance, and type 2 diabetes mellitus as well as some

forms of cancer (Guh et al., 2009). Obesity is mainly due to an

imbalance between energy intake and energy consumption that could

Abbreviations: Atg, autophagy related; ATGL, adipose triglyceride lipase; BCA, bicincho-

ninic acid; DMEM, Dulbecco’s modified Eagle’s medium; DNP, 2,4-dinitrophenol; E600, p-

nitrophenylphosphate; FA, fatty acid; FCCP, carbonyl cyanide-4-(trifluoromethoxy)phenyl-

hydrazone; FFA, free fatty acid; FOXO1, forkhead homeobox type O1; HSL, hormone-

sensitive lipase; LC3, light chain 3; LD, lipid droplet; LIPA, lysosomal Acid Lipase A; PKA,

protein kinase A; PPARγ, peroxisome proliferator-activated receptor γ; TAGs, triacylglycer-
ols; TNFα, tumor-necrosis factor α; UCP-1, uncoupling protein-1.
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be caused, at least partly, by an unhealthy diet or insufficient physical

exercise. However, it is also importantly influenced by an individual’s

multigenic background, affecting genes encoding thyroid peroxidase,

peroxidasin, and myelin transcription factor 1-like (deletions) (Doco-

Fenzy et al., 2014), leptin and leptin receptor (mutations) (Clement

et al., 1998; Wabitsch et al., 2015), or Forkhead box A3 (single

nucleotide polymorphism) (Adler-Wailes et al., 2015). Microbial

factors, such as the composition of the gut microbiota, are also known

to influence obesity onset (Kong et al., 2014).

It has been clearly demonstrated that a loss of 5–10% in lipid content

can alleviate obesity-linked complications in humans (Jones, Wilson, &

Wadden, 2007). An attractive strategy to limit fat accumulation and

stimulate energy expenditure in adipose tissues (Harper, Dickinson, &

Brand, 2001) involves triggering a mild/controlled/targeted and chronic

mitochondrialuncoupling in thesetissues, as longas it isaccompaniedbythe

stimulationof free fatty acid (FFA)β-oxidation inother tissues suchasheart,

muscles, liver kidney, andbrownadipose tissue (Harper et al., 2001). In3T3-

L1 adipocytes, it has been shown that a mild uncoupling of mitochondria

limits fat accumulation by reducing the expression of pyruvate carboxylase,

limiting TAG, and fatty acid (FA) synthesis (De Pauw et al., 2012) and

increasing lipolysis (Si, Palani, Jayaraman,& Lee, 2007; Tejerina et al., 2009).

However, themolecularmechanismstriggeredbymitochondrialuncoupling

leading to the activation of lipolysis remain poorly understood.

Lipid droplet (LDs) are composed of a core of neutral lipids

surrounded by a lipid monolayer containing several “coat proteins”

such as perilipin 1 (perilipin A), perilipin 2 (adipophilin), perilipin 3 (Tail-

Interacting Protein of 47 kDa), perilipin 4 (S3-12), and perilipin 5 (Lipid

Storage Droplet Protein 5). The biology of LDs has been extensively

reviewed (Thiam, Farese, & Walther, 2013; Walther & Farese, 2012).

Lipolysis allows themobilization of FFAs fromTAGs stored in LDs (Sun,

Kusminski, & Scherer, 2011). Activation of this metabolic pathway can

be observed in adipocytes in different conditions, including following

exposure to tumor-necrosis factor α (TNFα) (Yang, Zhang, Heckmann,

Lu, & Liu, 2011) or in response to the stimulation of β3-adrenergic

receptors (Schimmel, 1976). Interestingly, rats exposed to acute

hypoxia exhibit increased FFA blood levels, suggesting the activation

of lipolysis when a deprivation of oxygen is observed (Yin et al., 2009),

a condition also found during the expansion of adipose tissues in obese

individuals (Hosogai et al., 2007).

Three major forms of lipolysis have been identified to date. The

first form is the “classical lipolysis,” mainly fulfilled by specific neutral

lipases, namely hormone-sensitive lipase (HSL) and adipose triglycer-

ide lipase (ATGL) (Lafontan & Langin, 2009), which are mainly cytosolic

at the basal state. However, in response to the activation of β3-

adrenergic receptors, protein kinase A (PKA) phosphorylates both

perilipin 1 and HSL (Anthonsen, Ronnstrand, Wernstedt, Degerman, &

Holm, 1998; Souza et al., 2002; Tansey et al., 2003), leading to the

recruitment and activation ofHSL at the surface of the LDs. In addition,

phosphorylation of perilipin 1 leads to the release of Comparative

Gene Identification-58, an ATGL co-activator (Lass et al., 2006; Sahu-

Osen et al., 2015), from perilipin 1. Together, HSL, ATGL, and

monoacyl glycerol lipasemobilize FFAs fromTAGs (Lass, Zimmermann,

Oberer, & Zechner, 2011).

A second mechanism allowing mobilization of FFAs is the macro-

autophagy of LDs (lipophagy), a process identified both in vitro and in

vivo in rat RALA255-10G hepatocytes exposed to oil-rich medium and

in liver-specific conditional autophagy-related 7 (Atg7) knock-out mice,

respectively (Demine et al., 2012; Singh, Kaushik et al., 2009). In these

conditions, the recruitment of light chain 3 (LC3), an autophagosomal

marker, to the LD is observed, initiating the formation of autophago-

somal engulfment of the LD in anAtg7-dependentmanner and allowing

the fusion with lysosomes in which lipolytic enzymes digest the TAG

contained inLDs (Demineet al., 2012; Singh,Kaushik et al., 2009). So far,

the existence of lipophagy has been confirmed in hepatocytes (Singh,

Kaushik et al., 2009) (Martinez-Lopez et al., 2016), white (Lettieri

Barbato, Tatulli, Aquilano, & Ciriolo, 2013) and brown (Martinez-Lopez

et al., 2016) adipocytes, pancreatic β cells (Pearson et al., 2014), T cells

(Hubbard et al., 2010), or neurons (Kaushik et al., 2011). Moreover,

autophagy is not only involved in lipid droplet disposal in adipocytes but

also plays a key role during adipogenesis. Indeed, silencing of Atg5 or

Atg7 expression in 3T3-L1 adipocytes leads to the limitation of fat

accumulation and increases the expression of brown adipocyte

molecular markers such as uncoupling protein-1 (UCP-1) (Singh, Xiang

et al., 2009). These effects have also been observed in Atg7 knock-out

mice (Zhang et al., 2009). Chaperone-mediated autophagy (CMA) could

also play a role in the regulation of autophagy. Indeed, perilipins 2 and 3

are substrates of CMA (Kaushik & Cuervo, 2015). During starvation, an

increase inCMA rate leads to a progressive degradationof bothproteins

inmouse fibroblasts, which allows a facilitated recruitment of ATGL and

macroautophagymachinery to the surface of the lipid droplets and thus,

increase lipolysis rate (Kaushik & Cuervo, 2015, 2016). At the opposite,

the inhibition of CMA limits the lipid droplet degradation and lipolysis

activation (Kaushik & Cuervo, 2015). This process seems to be

dependent on the phosphorylation of perilipin 2 by AMPK (Kaushik &

Cuervo, 2016).

Finally, a thirdmechanism relies on a form ofmicroautophagy. This

form of autophagy involves the direct capture of small cytosolic

portions by the lysosomes and can either be non-selective or selective

for some organelles, as demonstrated for mitochondria (Lemasters,

2014), peroxisomes (Sakai, Koller, Rangell, Keller, & Subramani, 1998),

nuclei (Dawaliby & Mayer, 2010), and ribosomes (Kraft, Deplazes,

Sohrmann, & Peter, 2008). Unfortunately, the machinery regulating

this autophagy pathway remains poorly documented inmammals. Very

recently, LD degradation by microautophagy was also reported in

yeast incubated in oil-rich medium (van Zutphen et al., 2014).

Herein, the molecular mechanisms involved in lipolysis induced by

a mild uncoupling of mitochondria triggered by carbonyl cyanide-

4-(trifluoromethoxy)phenylhydrazone (FCCP) were analyzed in 3T3-

L1 adipocytes. The role of HSL and ATGL in FCCP-induced glycerol

release was first excluded, followed by an assessment of the putative

participation of macroautophagy in glycerol release from adipocytes

exposed to FCCP. Despite an apparent increase in macroautophagy

flow in adipocytes exposed to mitochondrial uncoupling, it was found

that inhibition of macroautophagy by bafilomycin A1 (Baf A1) or by the

silencing of expression Atg5 or Atg7, key molecular actors of

autophagy, did not prevent the lipolysis induced by FCCP. Finally, a
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direct capture of LDs by lysosomes was observed. The role of

autophagy in this process was confirmed by the fact that both

valinomycin, an inhibitor of microautophagy (Kunz, Schwarz, & Mayer,

2004), and lysosome poisoning induced by several inhibitors, totally

inhibit FCCP-induced glycerol release.

2 | MATERIALS AND METHODS

2.1 | Chemicals

Bafilomycin A1, chloroquine, dodecyltriphenylphosphonium

(C12TPP), dexamethasone, db-cAMP (dibutyryl-cyclic AMP), E64d,

FCCP, free glycerol and TAG determination kit, insulin, ionomycin,

isoproterenol, NH4Cl, p-nitrophenylphosphate (E600), sucrose were

purchased from Sigma. The bicinchoninic acid (BCA) Pierce protein

determination kit and siRNAs targeting Atg5, Atg7, or non-targeting

(non-targeting pool, NTP) were obtained from Thermo Scientific.

Dulbecco’s Modified Eagle’s Medium (DMEM) and fetal bovine serum

(FBS) were purchased from Gibco. Valinomycin was obtained from

Santa Cruz Biotechnology.

2.2 | Cell culture and differentiation

Murine 3T3-L1 preadipocytes purchased from the American Type

Culture Collection were differentiated using a pro-adipogenic cocktail

containing insulin, dexamethasone, and db-cAMP (all from Sigma) as

previously described (Vankoningsloo et al., 2006). Briefly, after 12 days

of differentiation (>90% of differentiated cells), adipocytes were

incubated for an extra 3 days in the presence of 0.5 μM FCCP (Sigma)

diluted in DMEM containing 10% FBS (defined as the culture medium

herein). Media were renewed every 2 days during the differentiation

program and every day when molecules were added. Further

treatments are indicated in the legends of respective figures.

2.3 | Cleared cell lysate preparation and protein
content determination

Following the different incubations, cells were rinsed twice with ice-

cold phosphate buffer saline (PBS) and lysed for 30min in 150 μl of ice-

cold lysis buffer (20 mM Tris (Merck); pH 7.4, 150mM NaCl (Merck),

1 mMEDTA (Merck), 1%TritonX–100 (Sigma)) as previously described

(Vankoningsloo et al., 2005). Cleared cell lysates were prepared by

centrifugation (13,000 rpm, 15min, 4 °C; Eppendorf 5415R centri-

fuge). Sample protein concentration was determined through the BCA

Pierce method.

2.4 | Total lipid extraction, triacylglycerol content,
glycerol, and FFA release assays

Cells were rinsed once with 5ml of PBS, scraped into 1ml of PBS, and

total lipids were extracted by the addition of 7.4 ml of chloroform/

methanol (Sigma/Acros, respectively) (v/v 1:2). Samples were shaken

for 15min at room temperature (RT) and the extraction was continued

by the addition of 2.5 ml of chloroform (Merck) and 2.5 ml of 1MNaCl

(Merck). The different phases were separated by centrifugation

(1,125g, 11 min, RT, Eppendorf 5810R centrifuge). The polar phase

was collected and the solvent was evaporated to dryness under

nitrogen flow. Lipids were finally solubilized in 50 μl of ethanol (Merck)

and stored at −20 °C before use. Glycerol or TAG concentrations were

assessed either in the 24-hour-old conditioned culture media of

differentiated cells incubated for a total of 3 days in the presence or

absence of 0.5 µM FCCP (Sigma) or in lipid extracts by using the free

glycerol and TAG determination kit (Sigma) according to the

manufacturer’s instructions. In the same conditioned culture media,

the release of FFAs was quantified using FFA assay kit (Sigma)

according to the manufacturer’s instructions. Results were expressed

in μg of glycerol, μg of TAG or μmole of FFAs and were then

normalized for protein content, as determined by the BCA method.

2.5 | Triglyceride lipase assay

Theprotocol used for triglyceride lipase activity determinationwas adapted

from a previously published protocol (Rider, Hussain, Dilworth, Storey, &

Storey, 2011). Briefly, cells were first rinsed with 5mL of PBS. Cell

homogenateswereprepared in200μl ofbuffer (25mMHEPES(Sigma),pH:

7.4; 255mM sucrose (Sigma), 1mM EDTA (Merck), 1mM DTT (Merck))

using aDouncehomogenizer (40 strokes). For each experimental condition,

the protein concentration was determined through the BCA method. A

volumeof100μl containing200μgofproteinswaspreparedand incubated

for3 hrat37 °Cinthepresenceof100μlofenzymatic reactionbuffer (2μCi

[9-10-3H(N)]-triolein (20 nM/ml; Perkin Elmer), 100mM KH2PO4 (Merck),

5% (w/v) bovine serumalbumin (Sigma), phosphatidylcholine-phosphatidyl-

ethanolamine (w/w:3/1; Sigma)). Theenzymatic reactionwas then stopped

by the addition of H3BO4 (1.05ml; pH 10.5; Merck) and FFAs were

extractedby the additionofmethanol/chloroform/heptane (3.25ml; v/v/v:

10/9/7). Samples were then centrifuged (20min, 2,000 rpm, Jouan B3.11

centrifuge), the supernatant containing FFAs was removed, and the

radioactivity was counted on 1ml sample aliquots in a scintillation counter

(Beckman Coulter).

2.6 | Western blot analyses

Fluorescence-based western blot analyses (Delaive, Arnould, Raes, &

Renard, 2008) were performed on 25 μg of proteins from cleared cell

lysates that were previously resolved by SDS-PAGE (Bio Rad) and

transferred on PVDF membranes (Millipore). The acrylamide percen-

tages, antibodies, manufacturers, and concentrations used are

summarized in Supplementary Table S1. The fluorescence emitted

by the antibodies was detected using a Li-Cor scanner (Odyssey) and

quantified with the Odyssey software. The data normalization method

is detailed in the legends of corresponding figures.

2.7 | Electroporation

At the end of the incubations, cells were rinsed twicewith 15ml of PBS

(Lonza), harvested by 5ml of trypsin/EDTA (Gibco) for 10min at 37 °C
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and diluted into a final volume of 10ml of culture medium. Cell density

was evaluated using a Neubauer chamber (Marienfield). Volumes

containing 2.106 adipocytes were prepared and centrifuged for 5 min

at 1,000 rpm (Eppendorf 5702). Media were removed and cell pellets

were collected into 100 μl of Nucleofector solution Kit L (Lonza). A

solution containing siRNAs directed against 20 nMAtg5, 100 nMAtg7,

or control “non-targeting” siRNAs (120 nM) (OnTarget Plus SmartPool,

Thermo) was added. Cells were then electroporated (Nucleofector

equipment; Lonza) according to the manufacturer’s instructions.

Immediately after the electroporation, a volume of 1ml of culture

medium containing 5 μg/ml insulin (Sigma) was added to the cells that

were seeded in 6-well plates (Corning). After 24 hr of recovery, media

were renewed and the cells were treated according the conditions

described in the legend of the corresponding figure.

2.8 | Analysis of the co-localization of lysosomes and
LDs by confocal microscopy

Cells were differentiated and incubated with or without FCCP in the

presence or in the absence of Baf A1. Cells were next incubated for 1 hr

with 50 nM of LysoTracker Red DND-99 (Life Technologies) diluted into

regular culture mediumwith or without 0.5μMof FCCP. Cells were then

fixedwith4%paraformaldehydediluted inPBS (Sigma) for10minat room

temperature and incubated for 30min with PBS containing 20 μg/ml of

BODIPY 493/503 (Life Technologies). Immunofluorescence was also

used in order to analyze the co-localization of these organelles. First, cells

were fixed with methanol/acetone for 15min at RT, incubated for 2 hr at

RT into PBS containing 1% BSA and the antibodies targeting LAMP-1

(lysosomal marker), perilipin 1 (lipid droplet marker) or LC3 (autophago-

somal marker) and 1 hr at RT with corresponding secondary antibodies

(Supplementary Table S1). The staining of nuclei was performed by

incubating the cellswith12.5μMTO-PRO3 iodide (LifeTechnologies) for

30min.Cellswere finallyobservedusingaconfocalmicroscope (LeicaTCS

SP5) (LysoTracker Red λ excitation: 577 nm, λ emission: 590 nm;BODIPY

λexcitation: 480 nm,λemission: 515 nm;TO-PRO3λexcitation: 642 nm,

λ emission: 661 nm; Alexa Fluor 488: λ excitation: 495 nm, λ emission:

519 nm; Alexa Fluor 568 λ excitation: 578 nm, λ emission: 603 nm). Co-

localization between organelles was assessed in cells randomly chosen by

measuring the Pearson correlation coefficient using the ImageJ plugin

Coloc2 as previously described (Adler & Parmryd, 2010; Dunn, Kamocka,

& McDonald, 2011).

2.9 | Transmission electron microscopy (TEM)
analysis

At the end of the different incubations, cells were then fixed for 1 hr in a

0.1M sodium cacodylate buffer (pH 7.4; Sigma) containing 2.5%

glutaraldehyde (v/v; Santa Cruz Biotechnology) and post-fixed for

30min with 2% (w/v) osmium tetroxide in the same buffer. Samples

were then dehydrated at room temperature through a graded ethanol

series (70%, 96%, and 100%) and embedded in Epon for 48 hr at 60 °C.

Ultrathin sections (70 nm thick) were obtained by using an ultramicro-

tome (Reichert Ultracut E) equipped with a diamond knife (Diatome).

The sections were mounted on copper grids coated with collodion and

contrasted with uranyl acetate and lead citrate for 15min each. The

ultrathin sections were observed under a JEM-1400 transmission

electron microscope (Jeol) at 80 kV and micrographies were taken with

an 11 MegaPixel bottom-mounted TEM camera system (Quemesa,

Olympus). At least 20 adipocytes for each condition (control adipocytes

and FCCP-treated cells) were observed in order to allow quantification.

The number of endolysosomal vesicles and the number of interactions

between these vesicles and LDswere manually determined in each cell.

2.10 | Cell fractionation, lysosomal TAG content, and
glycerol release assay

Lysosomal enriched fractions were prepared as previously described

(Graham, 2002; Wattiaux, Wattiaux-De Coninck, Ronveaux-dupal, &

Dubois,1978). Briefly, at theendof the incubations, cells (corresponding

to 150 cm2 per experimental condition) were rinsed twice with 15ml of

ice-cold PBS and homogenized into 2ml of homogenization buffer

(255mM sucrose (Sigma), 20mMHEPES (Sigma), 1 mM EDTA (Merck);

pH 7.4) with a Dounce homogenizer (40 strokes). Nuclei were first

pelleted by centrifugation (1,000g, 10min, 4 °C; Eppendorf 5810R

centrifuge). A mitochondria-enriched fraction was prepared by ultra-

centrifugation (7,000 rpm, 10min, 4 °C; Beckman Coulter L7 centri-

fuge), followed by a lysosome-enriched fraction by ultracentrifugation

of the supernatant (25,000 rpm, 10min, 4 °C; Beckman Coulter L7

centrifuge), and diluted into 1ml of a buffer optimized for lysosomal

preservation (0.3M sucrose (Sigma), 10mM MOPS (Merck); pH 7.3)

(Bandyopadhyay, Kaushik, Varticovski, &Cuervo, 2008;Cuervo,Dice,&

Knecht, 1997). Samples were incubated in a water bath for 1 hr at 37 °C

in order to allow the degradation of intralysosomal TAG. Lysosomes

were finally pelleted by ultracentrifugation (25,000 rpm, 10min, 4 °C,

Beckman Coulter L7 centrifuge). Supernatants were collected and

lysosomal pellets were recovered in 200μ of lysosomal buffer. Glycerol

and TAG concentrations were determined using the free glycerol and

TAG determination kit. The results were expressed in μg of glycerol or

TAGs per μl of sample and were then normalized for lysosomal protein

content, as determined by the BCA Pierce method.

2.11 | Statistical analyses

Data from at least three independent experiments were analyzed by

either a Student t-test, a z-test (Sprinthall, 2012) or one-way ANOVA,

asmentioned in the figure legends or in the text. Testswere performed

with GraphPad Prism 6 software. Means were considered statistically

significant with p < 0.05 or less.

3 | RESULTS

3.1 | Mild uncoupling of mitochondria triggers
lipolysis and decreases adipocyte TAG content

As expected, at the basal state, a lowglycerol efflux fromdifferentiated

adipocytes was observed (Figure 1a). Indeed, a basal lipolytic activity
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and constant lipid remodeling occurs in adipocytes both in vitro and in

vivo (Arner et al., 2011; Edens, Leibel, & Hirsch, 1990; Jensen, Ekberg,

& Landau, 2001). However, when 3T3-L1 murine adipocytes were

incubated for 3 days with a low FCCP concentration (0.5 μM), a

condition sufficient to induce a slight but significant decrease in

mitochondrial membrane potential while largely preserving cell

viability (Supplementary Figure S1a,b) as previously described

(Tejerina et al., 2009), the release of glycerol is significantly increased

FIGURE 1 Effect of a mild mitochondrial uncoupling on glycerol release, TAG content and FFA release. Preadipocytes were differentiated
into adipocytes over 12 days and incubated in culture medium containing 10% FBS, with (FCCP, grey columns) or without 0.5 μM of FCCP
(CTL, white columns) for 3 days. Culture media were renewed every 24 hr. (a) Concentration of glycerol released into conditioned culture
media was determined using the TAG and free glycerol assay kit. Results were normalized for protein content and are expressed in μg of
glycerol released per mg of proteins, and represent means ± s.d. (n = 3 independent experiments). *p < 0.05: significantly different from CTL as
determined by the Student t-test. (b) TAG content of cells was determined using the TAG and free glycerol assay kit. Results are normalized
for protein content, expressed in μg of TAG/μg of adipocyte proteins as means ± s.d. (n = 8 independent experiments). *p < 0.05: significantly
different from control as determined by the Student t-test. (c) Representative micrographs of both control and FCCP-treated adipocytes are
presented on the left of the corresponding chart (magnification, 25×). (d) Release of FFAs from cells treated as described above was
determined using the FFA assay kit. As a control, some cells were treated for 24 hr with 10 μM isoproterenol (ISO). Results are normalized for
protein content, expressed in μmole of FFAs/mg of adipocyte proteins as means ± s.d. (n = 6 independent experiments). *p < 0.05: significantly
different from control as determined by the Student t-test
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(Figure 1a). It must be noted that themagnitude of the FCCP effectwas

variable (from 150% to 300% when compared with untreated cells).

Nevertheless, in accordance with the increased glycerol release, lipid

content was also significantly decreased in FCCP-treated adipocytes

(Figure 1b,c) (Tejerina et al., 2009). In addition, some FFAs generated

from the TAGs breakdown during FCCP-induced lipolysis seem to be

released in the extracellular conditioned culture medium (Figure 1d).

Mild uncoupling of mitochondrial oxidative phosphorylation is thus

able to stimulate lipolysis and is associated with a decrease in

adipocyte lipid content. These effects were comparable, in intensity, to

the activation of lipolysis triggered by isoproterenol, a β-adrenergic

agonist, or by TNFα, a pro-inflammatory cytokine (Figure 2a).

Classical lipolysis, induced by either TNFα or isoproterenol,

essentially depends on the activation of HSL and ATGL (Kim, Tillison,

Lee, Rearick, & Smas, 2006; Yang et al., 2011). Therefore, the

abundance of these enzymes was first evaluated through fluores-

cence-based western blotting. Quantification of several blots

revealed that the abundance of HSL was significantly decreased in

FCCP-treated adipocytes (Figure 2b). In addition, the enzyme did not

seem to be activated by the treatment, as no increase in the

phosphorylation of HSL on the serine 660, a marker of the activation

and recruitment of this enzyme (Watt et al., 2006), could be

observed in these conditions (Figure 2b). The abundance of ATGL

was also decreased in these experimental conditions (Figure 2b).

While slightly reduced, the abundance of perlipin 1 is not statistically

different in FCCP-treated cells when compared with abundance in

control adipocytes (Figure 2b).

Since the total protein abundance of HSL and ATGLwas decreased

in FCCP-treated adipocytes, the total TAG lipase activity was also

assessed in these conditions. Total TAG lipase activity was significantly

decreased inFCCP-treated adipocyteswhen comparedwith theactivity

in control adipocytes (Figure 2c). In addition, the presence of E600, an

inhibitor of neutral lipases such as pancreatic lipase in pigs (Maylie,

Charles, & Desnuelle, 1972), microsomal triglyceride lipase, and HSL in

3T3-L1 adipocytes (Gilham et al., 2003; Wei, Gao, & Lehner, 2007),

inhibited the global triglyceride lipase activity in both untreated and

FCCP-treated adipocytes (Figure 2c).

However, in order to determine whether cytosolic neutral TAG

lipases contribute to the glycerol release by adipocytes facing a

mitochondrial uncoupling, lipolysis was assessed in adipocytes

exposed to FCCP in the presence or in the absence of E600. No

inhibitory effect of the molecule on FCCP-induced glycerol release

by adipocytes was observed (Figure 2a). Furthermore, a consistent

and reproducible (but unexplained) increase in glycerol release was

observed in FCCP-treated cells. However, the efficiency of E600 in

adipocytes was demonstrated in these cells as E600 completely

inhibits glycerol release in 3T3-L1 stimulated with either isopro-

terenol or TNFα (Figure 2a), two molecules known to trigger

lipolysis by both ATGL- and HSL-dependent mechanisms (Kim

et al., 2006; Yang et al., 2011). In summary, these experiments

support the hypothesis that lipolysis in 3T3-L1 adipocytes exposed

to a mitochondrial uncoupling does not rely on the activation of

HSL or ATGL.

3.2 | Macroautophagy is stimulated in adipocytes
exposed to mitochondrial uncoupling

The putative contribution of lipophagy, an alternative form of lipid

degradation (Singh, Kaushik et al., 2009), to the degradation of TAGs in

cells facing mitochondrial uncoupling was analyzed. First, macro-

autophagy was evaluated by analyzing the abundance of LC3-II, an

autophagosomal marker (Kabeya et al., 2000), and polyubiquitin-

binding protein p62/SQSTM1, a protein selectively degraded by

macroautophagy (Bjorkoy et al., 2005). When analyzed simulta-

neously, these markers allow the evaluation of autophagic flow

(Klionsky et al., 2016). A significant decrease in the abundance of both

markers was observed in adipocytes exposed to mitochondrial

uncoupling, suggesting that the rate of macroautophagy is increased

in these conditions (Figure 3a).

As canonical macroautophagy is dependent on both Atg5 and

Atg7, two proteins traditionally considered as required for the

autophagosome formation (Hanada et al., 2007; Komatsu et al.,

2005; Tanida, Tanida-Miyake, Ueno, & Kominami, 2001), we next

studied the effect of Atg5 and/or Atg7 silencing on the glycerol

released by FCCP-treated adipocytes. As expected, both siRNAs

considerably reduced the protein abundance of their respective target

(Supplementary Figure S2). However, neither the silencing of Atg5,

Atg7, or both, was able to significantly decrease the glycerol release by

cells incubated with FCCP when compared with adipocytes trans-

fected with control siRNA (siNTP) (Figure 3b). While a strong decrease

in the abundance of these proteins is observed in siRNA-transfected

cells, we cannot completely rule out the possibility that the silencing of

Atg5/Atg7 was not efficient enough to modify the macroautophagy

rate as in 3T3-L1 adipocytes. Indeed, the abundance of LC3-II and p62

was unchanged in response to Atg5 and/or Atg7 silencing (Figure 3c).

However, it seems unlikely as a comparable silencing efficiency

induces LC3-II accumulation in 3T3-L1 preadipocytes (Figure 3d).

Nevertheless, in order to circumvent this problem, we next tested

the effects of Baf A1, a lysosomal V0/V1 H+-ATPase inhibitor

(Yamamoto et al., 1998) reported to inhibit macroautophagy in several

models (Furuchi, Aikawa, Arai, & Inoue, 1993; Klionsky, Elazar, Seglen,

& Rubinsztein, 2008; Yamamoto et al., 1998; Yoshimori, Yamamoto,

Moriyama, Futai, & Tashiro, 1991) on lipolysis of adipocytes incubated

with FCCP.While thismolecule stimulates the basal glycerol release by

adipocytes, it does not have any effect on FCCP-induced glycerol

release in adipocytes (Figure 3e), despite an apparent blockage of

autophagy as suggested by the accumulation of LC3-II in this condition

(Figure 3a). Altogether, these results suggest that the lipolysis

observed in adipocytes exposed to a mitochondrial uncoupling is

independent on macroautophagy.

3.3 | Lysosomes can directly degrade LDs in FCCP-
treated adipocytes

As previous experiments did not allow us to draw definitive

conclusions regarding the possible role of macroautophagy in the

FCCP-induced glycerol release, we decided to more precisely assess
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FIGURE 2 Effect of a mild mitochondrial uncoupling on molecular actors regulating canonical lipolysis. (a) Cells were differentiated for 12
days (CTL, white columns) and treated with either 0.5 μM of FCCP (grey columns), 10 ng/ml of TNFα (black columns), or 10 μM of isoproterenol
(light grey columns) for 3 days. When indicated, E600 (10 μM, squared columns) was added during the last 24 hr of incubation. Conditioned
culture media were collected and glycerol concentration was determined. Results were normalized for protein content and are expressed in μg
of glycerol released per mg of proteins and represent means ± s.d. (n = 3 independent experiments). **p < 0.01, ***p < 0.001: means were
significantly different as determined by one-way ANOVA with Tukey test. (b) Fluorescence-based western blot analysis and quantification of the
abundance of total HSL, phosphorylated HSL (p-Ser660), ATGL, and perilipin 1. Equal protein loading was controlled by the immunodetection of
α-tubulin. The fluorescence intensity of each band of interest was quantified and normalized for α-tubulin signals. For HSL phosphorylation,
signals obtained for the phosphorylated form were first normalized for the total HSL protein abundance and then for the loading control (α-
tubulin signal). Results are expressed in percentages of control cells and presented as means ± s.d. (n = 4 independent experiments). *p < 0.05,
***p < 0.01, significantly different from control as determined by the Student t-test; ns: no significant difference from control. (c) Cells were
differentiated for 12 days and treated with 0.5 μM of FCCP (FCCP, grey columns) or without (CTL, white columns) for a further 3 days. Media
were renewed every 24 hr. When indicated, E600 (10μM, squared columns) was added during the last 24 hr of incubation. Total TAG lipase was
assayed by measuring [9-10−3H(N)]-triolein breakdown. Results are expressed as counts per minute and represent means ± s.d. (n = 3
independent experiments). *p < 0.05: significantly different from control as determined by one-way ANOVA with Tukey test
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FIGURE 3 Effect of macroautophagy inhibition on lipolysis in adipocytes exposed to mild uncoupling of mitochondria. (a) Cells were
differentiated and exposed or not to FCCP for 3 days as described above. When indicated, during the last 24 hr of incubation, 400 μM Baf A1
was added to the cells. (a) The abundance of LC3-II and p62 was analyzed on 25 μg of proteins of cleared cell lysates by fluorescence-based
western blotting. For quantification, the fluorescence intensity of the bands of interest was normalized for paired signals corresponding to α-
tubulin abundance. Results are expressed as percentages of control cells and represent means ± s.d. (n = 4 independent experiments).
*p < 0.05, **p < 0.01, the two conditions indicated by the black bar are significantly different, as determined by the t-test. ns: no significant
difference existing between the conditions indicated by the black bar. (b–d) Adipocytes (b,c) and preadipocytes (d) were transfected by
electroporation in the presence of siRNA targeting Atg5 (20 nM), Atg7 (100 nM) (alone or in combination) or control siRNA (siNTP) (120 nM).
After 24 hr of recovery, cells were incubated in the presence or in the absence of 0.5 μM FCCP for 3 days. Cell culture media were renewed
every day. (b) At the end of the incubations, conditioned culture media were collected and glycerol concentration was determined. Results
were normalized for protein content and are expressed in μg of glycerol released per mg of proteins and represent means ± s.d. (n = 6
independent experiments). *p < 0.05, mean is significantly different from the corresponding control as determined with one-way ANOVA with
Tukey test; ns: not significantly different. (c,d) After 3 days post-electroporation, the abundance of p62 and LC3-II proteins was analyzed by
fluorescence-based western blotting on 25 μg of proteins prepared from cleared cell lysates. Equal protein loading was controlled by the
immunodetection of α-tubulin. The fluorescence intensity of bands of interest was quantified and then normalized for paired signals
corresponding to α-tubulin abundance. Results are expressed as percentages of cells electroporated with control siRNA (siNTP) and represent
means ± s.d. (c, n = 3; d, n = 2). (e) Cells were differentiated and exposed or not to FCCP for 3 days as described above. When indicated, during
the last 24 hr of incubation, Baf A1 (400 μM) was added to the cells. Culture media were then collected and the glycerol concentration was
determined. Normalized results for protein content are expressed in μg of glycerol released per mg of proteins and are presented as
means ± s.d. (n = 3 independent experiments). **p < 0.01, means were significantly different as determined with one-way ANOVA with Tukey
test; ns: not significantly different
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the role of lysosomes in TAG breakdown occurring in adipocytes

exposed tomitochondrial uncoupling by other approaches. Lysosomes

and LDs were stained with LysoTracker Red and BODIPY, specific

fluorescent probes for lysosomes/acidic compartments (Fuller &

Arriaga, 2003) and neutral lipids (Spangenburg, Pratt, Wohlers, &

Lovering, 2011), respectively. Interestingly, while co-localization

events between lysosomes and LDs could be observed in both

adipocytes and FCCP-treated cells (Figure 4a), the occurrence of such

co-localization events was significantly higher in adipocytes treated

with FCCP (Figure 4c). Alternatively, we used immunofluorescence

and other markers in order to confirm these results. Lysosomes and

lipid droplet membranes were detected using antibodies targeting

LAMP-1 or perilipin 1, respectively. An increase in the number of the

occurrence of co-localization events in FCCP-treated cells was also

observed by using this approach (Figure 4b–d). These results confirm

data obtained by using LysoTracker Red and BODIPY and suggest a

role for lysosomes in the breakdown of TAGs in adipocytes undergoing

mitochondrial uncoupling. Interestingly, incubation in the presence of

Baf A1 increased the number of autophagosomes and lysosomes in

both control and FCCP-treated cells, but does not significantly

increase the co-localization between the organelles and the lipid

droplets (Figure 4b–d, Supplementary Figure S4a,b).

The co-localization between lysosomes and LDswas then assessed

byTEMinFCCP-treated anduntreated adipocytes. Interestingly, FCCP-

treated adipocytes exhibitedmore endolysosomal vesicles (identified as

round-shaped vesicles with numerous intraluminal vesicles). Indeed,

such vesicles were found in nine out of 20 FCCP-treated cells observed

(3.2 vesicles/cell) compared to five out of 20 untreated cells ((p < 0.027,

binomial distribution), 2.2 vesicles per cell (NS, p > 0.05, z-test

(Sprinthall, 2012))). Moreover, a close proximity between endolysoso-

mal vesicles and LDs was also observed in FCCP-treated adipocytes

(Figure 5). Some endolysosomal vesicles also contain LDs. Moreover,

these vesicles had a 1–2 μmwider diameter in FCCP-treated cells when

compared with untreated adipocytes, suggesting a very active process

of lipid engulfment (Figure 5).

In order to further delineate the putative role of lysosomes in TAG

breakdown and its enhanced contribution to LD remodeling in

adipocytes exposed to the mitochondrial uncoupler, the TAG content

in lysosomal-enriched fractions prepared by cell fractionation from

control adipocytes or FCCP-treated cells was determined (Figure 6a).

Indeed, mitochondrial uncoupling seemed to induce lipid accumulation

in the lysosomes of FCCP-treated cells. In addition, when the

lysosomes were poisoned by incubation in the presence of sucrose,

Baf A1, E64d, NH4Cl, or chloroquine, molecules known to reduce the

activity of some lysosomal hydrolases, no real effect can be observed

on FCCP-induced glycerol release. However, this process is almost

totally abolished when these compounds are used in combination in a

cocktail (Figure 6b). As already observed before, some of these

compounds (Baf A1 and choloroquine) significantly increase the basal

glycerol release level (Figure 6b).

Interestingly, as macroautophagy might not be involved in

FCCP-induced lipolysis, the close proximity (and possibly fusion

events) between endolysosomal vesicles and LDs suggest a possible

participation of another lysosomal-dependent pathway: microautoph-

agy. In accordance with this hypothesis, the existence of a form of

microautophagy that is specific to LDs has recently been identified in

yeast (van Zutphen et al., 2014). Adipocytes or FCCP-treated cells

were thus incubated in the presence or in the absence of valinomycin, a

potassium ionophore reported to inhibit microautophagy (Kunz et al.,

2004). Treatment with valinomycin significantly inhibited glycerol

release by adipocytes exposed to a mild uncoupling of mitochondria

(Figure 6c). However, valinomycin did not significantly affect glycerol

release in control adipocytes (Figure 6c). Interestingly, valinomycin

also significantly decreases the level of colocalization between

lysosomes and lipid droplets in FCCP-treated cells (Figure 4b–d).

These data suggest the possibility that microautophagy could be

responsible, at least partially, for the rise in glycerol efflux from

adipocytes incubated with FCCP.

Finally, in order to support our data, we checked that, in FCCP-

treated cells, glycerol is released from a lysosomal source. Therefore,

lysosomes were isolated from homogenates of adipocytes and FCCP-

treated cells (incubated with or without valinomycin) by centrifugal

fractionation and the organelle-enriched fractions were incubated

with a buffer designed to maintain lysosomal integrity (Bandyopad-

hyay et al., 2008). After 1 hr, lysosomes were pelleted by centrifuga-

tion and the glycerol concentration was measured in the supernatants

(Figure 6d). The fact that more glycerol could be measured in the

supernatants of lysosomal-enriched fractions prepared from FCCP-

treated cells (an effect reduced when cells were incubated with FCCP

in the presence of valinomycin) suggests that TAGs are broken down

(releasing glycerol) by lysosomes in cells exposed to a mild uncoupling

of mitochondria.

In conclusion, these results support the possibility that a form of

autophagy is directly involved in the activation of lipolysis in 3T3-L1

adipocytes exposed tomild uncoupling ofmitochondria triggered by FCCP.

3.4 | 2,4-Dinitrophenol (DNP) also induces an ATGL/
HSL-independent form of autophagy

In order to validate the data and to limit the possibility of side effects

due to FCCP, the effects of the incubation in the presence of one of

two additional mitochondrial uncouplers, DNP, another proton

ionophore (Bakker, Van den Heuvel, & Van Dam, 1974) and the

recently characterized C12TPP, a mitochondria-targeted ionophore

(Kalinovich & Shabalina, 2015), were assessed. Adipocytes exposed to

either DNP (50 μM) or to C12TPP (1 μM) release more glycerol than

control differentiated cells (Figure 7a, Supplementary Figure S3,

respectively). These data are comparable to those observed for cells

exposed to FCCP and support the fact that the release is caused

by mitochondrial uncoupling and not putative side effects

(cytotoxicity,. . .) of FCCP. We next sought to determine whether

the lipolysis induced by DNP relies on the same molecular machinery

than the lipolysis triggered by FCCP. Interestingly, DNP-induced

lipolysis is also independent from ATGL- and HSL-mediated lipolysis.

Indeed, the total protein abundance of these enzymes also decreases

in adipocytes exposed FCCP (Figure 7b). Moreover, as for FCCP, E600
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FIGURE 4 Mitochondrial uncoupling increases co-localization between lysosomes and lipid droplets. Cells were differentiated and exposed
or not to FCCP for 3 days as described above. (a) The co-localization between LDs and lysosomes was visualized by confocal microscopy in
cells in which lysosomes, LDs, and nuclei were stained by LysoTracker Red (red), BODIPY 493/503 (green) and TO-PRO3 iodide (blue),
respectively. White arrows indicate co-localization events between LDs and lysosomes. The size is indicated by the scale bar. (b) Cells were
differentiated and exposed or not to FCCP for 3 days as described above. During the last 24 hr of incubation, cells were incubated in
presence of 400 μM Baf A1. At the end, lysosomes, LDs, and nuclei were detected by using antibodies targeting LAMP-1 (Alexa Fluor 488,
green), perilipin 1 (Alexa Fluor 546, red) and TO-PRO3 iodide (blue), respectively. White arrows indicate co-localization events between LDs
and lysosomes. Size is indicated by the scale bar. (c) The co-localization between lysosomes stained with LysoTracker (A) and LDs was
assessed in a quantitative manner by measuring the Pearson correlation coefficient (which compares the correlation between each
fluorescence channel for each pixel of the micrograph) by using the ImageJ plugin Coloc2, as detailed in the materials and methods section
(n = 15 (CTL) or 16 cells (FCCP)). **p < 0.01: significantly different from control as determined by the Student t-test. (d) The co-localization
between lysosomes and LDs from experiment illustrated in B, was also assessed by using the method described above (n = 20 cells).
**p < 0.01: significantly different from control as determined by the Student t-test, ns: not significantly different
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did not prevent DNP-induced lipolysis (Figure 7a) and glycerol release

by DNP-treated cells is also dependent on microautophagy, as it is

significantly repressed in the presence of valinomycin (Figure 7c).

4 | DISCUSSION

The present study demonstrates that a mild uncoupling of mitochon-

dria induced by FCCP in murine 3T3-L1 adipocytes can significantly

reduce their TAG content and is accompanied by a significant increase

in glycerol and FFAs release into the extracellular conditioned culture

medium, which is an indicator of activation of a form of lipolysis (Lass

et al., 2011). In addition, comparable effects on glycerol release were

observed for 3 different compounds (FCCP, DNP and C12TPP),

including one that has been characterized as a new uncoupler that

specifically targets mitochondria (C12TPP) (Kalinovich & Shabalina,

2015). These data support the fact that the glycerol release by

FIGURE 5 Ultrastructure of adipocytes incubated in the presence of FCCP. Cells were differentiated and exposed or not (CTL) to FCCP for
3 days. At the end of the incubations, the ultrastructure of these cells was assessed by TEM as described in the “Materials and Methods”
section. Black arrow (middle right micrograph) indicates the close proximity events between endolysosomal vesicles and LDs. The scale is
indicated on each micrograph. L: lipid droplet; N: nucleus; *: endolysosomal vesicle
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adipocytes exposed to uncouplers is a response to mitochondria

uncoupling and not caused by a non-specific effect of FCCP.

These results are in agreement with previous results and

data showing an increase in glycerol release in response to the

overexpression of UCP-1 in 3T3-L1murine adipocytes (Si et al., 2007).

Indeed, it has been reported that many biological adipocyte responses

are comparable between FCCP addition and UCP-1 expression − both

induce a decrease in adipocyte TAG content by promoting lipolysis and

FIGURE 6 FCCP-induced lipolysis is prevented by lysosomal poisoning and inhibition of microautophagy. Cells were differentiated and
exposed (grey columns) or not (white columns) to FCCP for 3 days as described above. (a) Following the different treatments, lysosome-
enriched fractions were prepared by ultracentrifugation according to the protocol described in the “Materials and Methods” section, and TAG
concentration was determined using the free glycerol and TAG and glycerol assay kit. Results were normalized for protein content, and are
expressed as μg of TAG per mg of proteins and represent means ± s.d. (n = 3 independent experiments). (b,c) In some conditions, during the
last 24 hr of treatment, 400 μM of Baf A1, 10 μg/ml of E64d, 10mM of NH4Cl, 10 μM of chloroquine (CLQ), and 10mM of sucrose (Suc), or
all the inhibitors mentioned above at the same time (All) (b) or 1 μM of valinomycin (valino, squared columns) (c) were added. Media were
finally collected and the glycerol concentration was determined. Results were normalized for protein content, are expressed in μg of glycerol
released per mg of proteins, and represent means ± s.d (n = 3 independent experiments). (d) During the last 24 hr of treatment, 1 μM of
valinomycin (valino, squared columns) was added or not to adipocytes treated or not with FCCP. Lysosome-enriched fractions were then
prepared according to the protocol described in the Materials and Methods section and kept at 37 °C for 1 hr in a preserving buffer.
Lysosomes were finally pelleted and the glycerol concentration was measured in the supernatants. Results were normalized for total protein
content, are expressed as μg of glycerol released per mg of proteins, and represent means ± s.d. (n = 4 independent experiments). *p < 0.05,
***p < 0.001: means were significantly different between the conditions indicated by the black line, as determined by the Student t-test (a) or
one-way ANOVA with Tukey test (b–d); ns: not significantly different
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by decreasing lipid synthesis (Senocak et al., 2007; Si et al., 2007; Si,

Shi, & Lee, 2009); in addition, UCP-1 overexpression and FCCP down-

regulate aerobic ATP production bymitochondria and increase oxygen

consumption (Si et al., 2007, 2009); and finally, both glucose uptake

and glycolysis are stimulated in the presence of FCCP or in response to

UCP-1 overexpression (Si et al., 2007, 2009). As we observed that

FCCP (even used at 0.5 μM) can slightly decrease the viability of 3T3-

L1 adipocytes (Supplementary Figure S1a,b), we cannot completely

rule out the possibility that a small fraction of the glycerol released by

FCCP-treated cellsmight be due tomoderate cytotoxic effect of FCCP.

However, it is unlikely that membrane damage possibly induced by

FCCP could lead to glycerol release as a chemical permeabilization of

FIGURE 7 DNP triggers a form of lipolysis comparable to the one induced by FCCP. Adipocytes were incubated in culture medium
containing 10% FBS (CTL, white columns), with or without 0.5 μM of FCCP (FCCP, grey columns), or with or without 50 μM of DNP (DNP,
black columns) for 3 days. Media were renewed every 24 hr. (a) During the last 24 hr of incubation, 10 μM of E600 (squared columns) was
added to some cells. The concentration of glycerol released into the conditioned culture media was determined using the TAG and free
glycerol determination kit. The results were normalized for protein content and are expressed as μg of glycerol per mg of proteins, as
means ± s.d. (n = 3 independent experiments). (b) Fluorescent western blot analysis and quantification of the abundance of total HSL,
phosphorylated HSL (p-Ser660), and ATGL. Equal protein loading was controlled by the immunodetection of α-tubulin. The fluorescence
intensity of each band of interest was measured and normalized for α-tubulin signals. For HSL phosphorylation, the signal obtained for the
phosphorylated form was normalized first for the total HSL protein abundance and then for the α-tubulin signal. Results are expressed in
percentages of differentiated cells and presented as means ± s.d. (n = 3 independent experiments). (c) During the last 24 hr of incubation,
10 μM of valinomycin (squared columns) were added to some cells. The concentration of glycerol released into the conditioned culture media
was determined using the TAG and free glycerol determination kit. The results were normalized for protein content and are expressed as μg
of glycerol per mg of proteins, as means ± s.d. (n = 3 independent experiments). *p < 0.05, **p < 0.01, or ***p < 0.001: means were significantly
different from the control cells, as determined by one-way ANOVA with Tukey test. ns: not significantly different
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the plasmamembrane, by Triton X–100, does not lead to a measurable

release of glycerol (data not shown).

Theoriginality of the results presented here is basedon the fact that

mitochondrial uncoupling-induced glycerol release is not dependent on

the classical enzyme machinery (HSL and ATGL) controlling lipolysis, as

observed for the activation of lipolysis in adipocytes induced by either

TNFα or isoproterenol (Kim et al., 2006; Yang et al., 2011). Indeed, in

FCCP-treated cells, the abundance of bothHSL andATGL is reduced. In

addition, the phosphorylation of serine 563, a residue targeted by PKA

allowing theactivationofHSL, couldnot bedetectednomatterwhat the

condition of interest (data not shown), while the phosphorylation of

serine 660, another marker of PKA-dependent HSL activation

(Anthonsen et al., 1998), was not significantly decreased in 3T3-L1

adipocytes incubatedwith FCCP, as previously observed (Tejerina et al.,

2009). However, the phosphorylation of HSL on serine 660 is increased

in skeletal muscle of UCP-1-Tg mice (Keipert et al., 2014). As FCCP

addition andUCP-1 overexpression are supposed to trigger comparable

cell responses in 3T3-L1 cells (Si et al., 2009), this discrepancy could

reflect either the existence of possible differences originating from the

nature of themitochondrial uncouplingor a cell type-baseddifference in

the response to the uncoupling of mitochondria between adipocytes

and muscle cells. Phosphorylation of HSL on serine 565 (mediated by

AMPK) was not evaluated as AMPK does not regulate HSL activity in

3T3-L1 adipocytes (Watt et al., 2006).

The expression of genes encoding HSL and ATGL is controlled by

peroxisome proliferator-activated receptor γ (PPARγ) in rodent

adipocytes, both in vivo and in vitro (Kershaw et al., 2007; Kim et al.,

2006; Teruel, Hernandez, Rial, Martin-Hidalgo, & Lorenzo, 2005). The

reduced abundance of HSL observed in FCCP-treated adipocytes could

thus be explained by the decrease in the activity of PPARγ observed in

adipocytes exposed to the uncoupler (Tejerina et al., 2009).

In order to determine whether the activity of these enzymes

contributes to the activation of lipolysis in FCCP-treated adipocytes,

the effect of E600, an inhibitor of neutral lipases (Hermoso et al.,

1996), on the release of glycerol by FCCP-treated cells was tested. In

agreementwith the hypothesis presented above, E600 did not prevent

FCCP-induced glycerol release, while it almost completely inhibits

glycerol release by adipocytes stimulated with either TNFα or

isoproterenol (Figure 2a). These results strongly support the fact

that mitochondrial uncoupling-induced glycerol release does not rely

on classical lipolysis mediated by HSL and ATGL.

The possibility of macroautophagy playing a role in this process

was therefore explored. Indeed, Singh, Kaushik et al. (2009) identified

lipophagy as a new form of macroautophagy that specifically targets

LDs. It is also been reported that a slight overexpression of Atg5 is

sufficient to activate macroautophagy and to decrease the weight of

mice, emphasizing a possible role for macroautophagy in lipid disposal

(Pyo et al., 2013). Interestingly, the Lippincott-Schwartz group has

recently and elegantly discussed the question of how cells and

organisms adapt cellular FA flow and storage to changing nutrient

availability and metabolic demand (Rambold, Cohen, & Lippincott-

Schwartz, 2015). These authors show that the use of cytosolic lipases

versus lipophagy in lipid metabolism might be tissue and condition

specific asmammalian cells use lipolysis during acute starvation to feed

mitochondria with FAs, while serum depletion in the presence of

glucose and amino acids up-regulates lipophagy (Rambold et al., 2015).

In addition, it has been suggested that the release of FAs from LDs by

macroautophagy could be of importance in cell types with low lipase

activity such as hepatocytes (Singh, Kaushik et al., 2009) or, possibly, in

the experimental conditions in which adipocytes exposed to mito-

chondrial uncoupling displayed a decrease in HSL and ATGL activity,

which can be explained by a reduced PPARγ activity (Tejerina et al.,

2009).

In accordance with a possible role of macroautophagy in FCCP-

induced glycerol release by 3T3-L1 adipocytes, macroautophagy

seems stimulated in 3T3-L1 adipocytes exposed to the mitochondrial

uncoupler. It is very likely that the increase inmacroautophagy in these

conditions is set up to degrademitochondria bymitophagy, a biological

process activated in order to deal with the stress (and usually

mitochondrial network fragmentation) induced by the mitochondrial

uncoupler, as previously demonstrated in HeLa cells (Wang, Nartiss,

Steipe, McQuibban, & Kim, 2012). However, it must be noted that the

FCCP concentration used herein is much lower (0.5 μM) than the one

used to trigger mitophagy (10 μM) byWang et al. (2012), and therefore

only slightly affects cell viability (Supplementary Figure S1a,b).

Mechanistically, autophagy activation by FCCP could also most likely

be explained by the activation of AMPK as observed in adipocytes

exposed to FCCP (data not shown) or in white adipose tissue of mice

that overexpress UCP-1 in this tissue (Matejkova et al., 2004).

While Singh and collaborators found a role for Atg5 in the

activation of lipophagy in rat hepatocytes incubated in the presence of

lipid-rich medium (Singh, Kaushik et al., 2009), in our experimental

conditions, the silencing of either Atg5 and/or Atg7 does not prevent

the FCCP-induced glycerol release in adipocytes, suggesting that the

molecularmechanisms involved are likely to be different. However, it is

possible that the efficiency of Atg5/Atg7 silencing might not be strong

enough to alter macroautophagy flow, an argument supported by the

fact that this condition barely modifies the abundance of LC3-II and

p62 in adipocytes while the silencing of Atg7 is fully efficient in

preadipocytes (Figure 3c,d). However, the silencing of Atg5 alone does

not induce the accumulation of LC3-II or p62 abundance in

preadipocytes either (Figure 3c). This apparent discrepancy between

adipocytes and preadipocytes is in accordance with a recent study

demonstrating a decrease in autophagy flow in differentiated

adipocytes when compared to preadipocytes (Skop et al., 2014).

Another possibility would be that the form of autophagy activated by

the uncoupling of mitochondria in 3T3-L1 adipocytes is independent

of the molecular machinery classically involved in autophagy. Indeed,

the existence of several forms of autophagy independent of Atg5 and/

or Atg7 has been proposed recently. For instance, the silencing of

these genes inMEFs is rescued by the activation of an alternative form

of macroautophagy that is dependent on both Ulk-1 and Beclin-1

(Nishida et al., 2009). More recently, the absolute requirement of Atg

conjugation systems for formation of autophagosomes has also been

questioned (Tsuboyama et al., 2016). Indeed, the silencing of Atg3,

Atg5, and Atg7 expression does not prevent the generation of syntaxin
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17–positive autophagosome-like structures in starved MEFs, suggest-

ing that some forms of autophagy could rely on other proteins

(Tsuboyama et al., 2016). Futures studies should thus be conducted in

order to identify the molecular mechanisms involved in the autophagy

activated by mitochondrial uncoupling in adipocytes.

In order to circumvent this problem and assess the role of

autophagy in the FCCP-induced glycerol release, we usedBaf A1, a V0/

V1 H+-ATPase inhibitor to inhibit macroautophagy (Yamamoto et al.,

1998). However, this compound had no inhibitory effect on the release

of glycerol by adipocytes exposed to FCCP, while it efficiently

increases the abundance of LC3-II used as a marker of autophagosome

accumulation in both preadipocytes and adipocytes (Klionsky et al.,

2016) (Figure 3a). The activation of lipolysis triggered in this condition

could possibly be explained by the induction of a mild mitochondrial

uncoupling induced by Baf A1, as demonstrated in murine RAW 264.7

macrophages, an effect that seems to be dependent on nitric oxide

production in this cell type (Hong et al., 2006). The reduction of

mitochondrial membrane potential in response to Baf A1 has also been

demonstrated in human colon cancer cells (Zhdanov, Dmitriev, &

Papkovsky, 2012), rat pheochromocytoma cells and human neuro-

blasts (Zhdanov, Dmitriev, & Papkovsky, 2011). Interestingly, while we

did not find any inhibitory role for macroautophagy in FCCP-treated

cells, this form of autophagy could possibly play a role in the basal

lipolysis. Indeed, we observed a non-negligible co-localization

between autophagosomes and lysosomes by confocal microscopy in

untreated cells (Supplementary Figure S4). However, this level of co-

localization is not significantly modified by the incubation in presence

of FCCP (Supplementary Figure S4).

As a role for macroautophagy in glycerol release triggered by

mitochondrial uncoupling was not conclusive, the role of lyso-

somes by another form of autophagy, such as microautophagy, was

assessed. This form of autophagy consists in the direct capture of

small cytosolic portions by the lysosomes and can either be non-

selective or selective for some organelles as demonstrated for

mitochondria (Lemasters, 2014), peroxisomes (Sakai et al., 1998),

nuclei (Dawaliby & Mayer, 2010), and ribosomes (Kraft et al.,

2008), although this process remains poorly documented in

mammals. Recently, it was shown that incubation of yeast in

lipid-rich medium leads to the specific activation of micro-

autophagy selecting LDs (van Zutphen et al., 2014). Others also

demonstrated the existence of LD degradation by microautophagy

in yeast during the stationary phase (Wang, Miao, & Chang, 2014).

In this study, the uncoupler can increase the co-localization

between lysosomes and LDs. Moreover, when the lysosomal

function is altered by a combination of several molecules reported

to poison the organelle (Baf A1 (Yamamoto et al., 1998), NH4Cl

(Sun et al., 2015), sucrose (DeCourcy & Storrie, 1991; Montgom-

ery, Webster, & Mellman, 1991), chloroquine (Sewell, Barham, &

LaRusso, 1983), E64d (Ueno et al., 1999)), an almost complete

inhibition of the increase in glycerol released by FCCP-treated

adipocytes was observed, suggesting a direct role for lysosomes in

this process. Valinomycin, an inhibitor of microautophagy also

recapitulates the effect of the lysosomal inhibitor cocktail. In

conclusion, the glycerol released by adipocytes in response to

exposure to mitochondrial uncoupling depends essentially on a

form of autophagy that seems to target LDs and microautophagy

could possibly be involved in this process.

As expected and in accordance with previous studies, glycerol

release induced by a mild mitochondrial uncoupling is accompanied by

a release of FFA. It is thus unlikely that FFAs that are released are used

to feed FFA β-oxidation inmitochondria as thismetabolic pathwaywas

not activated in adipocytes exposed to a mild uncoupling of

mitochondria (De Pauw et al., 2012), suggesting that, in vivo, FFAs

could be released and that β-oxidation could take place in other tissues

such as skeletal muscles (Turner, Cooney, Kraegen, & Bruce, 2014).

Moreover, this hypothesis is in agreementwith the recent findings that

the efficient delivery of FFAs into mitochondria is dependent on

mitochondrial fusion dynamics (Rambold et al., 2015). Indeed, inmouse

embryonic fibroblasts isolated from Mitofusin 1 knock-out mice that

display fragmented mitochondria, a phenotype also observed in

adipocytes facing mitochondrial uncoupling (De Pauw et al., 2012),

FFAs are heterogeneously distributed in the fragmentedmitochondria,

their metabolism is reduced, and more FFAs are fluxed out of the cells

(Rambold et al., 2015).

The molecular link existing between a mild mitochondrial

uncoupling and the induction of a of microautophagy is not clear

yet. Recently, several studies have reported a possible role for

FOXO1 (Forkhead Homeobox type O 1) in the regulation of UCPs

expression in 3T3-L1 adipocytes (Lettieri Barbato et al., 2013; Liu,

Tao et al., 2016; Liu, Zheng et al., 2016), an effect dependent on

the interaction between FOXO1 and TFEB (Transcription Factor

EB). The same authors also demonstrated that FOXO1 is involved

in the increased autophagy rate observed during adipogenesis, a

process dependent on the positive effect of FOXO1 on the

expression of the gene encoding Fsp2, a lipid droplet protein (Liu,

Zheng et al., 2016). Another research group also confirmed the

upregulation of FOXO1 in 3T3-L1 adipocytes exposed to nutrient

starvation. In this study, they identified that increase in FOXO1

expression was accompanied by an increase in lysosomal lipase A

expression and by a stronger co-localization between lipid droplets

and lysosomes. The authors also evidenced that FFAs released by

LIPA (Lysosomal Acid Lipase A) could be directed toward AMPK-

mediated mitochondrial fatty acid β-oxidation (Lettieri Barbato

et al., 2013). It is tempting to speculate that these mechanisms

could also be affected in our experimental conditions. However,

despite a clear activation of AMPK (data not shown), we were not

able to find any role for FOXO1 or LIPA in the FCCP-induced

glycerol release (data not shown).

In conclusion, a form of autophagy seems to specifically target LDs

in adipocytes exposed to a “mild” but chronic uncoupling of

mitochondria. Future work studying the molecular mechanisms that

mediate autophagy aswell as the partitioning and fate of released FFAs

should bring new information on TAG breakdown in many metabolic

and lipid-associated diseases, such as obesity, diabetes and several

cancers, in which the roles of lipid metabolism and mitochondrial

dysfunction have been recently highlighted.

DEMINE ET AL. | 15



ACKNOWLEDGMENTS

Stéphane Demine was a recipient of a FRIA (Fonds pour la Recherche

dans l’Industrie et l’Agriculture) fellowship (Fonds de la Recherche

Scientifique (FRS-FNRS), Brussels, Belgium) and Nagabushana Reddy

was a recipient of a grant from UNamur-CERUNA. The authors thank

M.H. Rider (de Duve Institute, Université Catholique de Louvain,

Brussels, Belgium) for his help during the design of triglyceride lipase

assay and A. Greenberg (Tufts University, Boston, MA) for the anti-

perilipin 1 antibody. The authors are also grateful to FRS-FNRS for

their financial support (Crédit de Recherche: 19497337) and C.

Demazy and N. Ninane from the Research Technological Platform

Morphology—Imaging (UNamur) for their essential help for the

confocal microscopy.

REFERENCES

Adler-Wailes, D. C., Alberobello, A. T., Ma, X., Hugendubler, L., Stern,

E. A., Mou, Z., . . . Mueller, E. (2015). Analysis of variants and
mutations in the human winged helix FOXA3 gene and associations
with metabolic traits. International Journal of Obesity, 39(6),
888–892.

Adler, J., & Parmryd, I. (2010). Quantifying colocalization by correlation: The

Pearson correlation coefficient is superior to the Mander’s overlap
coefficient. Cytometry Part A: The Journal of the International Society for
Analytical Cytology, 77(8), 733–742.

Anthonsen, M.W., Ronnstrand, L., Wernstedt, C., Degerman, E., & Holm, C.

(1998). Identification of novel phosphorylation sites in hormone-
sensitive lipase that are phosphorylated in response to isoproterenol
and govern activation properties in vitro. The Journal of Biological
Chemistry, 273(1), 215–221.

Arner, P., Bernard, S., Salehpour, M., Possnert, G., Liebl, J., Steier, P., . . .

Spalding, K. L. (2011). Dynamics of human adipose lipid turnover in
health and metabolic disease. Nature, 478(7367), 110–113.

Bakker, E. P., Van den Heuvel, E. J., & Van Dam, K. (1974). The binding of
uncouplers of oxidative phosphorylation to rat-liver mitochondria.
Biochimica Et Biophysica Acta, 333(1), 12–21.

Bandyopadhyay, U., Kaushik, S., Varticovski, L., & Cuervo, A. M. (2008). The
chaperone-mediated autophagy receptor organizes in dynamic protein
complexes at the lysosomal membrane. Molecular and Cellular Biology,
28(18), 5747–5763.

Bjorkoy, G., Lamark, T., Brech, A., Outzen, H., Perander,M., Overvatn, A., . . .

Johansen, T. (2005). P62/SQSTM1 forms protein aggregates degraded
by autophagy and has a protective effect on huntingtin-induced cell
death. The Journal of Cell Biology, 171(4), 603–614.

Clement, K., Vaisse, C., Lahlou, N., Cabrol, S., Pelloux, V., Cassuto, D., . . .

Guy-Grand, B. (1998). A mutation in the human leptin receptor
gene causes obesity and pituitary dysfunction. Nature, 392(6674),
398–401.

Cuervo, A. M., Dice, J. F., & Knecht, E. (1997). A population of rat liver
lysosomes responsible for the selective uptake and degradation of

cytosolic proteins. The Journal of Biological Chemistry, 272(9),
5606–5615.

Dawaliby, R., & Mayer, A. (2010). Microautophagy of the nucleus coincides
with a vacuolar diffusion barrier at nuclear-vacuolar junctions.
Molecular Biology of the Cell, 21(23), 4173–4183.

DeCourcy, K., & Storrie, B. (1991). Osmotic swelling of endocytic
compartments induced by internalized sucrose is restricted to mature
lysosomes in cultured mammalian cells. Experimental Cell Research,
192(1), 52–60.

Delaive, E., Arnould, T., Raes,M., & Renard, P. (2008). A sensitive three-step
protocol for fluorescence-based Western blot detection. Journal of
Immunological Methods, 334(1-2), 51–58.

Demine, S., Michel, S., Vannuvel, K., Wanet, A., Renard, P., & Arnould, T.
(2012). Macroautophagy and cell responses related to mitochondrial
dysfunction, lipidmetabolism and unconventional secretion of proteins.
Cells, 1(2), 168–203.

De Pauw, A., Demine, S., Tejerina, S., Dieu, M., Delaive, E., Kel, A., . . .
Arnould, T. (2012). Mild mitochondrial uncoupling does not affect
mitochondrial biogenesis but downregulates pyruvate carboxylase in
adipocytes: Role for triglyceride content reduction. American Journal of
Physiology Endocrinology and Metabolism, 302(9), E1123–E1141.

Doco-Fenzy, M., Leroy, C., Schneider, A., Petit, F., Delrue, M. A., Andrieux,
J., . . . Genevieve, D. (2014). Early-onset obesity and paternal 2pter
deletion encompassing the ACP1, TMEM18, and MYT1L genes.
European Journal of Human Genetics: EJHG, 22(4), 471–479.

Dunn, K.W., Kamocka, M.M, &McDonald, J. H. (2011). A practical guide to

evaluating colocalization in biological microscopy. American Journal of
Physiology Cell Physiology, 300(4), C723–C742.

Edens, N. K., Leibel, R. L., & Hirsch, J. (1990). Mechanism of free fatty acid
re-esterification in human adipocytes in vitro. Journal of Lipid Research,
31(8), 1423–1431.

Fuller, K. M., & Arriaga, E. A. (2003). Analysis of individual acidic organelles
by capillary electrophoresis with laser-induced fluorescence detection
facilitated by the endocytosis of fluorescently labeled microspheres.
Analytical Chemistry, 75(9), 2123–2130.

Furuchi, T., Aikawa, K., Arai, H., & Inoue, K. (1993). Bafilomycin A1, a
specific inhibitor of vacuolar-type H(+)-ATPase, blocks lysosomal
cholesterol trafficking in macrophages. The Journal of Biological
Chemistry, 268(36), 27345–27348.

Gilham, D., Ho, S., Rasouli, M., Martres, P., Vance, D. E., & Lehner, R. (2003).

Inhibitors of hepatic microsomal triacylglycerol hydrolase decrease very low
density lipoprotein secretion. FASEB Journal: Official Publication of the
Federation of American Societies for Experimental Biology, 17(12), 1685–1687.

Graham, J. M. (2002). Preparation of crude subcellular fractions by
differential centrifugation. The Scientific World Journal, 2, 1638–1642.

Guh, D. P., Zhang, W., Bansback, N., Amarsi, Z., Birmingham, C. L., & Anis,
A. H. (2009). The incidence of co-morbidities related to obesity and
overweight: A systematic review and meta-analysis. BMC Public Health,
9, 88.

Hanada, T., Noda, N. N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., . . .

Ohsumi Y. (2007). The Atg12-Atg5 conjugate has a novel E3-like
activity for protein lipidation in autophagy. The Journal of Biological
Chemistry, 282(52), 37298–37302.

Harper, J. A., Dickinson, K., & Brand, M. D. (2001). Mitochondrial

uncoupling as a target for drug development for the treatment of
obesity. Obesity Reviews: An Official Journal of the International
Association for the Study of Obesity, 2(4), 255–265.

Hermoso, J., Pignol, D., Kerfelec, B., Crenon, I., Chapus, C., & Fontecilla-
Camps, J. C. (1996). Lipase activation by nonionic detergents. The

crystal structure of the porcine lipase-colipase-tetraethylene glycol
monooctyl ether complex. The Journal of Biological Chemistry, 271(30),
18007–18016.

Hong, J., Nakano, Y., Yokomakura, A., Ishihara, K., Kim, S., Kang, Y. S., &
Ohuchi, K. (2006). Nitric oxide production by the vacuolar-type (H

+)-ATPase inhibitors bafilomycin A1 and concanamycin A and its
possible role in apoptosis in RAW 264.7 cells. The Journal of
Pharmacology and Experimental Therapeutics, 319(2), 672–681.

Hosogai, N., Fukuhara, A., Oshima, K., Miyata, Y., Tanaka, S., Segawa, K., . . .
Shimomura, I. (2007). Adipose tissue hypoxia in obesity and its impact

on adipocytokine dysregulation. Diabetes, 56(4), 901–911.
Hubbard, V. M., Valdor, R, Patel, B., Singh, R., Cuervo, A. M., & Macian, F.

(2010).Macroautophagy regulates energymetabolism during effector T
cell activation. Journal of Immunology, 185(12), 7349–7357.

16 | DEMINE ET AL.



Jensen, M. D., Ekberg, K., & Landau, B. R. (2001). Lipid metabolism during
fasting. American Journal of Physiology Endocrinology and Metabolism,
281(4), E789–E793.

Jones, L. R., Wilson, C. I., & Wadden, T. A. (2007). Lifestyle modification in
the treatment of obesity: An educational challenge and opportunity.
Clinical Pharmacology and Therapeutics, 81(5), 776–779.

Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., . . .

Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is
localized in autophagosome membranes after processing. The EMBO
Journal, 19(21), 5720–5728.

Kalinovich, A. V., & Shabalina, I. G. (2015). Novel mitochondrial cationic
uncoupler C4R1 is an effective treatment for combating obesity inmice.

Biochemistry Biokhimiia, 80(5), 620–628.
Kaushik, S., & Cuervo, A. M. (2015). Degradation of lipid droplet-associated

proteins by chaperone-mediated autophagy facilitates lipolysis. Nature
Cell Biology, 17(6), 759–770.

Kaushik, S., & Cuervo, A. M. (2016). AMPK-dependent phosphorylation of

lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy,
12(2), 432–438.

Kaushik, S., Rodriguez-Navarro, J. A., Arias, E., Kiffin, R., Sahu, S., Schwartz,
G. J., . . . Singh, R. (2011). Autophagy in hypothalamic AgRP neurons
regulates food intake and energy balance. Cell Metabolism, 14(2),

173–183.
Keipert, S., Ost,M., Johann, K., Imber, F., Jastroch,M., van Schothorst, E.M.,

. . . Klaus, S. (2014). Skeletal muscle mitochondrial uncoupling drives
endocrine cross-talk through the induction of FGF21 as a myokine.

American Journal of Physiology Endocrinology and Metabolism, 306(5),
E469–E482.

Kershaw, E. E., Schupp, M., Guan, H. P., Gardner, N. P., Lazar, M. A., & Flier,
J. S. (2007). PPARgamma regulates adipose triglyceride lipase in
adipocytes in vitro and in vivo. American Journal of Physiology

Endocrinology and Metabolism, 293(6), E1736–E1745.
Kim, J. Y., Tillison, K., Lee, J. H., Rearick, D. A., & Smas, C. M. (2006). The

adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by
insulin and TNF-alpha in 3T3-L1 adipocytes and is a target for
transactivation by PPARgamma. American Journal of Physiology

Endocrinology and Metabolism, 291(1), E115–E127.
Klionsky, D. J., Abdelmohsen, K., Abe, A., Abedin, M. J., Abeliovich, H.,

Acevedo Arozena, A., . . . Zughaier, S. M. (2016). Guidelines for the use
and interpretation of assays for monitoring autophagy (3rd edition).
Autophagy, 12(1), 1–222.

Klionsky, D. J., Elazar, Z., Seglen, P. O., & Rubinsztein, D. C. (2008). Does
bafilomycin A1 block the fusion of autophagosomes with lysosomes?.
Autophagy, 4(7), 849–850.

Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., . . . Chiba,

T. (2005). Impairment of starvation-induced and constitutive autophagy
in Atg7-deficient mice. The Journal of Cell Biology, 169(3), 425–434.

Kong, L. C., Holmes, B. A., Cotillard, A., Habi-Rachedi, F., Brazeilles, R.,
Gougis, S., . . . Clement, K. (2014). Dietary patterns differently associate
with inflammation and gutmicrobiota in overweight and obese subjects.

PLoS ONE, 9(10), e109434.
Kraft, C., Deplazes, A., Sohrmann,M., & Peter, M. (2008). Mature ribosomes

are selectively degraded upon starvation by an autophagy pathway
requiring the Ubp3p/Bre5p ubiquitin protease. Nature Cell Biology,
10(5), 602–610.

Kunz, J. B., Schwarz, H., & Mayer, A. (2004). Determination of four
sequential stages during microautophagy in vitro. The Journal of
Biological Chemistry, 279(11), 9987–9996.

Lafontan, M., & Langin, D. (2009). Lipolysis and lipid mobilization in human
adipose tissue. Progress in Lipid Research, 48(5), 275–297.

Lass, A., Zimmermann, R., Haemmerle, G., Riederer, M., Schoiswohl, G.,
Schweiger, M., . . . Zechner, R. (2006). Adipose triglyceride lipase-
mediated lipolysis of cellular fat stores is activated by CGI-58 and
defective in Chanarin-Dorfman Syndrome. Cell Metabolism, 3(5),
309–319.

Lass, A., Zimmermann, R., Oberer, M., & Zechner, R. (2011). Lipolysis−a
highly regulated multi-enzyme complex mediates the catabolism of
cellular fat stores. Progress in Lipid Research, 50(1), 14–27.

Lemasters, J. J. (2014). Variants of mitochondrial autophagy: Types 1
and 2 mitophagy and micromitophagy (Type 3). Redox Biology, 2,
749–754.

Lettieri Barbato, D., Tatulli, G., Aquilano, K., & Ciriolo, M. R. (2013). FoxO1

controls lysosomal acid lipase in adipocytes: Implication of lipophagy
during nutrient restriction and metformin treatment. Cell Death &
Disease, 4, e861.

Liu, L., Tao, Z., Zheng, L. D., Brooke, J. P., Smith, C. M., Liu, D., . . . Cheng, Z.
(2016). FoxO1 interacts with transcription factor EB and differentially

regulates mitochondrial uncoupling proteins via autophagy in adipo-
cytes. Cell Death Discovery, 2, 16066.

Liu, L., Zheng, L. D., Zou, P., Brooke, J., Smith, C., Long, Y. C, . . . Cheng, Z.
(2016). FoxO1 antagonist suppresses autophagy and lipid droplet
growth in adipocytes. Cell Cycle, 15(15), 2033–2041.

Martinez-Lopez, N., Garcia-Macia, M., Sahu, S., Athonvarangkul, D.,
Liebling, E., Merlo, P., . . . Singh, R. (2016). Autophagy in the CNS
and periphery coordinate lipophagy and lipolysis in the brown adipose
tissue and liver. Cell Metabolism, 23(1), 113–127.

Matejkova, O., Mustard, K. J., Sponarova, J., Flachs, P., Rossmeisl, M.,

Miksik, I., . . . Kopecky, J. (2004). Possible involvement of AMP-
activated protein kinase in obesity resistance induced by respiratory
uncoupling in white fat. FEBS Letters, 569(1-3), 245–248.

Maylie, M. F., Charles, M., & Desnuelle, P. (1972). Action of organo-

phosphates and sulfonyl halides on porcine pancreatic lipase.Biochimica
Et Biophysica Acta, 276(1), 162–175.

Montgomery, R. R., Webster, P., & Mellman, I. (1991). Accumulation of
indigestible substances reduces fusion competence of macrophage
lysosomes. Journal of Immunology, 147(9), 3087–3095.

Nishida, Y., Arakawa, S., Fujitani, K., Yamaguchi, H., Mizuta, T., Kanaseki, T.,
. . . Shimizu, S. (2009). Discovery of Atg5/Atg7-independent alternative
macroautophagy. Nature, 461(7264), 654–658.

Pearson, G. L.,Mellett, N., Chu, K. Y., Cantley, J., Davenport, A., Bourbon, P.,
. . . Biden, T. J. (2014). Lysosomal acid lipase and lipophagy are

constitutive negative regulators of glucose-stimulated insulin secretion
from pancreatic beta cells. Diabetologia, 57(1), 129–139.

Pyo, J. O., Yoo, S.M., Ahn, H. H., Nah, J., Hong, S. H., Kam, T. I., . . . Jung, Y. K.
(2013). Overexpression of Atg5 in mice activates autophagy and
extends lifespan. Nature Communications, 4, 2300.

Rambold, A. S., Cohen, S., & Lippincott-Schwartz, J. (2015). Fatty acid
trafficking in starved cells: Regulation by lipid droplet lipolysis,
autophagy, and mitochondrial fusion dynamics. Developmental Cell,
32(6):678–692.

Rider, M. H., Hussain, N., Dilworth, S. M., Storey, J. M., & Storey, K. B.
(2011). AMP-activated protein kinase and metabolic regulation in
cold-hardy insects. Journal of Insect Physiology, 57(11),
1453–1462.

Sahu-Osen, A., Montero-Moran, G., Schittmayer, M., Fritz, K., Dinh, A.,

Chang, Y. F., . . . Brasaemle, D. L. (2015). CGI-58/ABHD5 is
phosphorylated on Ser239 by protein kinase A: Control of subcellular

localization. Journal of Lipid Research, 56(1), 109–121.
Sakai, Y., Koller, A., Rangell, L. K., Keller, G. A., & Subramani, S. (1998).

Peroxisome degradation by microautophagy in Pichia pastoris: Identifi-

cation of specific steps and morphological intermediates. The Journal of
Cell Biology, 141(3), 625–636.

Schimmel, R. J. (1976). Roles of alpha and beta adrenergic receptors in
control of glucose oxidation in hamster epididymal adipocytes.
Biochimica Et Biophysica Acta, 428(2), 379–387.

Senocak, F. S., Si, Y., Moya, C., Russell, W. K., Russell, D. H., Lee, K., &
Jayaraman, A. (2007). Effect of uncoupling protein-1 expression on
3T3-L1 adipocyte gene expression. FEBS Letters, 581(30), 5865–5871.

Sewell, R. B., Barham, S. S., & LaRusso, N. F. (1983). Effect of chloroquine on
the form and function of hepatocyte lysosomes. Morphologic

DEMINE ET AL. | 17



modifications and physiologic alterations related to the biliary excretion
of lipids and proteins. Gastroenterology, 85(5), 1146–1153.

Si, Y., Palani, S., Jayaraman, A., & Lee, K. (2007). Effects of forced uncoupling

protein 1 expression in 3T3-L1 cells on mitochondrial function and lipid
metabolism. Journal of Lipid Research, 48(4), 826–836.

Si, Y., Shi, H., & Lee, K. (2009). Metabolic flux analysis of mitochondrial
uncoupling in 3T3-L1 adipocytes. PLoS ONE, 4(9), e7000.

Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., . . . Czaja,
M. J. (2009). Autophagy regulates lipid metabolism. Nature, 458(7242),
1131–1135.

Singh, R., Xiang, Y., Wang, Y., Baikati, K., Cuervo, A. M., Luu, Y. K., . . . Czaja,
M. J. (2009). Autophagy regulates adipose mass and differentiation in

mice. The Journal of Clinical Investigation, 119(11), 3329–3339.
Skop, V., Cahova, M., Dankova, H., Papackova, Z., Palenickova, E., Svoboda,

P., . . . Kazdova, L. (2014). Autophagy inhibition in early but not in later
stages prevents 3T3-L1 differentiation: Effect on mitochondrial
remodeling. Differentiation; Research in Biological Diversity, 87(5),

220–229.
Souza, S. C., Muliro, K. V., Liscum, L., Lien, P., Yamamoto, M. T., Schaffer,

J. E., . . . Greenberg, A. S. (2002). Modulation of hormone-sensitive
lipase and protein kinase A-mediated lipolysis by perilipin A in an
adenoviral reconstituted system. The Journal of Biological Chemistry,

277(10), 8267–8272.
Spangenburg, E. E., Pratt, S. J., Wohlers, L. M., & Lovering, R. M. (2011). Use

of BODIPY (493/503) to visualize intramuscular lipid droplets in skeletal
muscle. Journal of Biomedicine & Biotechnology, 2011, 598358.

Sprinthall, R. C. (2012). Basic statistical analysis. Boston: Pearson Allyn &
Bacon.

Sun, K., Kusminski, C.M., & Scherer, P. E. (2011). Adipose tissue remodeling
and obesity. The Journal of Clinical Investigation, 121(6), 2094–2101.

Sun, R., Luo, Y., Li, J., Wang, Q., Li, J., Chen, X., . . . Yu, Z. (2015). Ammonium

chloride inhibits autophagy of hepatocellular carcinoma cells through
SMAD2 signaling. Tumour Biology: The Journal of the International
Society for Oncodevelopmental Biology and Medicine, 36(2), 1173–1177.

Tanida, I., Tanida-Miyake, E., Ueno, T., & Kominami, E. (2001). The human
homolog of Saccharomyces cerevisiae Apg7p is a protein-activating

enzyme for multiple substrates including human Apg12p, GATE-16,
GABARAP, and MAP-LC3. The Journal of Biological Chemistry, 276(3),
1701–1706.

Tansey, J. T., Huml, A. M., Vogt, R., Davis, K. E., Jones, J. M., Fraser, K. A., . . .
Londos, C. (2003). Functional studies on native and mutated forms of

perilipins. A role in protein kinase A-mediated lipolysis of triacylglycerols.
The Journal of Biological Chemistry, 278(10), 8401–8406.

Tejerina, S., De Pauw, A., Vankoningsloo, S., Houbion, A., Renard, P., De
Longueville, F., . . . Arnould, T. (2009). Mild mitochondrial uncoupling

induces 3T3-L1 adipocyte de-differentiation by a PPARgamma-
independent mechanism, whereas TNFalpha-induced de-differentia-
tion is PPARgamma dependent. Journal of Cell Science, 122(Pt 1),
145–155.

Teruel, T., Hernandez, R., Rial, E., Martin-Hidalgo, A., & Lorenzo, M. (2005).

Rosiglitazone up-regulates lipoprotein lipase, hormone-sensitive lipase
and uncoupling protein-1, and down-regulates insulin-induced fatty
acid synthase gene expression in brown adipocytes of Wistar rats.
Diabetologia, 48(6), 1180–1188.

Thiam, A. R., Farese, R. V., Jr., Walther, T. C. (2013). The biophysics and cell

biology of lipid droplets. Nature Reviews Molecular Cell Biology, 14(12),
775–786.

Tsuboyama, K., Koyama-Honda, I., Sakamaki, Y., Koike, M., Morishita, H., &
Mizushima, N. (2016). The ATG conjugation systems are important for
degradation of the inner autophagosomal membrane. Science,

354(6315), 1036–1041.
Turner, N., Cooney, G. J., Kraegen, E. W., & Bruce, C. R. (2014). Fatty acid

metabolism, energy expenditure and insulin resistance in muscle. The
Journal of Endocrinology, 220(2), T61–T79.

Ueno, T., Ishidoh, K., Mineki, R., Tanida, I., Murayama, K., Kadowaki, M., &
Kominami, E. (1999). Autolysosomal membrane-associated betaine
homocysteine methyltransferase. Limited degradation fragment of a

sequestered cytosolic enzyme monitoring autophagy. The Journal of
Biological Chemistry, 274(21), 15222–15229.

Vankoningsloo, S., De Pauw, A., Houbion, A., Tejerina, S., Demazy, C., de
Longueville, F., . . . Arnould, T. (2006). CREB activation induced by

mitochondrial dysfunction triggers triglyceride accumulation in 3T3-L1
preadipocytes. Journal of Cell Science, 119(Pt 7), 1266–1282.

Vankoningsloo, S., Piens, M., Lecocq, C., Gilson, A., De Pauw, A.,
Renard, P., . . . Arnould, T. (2005). Mitochondrial dysfunction
induces triglyceride accumulation in 3T3-L1 cells: Role of fatty

acid beta-oxidation and glucose. Journal of Lipid Research, 46(6),
1133–1149.

van Zutphen, T., Todde, V., de Boer, R., Kreim,M., Hofbauer, H. F.,Wolinski,
H., . . . Kohlwein, S. D. (2014). Lipid droplet autophagy in the
yeast Saccharomyces cerevisiae. Molecular Biology of the Cell, 25(2),

290–301.
Wabitsch, M., Funcke, J. B., Lennerz, B., Kuhnle-Krahl, U., Lahr, G., Debatin,

K. M., . . . Fischer-Posovszky, P. (2015). Biologically inactive leptin and
early-onset extreme obesity. The New England Journal of Medicine,
372(1), 48–54.

Wang, C. W., Miao, Y. H., & Chang, Y. S. (2014). A sterol-enriched vacuolar
microdomainmediates stationary phase lipophagy in budding yeast. The
Journal of Cell Biology, 206(3), 357–366.

Wang, Y., Nartiss, Y., Steipe, B., McQuibban, G. A., & Kim, P. K. (2012).

ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-
dependent mitochondrial degradation by autophagy. Autophagy, 8(10),
1462–1476.

Watt, M. J., Holmes, A. G., Pinnamaneni, S. K., Garnham, A. P., Steinberg,
G. R., Kemp, B. E., & Febbraio, M. A. (2006). Regulation of HSL serine

phosphorylation in skeletal muscle and adipose tissue. American Journal
of Physiology Endocrinology and Metabolism, 290(3), E500–E508.

Wattiaux, R., Wattiaux-De Coninck, S., Ronveaux-dupal, M. F., & Dubois, F.
(1978). Isolation of rat liver lysosomes by isopycnic centrifugation in a
metrizamide gradient. The Journal of Cell Biology, 78(2), 349–368.

Wei, E., Gao, W., & Lehner, R. (2007). Attenuation of adipocyte
triacylglycerol hydrolase activity decreases basal fatty acid efflux. The
Journal of Biological Chemistry, 282(11), 8027–8035.

Yamamoto, A., Tagawa, Y., Yoshimori, T., Moriyama, Y., Masaki, R., &
Tashiro, Y. (1998). Bafilomycin A1 prevents maturation of autophagic

vacuoles by inhibiting fusion between autophagosomes and lysosomes
in rat hepatoma cell line, H-4-II-E cells.Cell Structure and Function, 23(1),
33–42.

Yang, X., Zhang, X., Heckmann, B. L., Lu, X., & Liu, J. (2011). Relative

contribution of adipose triglyceride lipase and hormone-sensitive lipase
to tumor necrosis factor-alpha (TNF-alpha)-induced lipolysis in
adipocytes. The Journal of Biological Chemistry, 286(47), 40477–40485.

Yin, J., Gao, Z., He, Q., Zhou, D., Guo, Z., & Ye, J. (2009). Role of hypoxia in
obesity-induced disorders of glucose and lipid metabolism in adipose

tissue. American Journal of Physiology Endocrinology and Metabolism,
296(2), E333–E342.

Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M., & Tashiro, Y. (1991).

Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase,
inhibits acidification and protein degradation in lysosomes of cultured

cells. The Journal of Biological Chemistry, 266(26), 17707–17712.
Zhang, Y., Goldman, S., Baerga, R., Zhao, Y., Komatsu, M., & Jin, S. (2009).

Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice
reveals a role in adipogenesis. Proceedings of the National Academy of
Sciences of the United States of America, 106(47), 19860–19865.

Zhdanov, A. V., Dmitriev, R. I., & Papkovsky, D. B. (2011). Bafilomycin A1
activates respiration of neuronal cells via uncoupling associated with
flickering depolarization of mitochondria. Cellular and Molecular Life
Sciences: CMLS, 68(5), 903–917.

18 | DEMINE ET AL.



Zhdanov, A. V., Dmitriev, R. I., & Papkovsky, D. B. (2012). Bafilomycin A1
activates HIF-dependent signalling in human colon cancer cells via
mitochondrial uncoupling. Bioscience Reports, 32(6), 587–595.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the

supporting information tab for this article.

How to cite this article: Demine S, Tejerina S, Bihin B, et al.

Mild mitochondrial uncoupling induces HSL/ATGL-

independent lipolysis relying on a form of autophagy in 3T3-

L1 adipocytes. J Cell Physiol. 2017;9999:1–19.

https://doi.org/10.1002/jcp.25994

DEMINE ET AL. | 19

https://doi.org/10.1002/jcp.25994
https://doi.org/10.1002/jcp.25994

