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Abstract: The term “aristolochic acid nephropathy” (AAN) is used to include any form of toxic
interstitial nephropathy that is caused either by ingestion of plants containing aristolochic acids (AA)
as part of traditional phytotherapies (formerly known as “Chinese herbs nephropathy”), or by the
environmental contaminants in food (Balkan endemic nephropathy). It is frequently associated with
urothelial malignancies. Although products containing AA have been banned in most of countries,
AAN cases remain regularly reported all over the world. Moreover, AAN incidence is probably
highly underestimated given the presence of AA in traditional herbal remedies worldwide and
the weak awareness of the disease. During these two past decades, animal models for AAN have
been developed to investigate underlying molecular and cellular mechanisms involved in AAN
pathogenesis. Indeed, a more-in-depth understanding of these processes is essential to develop
therapeutic strategies aimed to reduce the global and underestimated burden of this disease. In this
regard, our purpose was to build a broad overview of what is currently known about AAN. To achieve
this goal, we aimed to summarize the latest data available about underlying pathophysiological
mechanisms leading to AAN development with a particular emphasis on the imbalance between
vasoactive factors as well as a focus on the vascular events often not considered in AAN.

Keywords: aristolochic acids; herbal remedies; Balkan endemic nephropathy; renal interstitial fibrosis;
urothelial carcinoma

1. Introduction

In the early 1990s, an epidemic of rapidly progressive tubulointerstitial nephritis was reported in
Belgium in a cohort of young female patients. The onset of this the renal disease was rapidly associated
with the intake of slimming pills containing Chinese herbs [1,2]. Among these herbs, the causative
nephrotoxic agent was identified as aristolochic acid (AA) [3] and this renal disease is now worldwide
recognized as aristolochic acid nephropathy (AAN). In addition, AA exposure has been also frequently
associated with urothelial malignancies [4,5] and was classified as a human carcinogen class I by the
World Health Organization International Agency for Research on Cancer in 2002 [6]. Since its discovery,
more and more cases of AA intoxications have been reported all over the world and its incidence is
probably much higher than initially thought [7], especially in Asia and in Balkan countries. Indeed,
in Asian countries, traditional medicines are very popular and the complexity of the pharmacopoeia
represents a high risk of AA-induced nephropathy due to the frequent use of Aristolochia species
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thereby increasing the potential risk of substitutions between botanical products [8–11]. In the Balkan
regions, the exposure to AA has been admitted to be the causative agent responsible for the so-called
Balkan endemic nephropathy (BEN) that occurs following ingestion of food prepared with flour
derived from contaminated grains [12–14]. However, despite warnings from the Food and Drug
Administration (FDA), the European Medicines Agency (EMA) and International Agency for Research
on Cancer (IARC) regarding the safety of products containing AA, AAN cases remain frequently
described all over the world [7,15].

2. The Facts—A Belgian Story of New Renal Disease

The initial report of the first recorded outbreak of AAN in Belgium in 1992 described simultaneous
cases of women suffering from rapidly severe renal failure. Renal biopsy specimens typically showed
progressive interstitial renal fibrosis with atrophy and loss of tubules predominantly located in the
superficial cortex. These patients reached within a couple of months to end-stage renal disease (ESRD),
requiring dialysis or transplantation [2]. It was found that all these patients had previously ingested
pills containing Chinese herbs for slimming purposes from the same weight-loss clinical institute in
Brussels [1], leading to the identification of a new type of nephropathy first called the “Chinese-herb
nephropathy” (CHN) [2]. Very soon, further analyses of the slimming pills revealed that a constituent
in the regimen, Stephania tetrandra, had been mistakenly substituted by Aristolochia fangchi because
both herbs share the same common name in Pin Yin (respectively, Han Fang Ji and Guang Fang Ji) [3].
Therefore, Aristolochia was identified as the “bad boy” involved in the development of CHN. Indeed,
Aristolochia species and more particularly one of their compounds, AA, had already been described by
Mengs to be highly nephrotoxic [16]. AA involvement was first confirmed by the detection of AA-DNA
adducts in renal tubular cells of biopsies from AA-intoxicated patients [5,17]. Their involvement was
further confirmed by the positive correlation established between the cumulative ingested dose of
AA and the progression of renal function deterioration [18]. Later, the presence of AA in a batch
of so-called Stephania tetrandra was demonstrated by HPLC [19] and thereby validated the previous
observations. All these findings led to rename this nephrotoxicity “aristolochic acid nephropathy”
(AAN) [20].

3. Epidemiology of AAN and BEN: A True Link?

3.1. Aristolochic Acid Nephropathy

Despite the removal of Aristolochia species from the Belgian market, more than 100 cases of AAN
were identified in Belgium in 1998 and 70% of these patients developed ESRD [1,7,15,21]. Furthermore,
other cases of severe interstitial nephritis associated with progressive renal failure and urothelial
malignancies consequently to the intake of Chinese herbs have been reported in other countries and are
summarized in Table 1. In Spain, investigators reported a case of rapidly progressive renal failure in
a man who had ingested a homemade mixture infusion containing mint and Aristolochia pistolochia [22].
In France, two similar cases of patient who had ingested slimming pills were described [23]. In 1999,
Lord reported the first two cases of AAN in the United Kingdom in patients treated with Chinese
herb remedies for eczema [24]. In Germany, a case a reversible Fanconi syndrome in a patient treated
for hyper-uricaemia was observed [25]. AAN cases have also been described outside Europe; in the
United States [26], Australia [27] and of course in Asia, precisely in China [28–31], Taiwan [8,9,32–34],
Japan [35–37], Bangladesh [38], Korea [39] and Hong Kong [40]. Whereas AAN cases encountered in
Western countries seem mostly to be due to uncontrolled use and/or false identification of medicinal
herbs, generally considered as harmless by the general population [41], AAN cases in Asia are rather
considered as the dramatic consequence of the complex pharmacopeia of herbal remedies used in
traditional medicines. Indeed, AAN is even more crucial in Asian area, where people are confident that
traditional Chinese herb medicine is more natural and safer than Western medicine [34]. In conclusion,
all these reports taken together demonstrate that remedies containing AA have been and are still
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used in many regions of the world for various indications [42] and can also be easily bought via
the Internet [38,42,43] or sometimes obtained in pharmacies and local markets without a doctor’s
prescription [34]. However, high-quality epidemiologic data on the incidence and prevalence of AAN
remain lacking, given the weak awareness of the disease. The risk of human exposure to AA remains
therefore a global health problem with a potential growing incidence.

Table 1. Summary of reported cases of AA intoxications found in the literature.

Year of
Publication Authors Country Numb of

Cases
Purpose of AA Ingestion

Suspected Aristolochia Species

1993 Vanherweghem et al. [1] Belgium 9 Slimming pills containing Chinese herbs.
Aristolochia fangchi

1996 Peña et al. [22] Spain 1 Infusion made with a mixture of herbs.
Aristolochia pistolochia

1997 Tanaka et al. [35] Japan 1 Health food for atopic dermatitis.

1998 Stengel and Jones [23] France 2 Slimming pills containing Chinese herbs.

1998 Vanherweghem et al. [21] Belgium 100 Slimming pills containing Chinese herbs.
Aristolochia fangchi

1999 Lord et al. [24] UK 2 Herbal preparation for treatment of eczema.
Aristolochia manshuriensis

1999 Lee et al. [33] Taiwan 1 Chinese herbal medicine for peripheral
extremities weakness and numbness.

2000 Meyer et al. [26] USA 1 Chinese herbal medicine for pain relief.

2000 Tanaka et al. [36] Japan 2 Not described.
Aristolochia manshuriensis

2000 Yang et al. [32] Taiwan 12
Chinese herbal medicine for weight control,
nutritional supplements, treatment of
arthralgia, hypertension or hepatitis.

2001 Krumme et al. [25] Germany 1 Chinese herbal medicine for hyperuricaemia.

2001 Chen et al. [28] China 58 Not described.

2004 Lo et al. [29] China 1 Chinese herbal medicine as a “tonic herbal
remedy”.

2004 Lee et al. [39] Korea 1 Chinese herbs mixture for slimming
purposes.

2004 Kazama et al. [37] Japan 1 Chinese herbal medicine for sterility.

2006 Hong et al. [34] Taiwan 1 Chinese herbal medicines for “health
improvement”.

2007 Yang et al. [30] China 8 Chinese herb “Guanmutong” Aristolochia
manshuriensis.

2011 Chau et al. [27] Australia 1 Chinese herbal medicine to treat psoriasis.

2012 Yang et al. [31] China 300 Not described.

2013 Michl et al. [38] Bangladesh
Remedies for snake bites, sexual problems,
gastric problems, “tonic remedy”.
Aristolochia indica

3.2. Balkan Endemic Nephropathy

The Balkan-endemic nephropathy (BEN) was first recognized in the late 1950s as a chronic renal
disease affecting residents of rural farming villages located near tributaries of the Danube River.
The geographic distribution of BEN has remained strikingly constant since its discovery. It is estimated
that ~100,000 individuals are at risk of BEN while ~25,000 have currently developed the disease with
the highest prevalence rates in Serbia, Bulgaria, Romania, Bosnia and Herzegovina and Croatia [44–48].
BEN is described as a familial clustering and slowly progressive kidney disease. The clinical signs and
symptoms of BEN are non-specific and often remain latent for years even decades until a significant
decline in function occurs [47,49,50]. After an initial asymptomatic stage, patients suffer from weakness
and lassitude, mild lumbar pain and pallor of the skin [45,50]. At later stage (during the fifth or sixth
decade of life), anemia is associated with a significant loss of renal function. Proteinuria of tubular
type and specifically, β2-microglobulinuria is observed [46,48]. Histologically, BEN is characterized by
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tubular atrophy with extensive hypocellular fibrosis decreasing from the outer to the inner cortex of
the kidney [45,46,50]. Moreover, kidney imaging reveals decrease in kidney size [45,46,48,50]. Finally,
a major feature of BEN is its strong association with upper urothelial cancer (UUC) of the renal pelvis
and ureter [47,50,51] that also constitutes the most common cause of death in BEN patients.

Over the past 60 years, numerous hypotheses on BEN causality have been considered as being
linked to mycotoxins, heavy metals, viruses and trace element deficiencies. Environmental exposure
to AA was first suggested as a potential cause of BEN by Ivic in 1969, but in 1993, more attention was
provided to AA since similar renal histopathological features were shared between CHN and BEN [12].
Moreover, development of UUC in nearly 50% of CHN patients [5] constituted another important
common similarity with BEN. Nowadays, environmental exposure to AA by BEN patients has been
confirmed [52–57], especially through the detection of AA-DNA adducts and the hallmark A:T→ T:A
base transversion in renal cortical and urothelial malignant tissues [14,55,58].

The first speculation about the etiologic mechanism for chronic AA poisoning in BEN was also
proposed by Ivic. He suggested that seeds from Aristolochia, which grow abundantly in wheat fields of
endemic areas, were mixed with wheat grain during the harvesting process and therefore, AA might
enter the human food chain through ingestion of bread prepared from flour derived from contaminated
grain [53,56,59]. Recently, Pavlovic et al. [49] proposed another pathway by which AA could enter
human bodies. Indeed, some crops grown in the fields where Aristolochia clematitis grows, senesces and
decomposes during successive years might accumulate certain amounts of AA from the soil through
root uptake and subsequently transfer it to other plant structures. In this regard, they showed that the
roots of maize plant and cucumber were capable of absorbing AA confirming the possible involvement
of naturally occurring root uptake in food chain contamination. Subsequently, AA were also identified
in corn, wheat grain and soil samples collected from the endemic village of Kutles in Serbia providing
the first direct evidence that food crops and soil are contaminated with AA in Balkan countries and
thereby strengthening the intoxication pathway proposed earlier [60]. Finally, another recent study
tested the hypothesis that AA could be translocated and bioaccumulated in food crops to cause chronic
dietary poisoning [61]. To do so, analysis of the root uptake and transfer into the leaf of lettuce, the
fruit of tomato and the bulb and leaf of spring onion grown in AA-contaminated soil was performed.
The results of the study demonstrated that AA were resistant to the microbial activities of soil and were
indeed translocated and bioaccumulated in food crops. AA were also described to be highly persistent
to metabolism of plant cells and were present in food products for an extend period of time [61].

Although BEN and AAN share similar features, they differ in the clinical course. This observation
can be easily explained by the fact that in BEN, AA are ingested in small doses via contaminated
food while in AAN, AA are ingested in higher doses either intentionally or inadvertently [54,59].
Nevertheless, it is now clear that BEN is considered an environmental form of AAN [44,53,54,62].

4. Clinical Features of AAN

4.1. Nephrotoxicity

As mentioned earlier, numerous AAN cases have been described in the literature. Most of AAN
patients were adults except one case report of AA intoxication in a 10-year-old boy [34]. Generally,
renal failure was not suspected and was discovered by routine blood testing [15]. Besides few cases
presenting with a Fanconi syndrome [25,34,39,63], most cases were characterized by renal failure.
However, a hallmark of the disease was the rapid progression to an ESRD in 70% of AA-intoxicated
patients [64]. Typically, moderate hypertension developed along with increased serum creatinine as
well as a very severe anemia [7,64]. In addition, mild proteinuria and glycosuria were also reported.
More precisely, elevated urinary excretion of five low molecular weight proteins (β2-microglobulin,
cystatin C, Clara cell protein, retinal-binding protein and α1-microglobulin) confirmed that proteinuria
derived from tubular origin [65]. Moreover, levels of urinary neutral endopeptidase (NEP), a 94 kDa
ectoenzyme of the proximal tubule brush border, reflected the proportion of brush borders remaining
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intact at the apical side of proximal tubules and therefore constituted a reliable indicator of the
severity of the renal disease. Indeed, urinary NEP was significantly decreased in AAN patient with
moderate renal failure and almost undetectable in those with ESRD, indicating the loss of proximal
tubule integrity [66]. Macroscopically, kidneys were shrunk, asymmetrical and irregular in cortical
outline. Biopsies of intoxicated kidneys also revealed extensive paucicellular interstitial fibrosis
with atrophy and loss of tubules starting from the peripheral cortex and progressing towards the
deep cortex [1,2]. The glomeruli were described as spared even thought, in the later stage of the
disease, they displayed a mild collapse of the capillaries and a wrinkling of the basement membrane.
An interstitial inflammatory infiltration was observed in several renal biopsies, suggesting that
an immunological process could be involved in the pathological mechanism, this later point being
discussed in a following section.

4.2. Urothelial Malignancies

The strong correlation between AA intoxication and the presence of urothelial abnormalities
has been intensively documented in clinical studies from AA-intoxicated patients [5,8,9,67] as well
as in experimental models [16,68–71]. In 1994, Cosyns reported for the first time moderate atypia
and atypical hyperplasia of the urothelium of native kidneys removed at the time of renal-allograft
transplantation of Belgian AA-intoxicated women [12]. Indeed, significant proportion of the Belgian
AAN patients developed upper tract urothelial carcinoma (UUC), and subsequently, bladder urothelial
cancer [5,72]. Considering the high risk for urothelial malignancies related to AA intoxication,
a prophylactic bilateral removal of the native kidneys and ureters was systematically proposed to AAN
patients treated for dialysis or renal transplantation [5]. Further analysis also revealed that cumulative
dose of ingested Aristolochia was a significant risk factor in developing urothelial carcinoma [5].
Moreover, it is greatly recognized that BEN is frequently associated with UUC corroborating with
a mortality rate from rare urothelial cancer of the pelvis and ureters 55 times more frequent in the
endemic region of Croatia where BEN incidence is really high than in the rest of the country [51].
Finally, in view of all these clinical and experimental data, the National Toxicology Program (NTP)
classified AA among the highly carcinogenic substances [15]. Molecular mechanisms of AA-associated
carcinogenicity are discussed below.

4.3. Diagnostic Criteria of AAN

The combination of interstitial nephropathy with urothelial malignancy strongly suggests the
diagnostic of AAN. A consensus exists regarding the definition of diagnostic criteria [73]. AAN is
certain in any individual who suffers from renal failure, in combination with at least two of the
following three criteria: (i) a renal histology displaying interstitial fibrosis with a corticomedullary
gradient; (ii) a history of consumption of herbal products which demonstrated the presence of AA;
and (iii) the presence of AA-DNA adducts (or the specific A:T → T:A transversion in p53 gene)
in a kidney tissue sample or of a urothelial tumor. However, if only one of these criteria can be
demonstrated, the diagnosis of AAN remains highly probable and should be investigated deeper.
Whatever the case, the presence of either AA in herbal products ingested by patients, or of AA-DNA
adducts in renal tissue, provides a serious hint to the diagnosis.

5. Properties of AA and Mechanisms of Nephrotoxicity and Carcinogenicity

Before the cluster outbreak of the so-called CHN in 1993 in Belgium, Mengs had already
highlighted AA toxicity in animal models, especially their carcinogenic properties [16,68,69].
Since the identification of the Belgian cases, experimental in vitro and in vivo models have been
developed [74,75] and studies have been therefore undertaken in order to understand underlying
molecular and cellular mechanisms of AAN pathophysiology that are still matter of debate and require
further investigations. Today, it is currently still unclear whether the nephrotoxic and carcinogenic
effects of AA may be considered as closely related processes. In most cases, urothelial cancer seems
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to develop as a late complication in AAN patients since this carcinoma has always been detected
in patients already suffering from ESRD. Nevertheless, only one case report described an invasive
urothelial carcinoma after AA intoxication occurring without severe renal failure [76]. This observation
may suggest that nephrotoxicity and carcinogenicity might be independent processes.

5.1. AA Structure-Activity Relationship

AA is a generic name for a family of nitrophenanthrene carboxylic acids that are found in plants
of the Aristolochiaceae family that includes almost 500 plants [15]. Most plants reported to contain AA
belong to the genus Aristolochia or Asarum [44]. All parts of the plant including the roots, stems and
leaves contain AA and are used in herbal preparation [42]. Chemically, AA is principally composed
of a mixture of two metabolites, the 8-methoxy-6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic
acid (AAI) and 6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAII) (Figure 1). Few studies
have been conducted in mice regarding structure–activity relationships and revealed that the carboxyl
group at the 3-position is an absolute structural requirement for AAI transport and more particularly
for its high affinity interaction with organic anion transporter (OAT) 1, 2 and 3, whereas the nitro group
is only required by OAT1. Conversely, the O-methoxy group present at the 8-position in AAI is not
requisite for transport [77] but seems to be rather a functional key determinant for AA-induced toxicity
in mice [77,78]. In this regard, Shibutani conducted a study with C3H/He mice in order to differentiate
the nephrotoxic and genotoxic properties of AAI and AAII [79]. It appeared that only AAI was capable
of inducing nephrotoxicity as observed by tubular damage and development of interstitial fibrosis
in AAI-treated mice whereas AAII did not show any nephrotoxic effect in the same mice. However,
both AAI and AAII displayed genotoxic and carcinogenic effects as determined by their similar ability
to form AA-DNA adducts in target tissues of intoxicated mice.
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5.2. Exposition to AA

All known human exposures resulted from oral ingestion. AA are therefore absorbed from the
gastrointestinal tract and distributed throughout the body. In this regard, Shibutani et al. described
that after in vivo exposure to AA, DNA adducts derived from AAI and AAII metabolites are found
in various rodent organs including bladder, stomach, intestine, liver, lung, spleen and of course,
kidneys [79] thereby implying a systemic distribution. Interestingly, it has been described that once
in blood circulation, AAI is able to bind to plasma proteins such as albumin, which will influence
its distribution in the different body compartments as well as its further elimination since protein
binding restrict AAI excretion through glomerular filtration [77]. After a metabolization step in the
organism (see section below), AA metabolites (aristolactam I and aristolactam II) as well as AA-DNA
and AA-RNA adducts have been found to be excreted in urine and in feces [44,80–85].
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5.3. Role of OAT in AA-Induced Toxicity

In AAN, selective toxicity for proximal tubular epithelial cells (PTEC) suggests the involvement
of specific molecular mechanism(s) that could be responsible for the accumulation of the toxin in
these cells. In particular, proximal tubule plays a crucial role in the secretion and/or reabsorption
of many compounds, including the elimination of xenobiotics or their metabolites, though several
specific transporters. Therefore, PTEC may be considered as a potential target exposed to high
concentrations of toxic metabolites. Regarding AA intoxication, several reports have proposed a role for
the organic anion (OA) transporter (OAT) family in AA-mediated nephrotoxicity [77,86,87]. OAT family
comprises a group of over 10 transmembrane proteins and are members of the solute carrier 22 (SLC22)
subfamily [88–90]. OAT have been localized to almost all barrier epithelia of the body, as well
as in the endothelium [89]. These transporters have been found to be expressed in many tissues
including kidney, liver, intestine, choroid plexus, olfactory mucosa, brain, retina and placenta [89].
OAT are multiselective and may transport many classes of OA, including endogenous substances,
such as urate and prostaglandins, but also exogenous molecules, such as antibiotics, nonsteroidal
anti-inflammatory drugs, angiotensin-converting enzyme inhibitors as well as sulfate and glucuronide
conjugates of drugs [90]. In the kidney, OAT substrates are small (molecular weight < 400 to 500 kDa)
and water-soluble molecules [88,89] that display an ability to bind albumin [89,90]. Because of their
albumin-binding capacity, these compounds are not filtered through the glomerulus so that they flow
further through the peritubular capillaries. Renal secretion of these OA is therefore carried out in at
least two steps: the first step is the transport from blood into PTEC through the basolateral membrane
and the second one is the crossing of OA through the apical membrane of PTEC followed by the
final excretion in the urine. In human kidneys, OAT1, OAT2 and OAT3 are both localized at the
basolateral membrane of PTEC and mediate transport of substances from blood into the cytoplasm
(influx transporters) [77,86,87,91,92]. OAT1 and OAT3 are predominantly expressed in the kidney
whereas OAT2 is mainly expressed in the liver and weakly in the kidney [93]. Human OAT4 is
expressed in the kidney and localized at the apical membrane of PTEC and is proposed to operate
as an asymmetric organic anion exchanger that could play a role in anions reabsorption along with
the simultaneous excretion of several anionic drugs and xenobiotics [86,87,91,93]. Both the four OATs
mentioned above are sensitive to inhibition by the classical inhibitor, probenecid, albeit with different
affinities [87,94].

Since AA display anionic properties [77,86,87] and have been found to bind albumin [77],
OAT family has been considered as key players in AA-mediated toxicity. Support for this concept
has been demonstrated for the first time by Bakhiya et al., who described AAI accumulation into
HEK293 cells stably expressing human OAT1, -3 and -4 as well as the protective effect of probenecid
treatment that reduced this accumulation in the same cells [91]. In addition, various other competition
studies conducted in in vitro heterologous expression systems, also evaluated the interaction between
AAI and OAT. It appeared that AAI is a high-affinity substrate for human and mouse OAT1 and
OAT3 [77,86,91,95,96] but showed weak affinity for the human OAT4 [91]. These results suggest that
the influx of AAI in PTEC through OAT1 and OAT3 is more important than their efflux through OAT4.
This could therefore explain the toxic AAI accumulation in PTEC. Nevertheless, the exact role of
OAT4 is still under investigation. As mentioned earlier, OAT4 proteins present asymmetric properties,
so more evidences are needed to determine whether human OAT4 only function as an apical efflux
transporter for AAI or may rather aggravate cellular injury by mediating additional AAI uptake from
tubular fluid [87]. Moreover, once in the cells, AA rapidly bind to DNA to form DNA adducts so
whether or not AA undergo apical transport or simply accumulate in the cell is still matter of debate.
However, mRNA expression of OAT4 in human kidney cortex has been described to be very low
compared to OAT1, -2 and -3, suggesting a minor involvement in drug-induced nephrotoxicity [87].
Finally, the role of OAT2 in AA handling remains unclear and its potential impact on AAN pathogenesis
is still unknown. A hypothetical model of AA transport through PETC is available in Figure 2.
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Studies on heterologous expression systems may have provide important clues about AA transport
in PTEC, however it does not accurately reflect in vivo situation [87]. Only a few in vivo studies
addressing AA transport in PTEC have been described in the literature [95–97]. In AA-treated mice,
probenecid treatment has been found to decrease the renal distribution and the urinary excretion of
AAI [95] but also to reduce tubular necrosis, lymphocytic infiltrate, tubular atrophy as well as fibrosis by
blocking AA entry into PTEC as attested by the reduction of DNA-adducts formation [97]. In addition,
Oat1 and Oat3 KO mice also displayed protection from experimental AA-induced nephropathy through
reduction of AAI accumulation in PTEC [95]. Activity of these transporters together with metabolizing
enzymes (see next section) could therefore be the main factors of AA-induced nephrotoxicity and
tumorigenicity, allowing to consider OAT inhibition as a potential safe therapeutic pathway for AAN.

Finally, several other transport mechanisms than OAT have also been proposed regarding AA
uptake into PTEC [77,95,97]. Since a time- and dose-dependent accumulation of AAI and AAII has
been observed in control CHO-K1 transfected cells (that do not express OAT), it has been proposed
that these compounds could enter the cells through simple diffusion [77]. Moreover, given that
AAI can be detected in the urine and bile, they could also possibly undergo efflux via some other
transporters than OAT4 such as multidrug resistance-associated protein (MRP) 2 or MRP4 expressed
on the brush-border membranes in the kidney as well as MRP1, MRP2 and breast cancer protein at the
canalicular membranes in the liver [95].
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However, the majority of AA metabolites, the aristolactams, are trapped inside the cell due to the
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5.4. Metabolic Activation of AA—How That Works?

One of the common features of AAN and BEN is that not all individuals exposed to AA develop
a nephropathy and/or a tumor. Besides differences in the accumulated dose of AA and the duration of
AA intake [5,18], individual differences in the activities of the enzymes catalyzing the biotransformation
of AA could be responsible for this discrepancy between the different levels of susceptibility [98]. In this
regard, identification of the enzymes involved in AA metabolism is of particular relevance. A powerful
tool to determine AA activation is to characterize and quantify DNA adducts formation and to identify
which factor(s) could interfere with this process. Many in vitro studies conducted by Stiborova,
Arlt and Schmeiser have addressed AA metabolism as well as biotransformation enzymes [99–102]
and their major findings are summarized in a recent review [44].

The major activation pathway of AA involves nitroreduction to an electrophilic cyclic
N-acylnitrenium ion with a delocalized positive charge able to bind to the exocyclic amino groups of
purine bases and ultimately to DNA thereby leading to formation of AA-DNA adducts [55,103–105]
(Figure 3). Presence of such AA-DNA adducts in renal tissue of patients may be considered as
prominent biomarker in AAN diagnosis and has been demonstrated to persist during decades after
AA exposure [15,17,62,106]. Biomonitoring of AA-DNA adducts in fresh frozen human renal tissues
but also in formalin-fixed and paraffin-embedded samples as well as in exfoliated urinary cells can
be achieved via ultra-performance liquid chromatography/ion-trap mass spectrometry, therefore
providing a sensitive and specific method for establishing exposure to AA [59,107].

Figure 3. Metabolic activation of AA and DNA adduct formation. Aristolactam I and II are formed
after the reductive metabolic activation mediated by hepatic and renal cytosolic NAD(P)H:quinone
oxidoreductase (NQO1), hepatic microsomal cytochrome P450 (CYP) 1A1/2 and kidney microsomal
NADPH:CYP reductase (POR). The electrophilic cyclic N-acylnitrenium ion has a delocalized positive
charge able to bind to the exocyclic amino groups of purine bases and ultimately bind to DNA (
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The nitroreduction of AA therefore constitutes a crucial step in AA-induced toxicity. In this regard,
mammalian cells express a repertoire of enzymes able to ensure nitroreduction [98]. Among these,
several have been shown to be involved in AA metabolization. The most important human, mouse
and rat enzyme activating AAI in hepatic and renal cytosolic subcellular fraction is NAD(P)H:quinone
oxidoreductase (NQO1) [84]. Hepatic microsomal cytochrome P450 (CYP) 1A1/2 and kidney
microsomal NADPH:CYP reductase (POR) have also been shown to allow reduction of AAI [105].
In addition, genetic polymorphisms, drugs, smoking habit as well as environmental chemicals have
been identified as important factors affecting the expression levels and activities of these enzymes and
therefore could explain individual variations of susceptibility to AA toxicity [7].

Recently, it has been proposed that, in addition to interfere with DNA, AA could also modify
cytoplasmic RNA and that the AA-induced insult to RNA might also contribute to AA-related toxicity.
In this regard, Leung and Chan [108] first described that AA forms covalently bonded RNA adducts
both in vitro and in vivo. Particularly, AA have been found to modify guanosine at significantly higher
frequencies than adenosine suggesting that guanosine is a major target of AA and that guanosine
adducts might constitute a critical factor in AA-induced nephrotoxicity and carcinogenicity.

5.5. Pathogenesis of AAN—What Do We Know from Experimental Studies?

5.5.1. A Biphasic Evolution

In 2005, Lebeau et al. [109] investigated in detail the time course of structural and functional
impairments of the proximal tubule in a rat model of AAN where AAN was induced by daily
subcutaneous injections of AA for 5 or 35 days. A biphasic evolution of renal function and
morphological alterations was described. Early proximal tubule dysfunction and structural
abnormalities occurred within the first 3 days of the protocol. Indeed, necrosis of proximal tubular
epithelial cells (PTEC) (Figure 4) was observed along with an increase of biochemical parameters such
as tubular proteinuria, N-acetyl-β-D-glucosaminidase (NAG), α-glutathione S-transferase (α-GST),
leucine aminopeptidase (LAP) and neutral endopeptidase (NEP) enzymuria. These early events were
related to the formation of AA-DNA adducts that are detected as early as Day 1 of the protocol and
reached a steady-state at Day 2, thereafter remaining at a stable level up to the end of the protocol
(Day 35). This early phase of acute kidney injury (AKI), also described in mice models [75,110],
was rapidly followed by infiltration of inflammatory cells in renal interstitium [111]. At day 10 after
the beginning of the protocol, all biological parameters returned to basal levels reflecting an attempt
of PTEC regeneration [112]. However, the presence of DNA adducts as well as the development
of an inflammatory environment could interfere with PTEC attempting to regenerate. At day 35,
AA-treated rats displayed foci of severe tubular atrophy surrounded by interstitial fibrosis (Figure 4),
d tubular proteinuria, NAG, α-GST, LAP and NEP enzymuria have been shown to be enhanced,
again characterizing this later phase of chronic kidney injury (CKD) [109].

Most of AAN cases that are reported in the literature describe patients with chronic kidney
failure characterized by a typical interstitial fibrosis. Symptoms associated to AA nephrotoxicity
can be detected years after cessation of herbal intake, resulting in delayed diagnosis and treatment.
Nevertheless, few reported cases detail acute toxicity of AA [29,31,113] confirming the biphasic
evolution described experimentally by Lebeau et al. Biopsies of these patients revealed interstitial
nephritis, interstitial inflammatory infiltrate and evidence of acute tubular necrosis [29,31,113].
As experimentally described, majority of acute human cases reported by Yang [31] (n = 13) presented
a progressive decrease of their renal function and five of them had reach the terminal stage of CKD at
the end of the seven years follow-up.



Int. J. Mol. Sci. 2017, 18, 297 11 of 24

Int. J. Mol. Sci. 2017, 18, 297 11 of 23 

 
Figure 4. Evolution of structural abnormalities and collagen accumulation in experimental aristolochic 
acid nephropathy. Representative photographs of hemalun, Luxol fast blue and Periodic Acid Schiff 
stained kidney sections and Sirius Red stained kidney sections (400×) from CTL mice and mice 
intoxicated with AA (aristolochic acid I, Sigma-Aldrich, St Louis, MO, USA) during four consecutive 
days. Mice were sacrificed 5, 10 and 20 days after first day of AA treatment. Necrotic tubules ( ) with 
cell debris in tubular lumens are visible in mice treated with AA at Days 5 and 10 and cystic tubules  
( ) are visible in mice at Days 10 and 20. Collagen I and III, highlighted by Sirius Red staining, 
accumulate in the interstitium of the kidney of AA-treated mice from Day 10 and even more at Day 20 
reflecting the progression to CKD. 

5.5.2. Cytotoxicity 

DNA Adducts 

As mentioned above, AA intoxication is strongly associated with the development of urothelial 
abnormalities as observed in AA-intoxicated patients all over the world [5,8,9,67] and confirmed in 
AAN experimental models [16,68–71]. In this regard, metabolic activation of AA to species forming 
DNA adducts is an important step for AA-induced malignant transformation. The major AA-DNA 
adducts found in AAN animal models and in AA-intoxicated patients were identified as  
7-(deoxyadenosine-N6-yl) aristolactam I (dA-AAI), 7-(deoxyguanosin-N2-yl) aristolactam I (dG-AAI) 
and 7-(deoxyadenosine-N6-yl) aristolactam II (dA-AAII). Among them, dA-AAI has been found to be 
the most persistent AA-DNA adduct and constitutes a mutagenic lesion leading to an excess of  
A:T → T:A transversions [8,59,62,114]. The highest fraction of these transversions occurs in the kidney 
and in the bladder [98]. These specific mutations are retrieved at high frequency in codon 61 of the 
H-ras protooncogene in tumors induced by AAI in rodent models [115]. In AAN patients, an 
overexpression of p53 protein was observed suggesting a mutation in the tumor suppressor gene; 
p53 [4]. In 2004, this mutation was identified as a specific AAG to TAG transversion in codon 139  
(Lys → Stop) of exon 5 in the p53 gene [116]. Interestingly, the same neighboring bases were observed 
in the mutated base adenine in codon 139 of the p53 gene and in codon 61 of the H-ras gene suggesting 
a sequence specific mechanism during mutation induction [116]. Later, it has been described that  
A:T → T:A transversions constitute 58% of p53 sequence changes found in UUC linked to AA 
exposure while it represents less than 2% in UUC patients with no suspected exposure to AA [117]. 
Moreover, these mutations described in AA-induced UUC have been found to be almost exclusively 

Figure 4. Evolution of structural abnormalities and collagen accumulation in experimental aristolochic
acid nephropathy. Representative photographs of hemalun, Luxol fast blue and Periodic Acid Schiff
stained kidney sections and Sirius Red stained kidney sections (400×) from CTL mice and mice
intoxicated with AA (aristolochic acid I, Sigma-Aldrich, St. Louis, MO, USA) during four consecutive
days. Mice were sacrificed 5, 10 and 20 days after first day of AA treatment. Necrotic tubules (

Int. J. Mol. Sci. 2017, 18, 297 11 of 23 

 
Figure 4. Evolution of structural abnormalities and collagen accumulation in experimental aristolochic 
acid nephropathy. Representative photographs of hemalun, Luxol fast blue and Periodic Acid Schiff 
stained kidney sections and Sirius Red stained kidney sections (400×) from CTL mice and mice 
intoxicated with AA (aristolochic acid I, Sigma-Aldrich, St Louis, MO, USA) during four consecutive 
days. Mice were sacrificed 5, 10 and 20 days after first day of AA treatment. Necrotic tubules ( ) with 
cell debris in tubular lumens are visible in mice treated with AA at Days 5 and 10 and cystic tubules  
( ) are visible in mice at Days 10 and 20. Collagen I and III, highlighted by Sirius Red staining, 
accumulate in the interstitium of the kidney of AA-treated mice from Day 10 and even more at Day 20 
reflecting the progression to CKD. 

5.5.2. Cytotoxicity 

DNA Adducts 

As mentioned above, AA intoxication is strongly associated with the development of urothelial 
abnormalities as observed in AA-intoxicated patients all over the world [5,8,9,67] and confirmed in 
AAN experimental models [16,68–71]. In this regard, metabolic activation of AA to species forming 
DNA adducts is an important step for AA-induced malignant transformation. The major AA-DNA 
adducts found in AAN animal models and in AA-intoxicated patients were identified as  
7-(deoxyadenosine-N6-yl) aristolactam I (dA-AAI), 7-(deoxyguanosin-N2-yl) aristolactam I (dG-AAI) 
and 7-(deoxyadenosine-N6-yl) aristolactam II (dA-AAII). Among them, dA-AAI has been found to be 
the most persistent AA-DNA adduct and constitutes a mutagenic lesion leading to an excess of  
A:T → T:A transversions [8,59,62,114]. The highest fraction of these transversions occurs in the kidney 
and in the bladder [98]. These specific mutations are retrieved at high frequency in codon 61 of the 
H-ras protooncogene in tumors induced by AAI in rodent models [115]. In AAN patients, an 
overexpression of p53 protein was observed suggesting a mutation in the tumor suppressor gene; 
p53 [4]. In 2004, this mutation was identified as a specific AAG to TAG transversion in codon 139  
(Lys → Stop) of exon 5 in the p53 gene [116]. Interestingly, the same neighboring bases were observed 
in the mutated base adenine in codon 139 of the p53 gene and in codon 61 of the H-ras gene suggesting 
a sequence specific mechanism during mutation induction [116]. Later, it has been described that  
A:T → T:A transversions constitute 58% of p53 sequence changes found in UUC linked to AA 
exposure while it represents less than 2% in UUC patients with no suspected exposure to AA [117]. 
Moreover, these mutations described in AA-induced UUC have been found to be almost exclusively 

) with
cell debris in tubular lumens are visible in mice treated with AA at Days 5 and 10 and cystic tubules (

Int. J. Mol. Sci. 2017, 18, 297 11 of 23 

 
Figure 4. Evolution of structural abnormalities and collagen accumulation in experimental aristolochic 
acid nephropathy. Representative photographs of hemalun, Luxol fast blue and Periodic Acid Schiff 
stained kidney sections and Sirius Red stained kidney sections (400×) from CTL mice and mice 
intoxicated with AA (aristolochic acid I, Sigma-Aldrich, St Louis, MO, USA) during four consecutive 
days. Mice were sacrificed 5, 10 and 20 days after first day of AA treatment. Necrotic tubules ( ) with 
cell debris in tubular lumens are visible in mice treated with AA at Days 5 and 10 and cystic tubules  
( ) are visible in mice at Days 10 and 20. Collagen I and III, highlighted by Sirius Red staining, 
accumulate in the interstitium of the kidney of AA-treated mice from Day 10 and even more at Day 20 
reflecting the progression to CKD. 

5.5.2. Cytotoxicity 

DNA Adducts 

As mentioned above, AA intoxication is strongly associated with the development of urothelial 
abnormalities as observed in AA-intoxicated patients all over the world [5,8,9,67] and confirmed in 
AAN experimental models [16,68–71]. In this regard, metabolic activation of AA to species forming 
DNA adducts is an important step for AA-induced malignant transformation. The major AA-DNA 
adducts found in AAN animal models and in AA-intoxicated patients were identified as  
7-(deoxyadenosine-N6-yl) aristolactam I (dA-AAI), 7-(deoxyguanosin-N2-yl) aristolactam I (dG-AAI) 
and 7-(deoxyadenosine-N6-yl) aristolactam II (dA-AAII). Among them, dA-AAI has been found to be 
the most persistent AA-DNA adduct and constitutes a mutagenic lesion leading to an excess of  
A:T → T:A transversions [8,59,62,114]. The highest fraction of these transversions occurs in the kidney 
and in the bladder [98]. These specific mutations are retrieved at high frequency in codon 61 of the 
H-ras protooncogene in tumors induced by AAI in rodent models [115]. In AAN patients, an 
overexpression of p53 protein was observed suggesting a mutation in the tumor suppressor gene; 
p53 [4]. In 2004, this mutation was identified as a specific AAG to TAG transversion in codon 139  
(Lys → Stop) of exon 5 in the p53 gene [116]. Interestingly, the same neighboring bases were observed 
in the mutated base adenine in codon 139 of the p53 gene and in codon 61 of the H-ras gene suggesting 
a sequence specific mechanism during mutation induction [116]. Later, it has been described that  
A:T → T:A transversions constitute 58% of p53 sequence changes found in UUC linked to AA 
exposure while it represents less than 2% in UUC patients with no suspected exposure to AA [117]. 
Moreover, these mutations described in AA-induced UUC have been found to be almost exclusively 

)
are visible in mice at Days 10 and 20. Collagen I and III, highlighted by Sirius Red staining, accumulate
in the interstitium of the kidney of AA-treated mice from Day 10 and even more at Day 20 reflecting
the progression to CKD.

5.5.2. Cytotoxicity

DNA Adducts

As mentioned above, AA intoxication is strongly associated with the development of urothelial
abnormalities as observed in AA-intoxicated patients all over the world [5,8,9,67] and confirmed
in AAN experimental models [16,68–71]. In this regard, metabolic activation of AA to species
forming DNA adducts is an important step for AA-induced malignant transformation. The major
AA-DNA adducts found in AAN animal models and in AA-intoxicated patients were identified as
7-(deoxyadenosine-N6-yl) aristolactam I (dA-AAI), 7-(deoxyguanosin-N2-yl) aristolactam I (dG-AAI)
and 7-(deoxyadenosine-N6-yl) aristolactam II (dA-AAII). Among them, dA-AAI has been found to
be the most persistent AA-DNA adduct and constitutes a mutagenic lesion leading to an excess
of A:T → T:A transversions [8,59,62,114]. The highest fraction of these transversions occurs in the
kidney and in the bladder [98]. These specific mutations are retrieved at high frequency in codon
61 of the H-ras protooncogene in tumors induced by AAI in rodent models [115]. In AAN patients,
an overexpression of p53 protein was observed suggesting a mutation in the tumor suppressor gene;
p53 [4]. In 2004, this mutation was identified as a specific AAG to TAG transversion in codon 139
(Lys→ Stop) of exon 5 in the p53 gene [116]. Interestingly, the same neighboring bases were observed
in the mutated base adenine in codon 139 of the p53 gene and in codon 61 of the H-ras gene suggesting
a sequence specific mechanism during mutation induction [116]. Later, it has been described that
A:T→ T:A transversions constitute 58% of p53 sequence changes found in UUC linked to AA exposure
while it represents less than 2% in UUC patients with no suspected exposure to AA [117]. Moreover,
these mutations described in AA-induced UUC have been found to be almost exclusively positioned
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on the non-transcribed strand which is rather unique hallmark because in other human cancers, A:T→
T:A transversions do not present this pattern [59,117–119]. Specifically, mutational hotspots were
observed at codons 131 and 179 and at the splice acceptor splice site for intron 6 [120]. Mutations in
these sites had never been described in UUC and appear to be uniquely associated with AA exposure.
Another recent study reported an unusually high prevalence of G→ T transversions in the p53 binding
site in UUC of non-smoking AA-intoxicated women in Belgium (n = 5). The authors proposed these
G→ T transversions as a complementary signature mutation for AA intoxication [121].

Oxidative Stress

While the carcinogenicity of AA has been well investigated and documented, the mechanisms
by which AA exert cytotoxic effects are poorly characterized. A few in vitro studies described that
cells treated with AA led to generation of high amounts of reactive oxygen and nitrogen species
(ROS/RNS) [122–125]. Oxidative stress therefore constitutes the primary triggering event of AA
cytotoxicity and could be responsible for related DNA damage through activation of the MEK/ERK1/2
signaling pathway and depletion of intracellular glutathione (GSH) [122] resulting in cell cycle arrest
in G2/M phase [123]. Treatment of the cells with antioxidants showed cytoprotective effects by
reducing AA-induced ROS and genotoxicity, indicating that AA may induce DNA damage through
oxidative stress [122,124]. Oxidative stress has also been described in in vivo models. In this regard,
Pozdzick et al. showed that AA tubulotoxicity resulted in defective activation of antioxidative enzymes
and mitochondrial damage in a rat model of AAN [112]. In C3H/He mice, Li et al. [126] demonstrated
a reduction of renal antioxidant capacity in kidneys affected by AA, thereby suggesting that oxidative
stress is involved in AAN. Their results indeed demonstrated a significant increase of the intra-renal
concentrations of methylglyoxal (MGO), a highly cytotoxic compound that binds to proteins and
forms Nε-(carboxymethyl)lysine (CML), an advanced glycation end product observed in the renal
tubules by immunohistochemistry. Moreover, GSH levels were significantly decreased, along with
a reduced intra-renal antioxidant capacity. Interestingly, a later study conducted by Huang et al. [127]
reported an increased activity of renal semicarbazide-sensitive amine oxidase (SSAO), a key enzyme
involved in MGO generation activity, in AA-treated mice and demonstrated the beneficial effect of
MGO scavenging by metformin, which reduced nephrotoxicity. Therefore, AA-induced oxidative stress
represents a key feature that could be considered as a potential target in view of therapeutic strategies.
Recently, our group published an experimental study in which we confirmed that AA-intoxicated
mice displayed significant increases in Nox2 mRNA expression and in plasma and urinary hydrogen
peroxide concentrations, both markers of oxidative stress. Nox2 is widely expressed in the kidney
and is indeed a major source of ROS. Moreover, oral L-Arginine treatment to AA-intoxicated mice
was found to improve renal function and structure. These changes were associated to significant
decreases in Nox2 mRNA expression and in production of ROS along with an increase in antioxidant,
superoxide dismutase (SOD), concentrations. All these observations led us to propose that maintaining
NO bioavailability was beneficial for reducing ROS production [110].

Apoptosis

Apoptosis has been shown to be involved in the process of AA-induced tubular atrophy but
the detailed mechanism for AA to induce apoptosis of renal tubular cells still needs investigation.
It is now clear that AA treatment induce apoptosis in vitro as observed in cultured murine PTEC
(mProx24) [128], in renal epithelial cells from pig (LLC-PK1) [78], in Mardin-Darby canine kidney
(MDCK) cells [129] and in human PTEC (HK-2) [124]. A rapid rise in intracellular Ca2+ concentration
has been described [129,130], which in turn determines endoplasmic reticulum and mitochondria
stress [129], resulting in release of cytochrome c [130], caspases activation and finally apoptosis.
Moreover, apoptosis and release of the cytochrome c were also observed in vivo in rat models [112,131]
as well as in a mice model developed by our group where AA treatment was shown to increase
expression of activated caspase 3. L-Arginine treatment to AA-intoxicated mice allowed to reduce this
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increase of expression thereby limiting apoptosis [110]. Finally, null mice for p53 displayed protection
against AAN development allowing to consider that activation of the p53 pathway participate in the
process of AA-induced apoptosis through dephosphorylation of STAT-3 [132]. Recently, p53 pathway
has been shown to be inhibited by female hormone 17β-estradiol thereby reducing renal tubular injury
in a mouse model of acute AAN [133]. Apoptosis is now considered as the major cell death pathway
in AAN pathogenesis.

5.5.3. Inflammation

Interstitial inflammation is a key factor in the progression to CKD. As an early phase of
interstitial inflammation was observed following proximal tubular necrosis and preceding interstitial
fibrosis [109,134], investigation and characterization of this inflammatory phase were undertaken.
Indeed, it was postulated that the onset of an immune response could constitute the bridge between
the two processes. In 1994, Depierreux had already mentioned the presence of a lymphocytic infiltration
in biopsies of Belgian AAN patients [2]. Later, Pozdzik et al. described the kinetics of evolution of
the inflammatory response in a rat model of AAN [111]. A massive interstitial infiltration of activated
monocytes/macrophages and cytotoxic CD8+ and CD4+ T lymphocytes was shown around necrotic
tubules only after three days of AA intoxication. It was proposed that the damaged PTEC could be
responsible for this mononuclear cell influx into the renal interstitium. At Day 35 of the protocol,
inflammatory infiltrates were still present, suggesting crucial interactions between tubular cells and
immune cells. Finally, histological analyses of human AAN cases also revealed that inflammatory cells
are preferentially present in the interstitium of the medullary rays and in the outer medulla even in
terminal stages [135].

5.5.4. Vascular and Tubular Compartments in AAN: The Egg or the Chicken?

Up to now, the PTEC have always been reported to be the primary target of AA-induced
toxicity [109,112]. However, only few studies have addressed the involvement of the vascular network
in AAN pathophysiology [2,30,110,136]. In this regard, Depierreux and colleagues were the first to
raise the issue about the vascular network in AAN pathology [2] by describing a thickening of the
walls of interlobular and afferent arterioles due to swelling of endothelial cells in human kidney
biopsies from AA-intoxicated patients. Therefore, they proposed that primary lesions could occur in
the vessel walls, then inducing tubular destruction [2,137]. In contrast, in a later study, Cosyns did
not observe any vascular alterations in female New Zealand white rabbits injected intraperitoneally
with a mixture of AAI and AAII during 17 and 21 months [71]. It was therefore concluded that
vascular lesions observed in AA-intoxicated patients were not induced by AA but were more likely
a late consequence of advanced kidney disease. Since then, other investigations have demonstrated
a dramatic decrease in peritubular capillaries especially in the fibrotic areas in human renal biopsies
as well as in experimental models [30,135,138]. In a rat model of AAN, the reduction of peritubular
capillaries network was associated to a decreased expression of vascular endothelial growth factor
(VEGF) and to an increased expression of HIF-1α thereby suggesting that ischemia and hypoxia are
important factors contributing to AAN progression [138]. Similar data were also reported by Wen et al.
in a rat model of AAN. Interestingly, they also described an imbalance between the vasoactive factors
with a reduced NO production occurring along with an increase of mRNA and protein expression of
endothelin-1 (ET-1) [136].

Since the kidney has high energy demand, this organ is very susceptible to further compromise
of vascular perfusion and oxygenation [139]. Although it is well known that injury of renal
microvasculature, endothelial cell activation as well as imbalance between vasoactive substances
widely contributes to the progression to CKD, these mechanisms are poorly investigated in AAN
pathogenesis. In this regard, our group first investigated NO involvement in a mouse model of
AAN [110,140]. We first confirmed the imbalance between vasoactive agents as observed by the
decreased NO bioavailability in mice intoxicated with AA, only five days after the beginning of the
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AA intoxication. This effect was associated with a decrease of the renal function, massive necrosis
of PTEC, increased inflammation and oxidative stress. We then demonstrated that restoring renal
NO bioavailability by L-Arginine supplementation reduced oxidative stress, improved renal function
and preserved renal structure [110]. These data may lead to consider that impairment of vasoactive
mediators such as NO constitutes an early event of the disease, suggesting that impairment of the
vascular compartment contributes to AAN pathogenesis. Although the precise sequence of molecular
events that result in imbalance between the vasoactive substances as well as its consequences have not
been completely elucidated, Figure 5 aims to summarize available data in the literature on this topic.
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5.5.5. Fibrosis

Tubulointerstitial injury characterized by significant fibrosis and tubular atrophy is considered as a
final common pathway leading to ESRD. Irrespective of the nature of the initial renal injury, the degree
of tubular and interstitial damages correlates well with the decline of the renal function and long-term
prognosis. Renal fibrosis is the final common process defining CKD and is characterized by progressive
tissue scarring leading to glomerulosclerosis and tubulointerstitial fibrosis and thereby constitutes
a prominent feature of AAN. Pozdzik et al. reported that vimentin and α-smooth muscle actin-positive
cells accumulated in the renal interstitium along with an overexpression of transforming growth
factor-β (TGF-β) in rats intoxicated for 35 days with AA. TGF-β is the major driver of matrix synthesis,
inhibition of matrix degradation and stimulator of myofibroblast activation [112]. Other groups have
demonstrated its upregulation in AAN [30,111,112,141,142]. Molecular events involved in TGF-β
overexpression are still unclear. However, more is known regarding the downstream pathway of
TGF-β, the Smad protein family. Indeed, Smad3 has emerged as a key factor that has been tightly linked
to matrix accumulation and deletion of Smad3 has been demonstrated to protect against several kidney
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disease, including AAN [143]. By contrast, KO mice for Smad7 intoxicated with AA exhibited enhanced
progression of renal injury. This is of particular interest when keeping in mind that Smad7 negatively
regulates Smad3. Moreover, restored renal Smad7 in the same KO mice resulted in protection against
chronic AAN [144] (Figure 6). Involvement of bone morphogenetic protein-7 (BMP-7, a member of the
TGF-β superfamily) in fibrogenesis was also investigated in vitro and in vivo. However, treatment
with rhBMP-7 did not show any beneficial effect in AA-treated HK-2 cells and rats [145]. Recently,
protein phosphatase magnesium-dependent 1A (PPM1A) has been demonstrated to exhibit Smad2/3
phosphatase activity. AA intoxication in mice resulted in decreased PPM1A expression initiating
production of profibrotic factors [146]. Recently, activated platelet derived growth factor receptorβ
(PDGFRβ)+ perivascular cells have been recognized as another main source of scar-associated kidney
myofibroblasts. The inhibition of p-Smad2/3 signaling pathway by neutralizing anti-TGF-β antibody
(1D11) administered during the acute phase of the rat model of AAN significantly reduced the score of
acute tubular necrosis and interstitial inflammation, but also the extent of peritubular capillaritis and
of PDGFRβ+ pericytes derived myofibroblasts accumulation [147].

Besides members of the TGF-β pathway, other factors were also investigated. Blockade of the
renin-angiotensin system either with an angiotensin converting enzyme inhibitor alone or combined
with antagonist of the angiotensin receptor 1 did not influence progression of fibrosis in a rat model of
AAN. Thus, the pathways leading to interstitial fibrosis seem to be independent of the renin-angiotensin
system in AAN model [134]. On the other hand, circulating transgene-derived hepatocyte growth
factor has been shown to attenuate fibrosis without preventing tubular degeneration in a mice model of
AAN [128]. Finally, inhibition of macrophages accumulation in AA-treated mice resulted in improved
renal function and attenuation of interstitial fibrosis and renal inflammation therefore highlighting the
crucial role of macrophages in production of TGF-β leading to renal fibrosis [148].
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Figure 6. Involvement of TGF-β/Smad pathway in AA-induced fibrogenesis. TGF-β is overexpressed
in AAN contributing to fibrogenesis. Downstream, Smad3 has emerged as a key factor tightly linked to
matrix accumulation and deletion of Smad3 protects against several kidney disease. Smad7 negatively
regulate Smad3 and KO mice for Smad7 intoxicated with AA presented enhanced progression of
renal injury.
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6. Conclusions

Today, the term “aristolochic acid nephropathy” is used to include any form of toxic interstitial
nephropathy that is caused either by the ingestion of plants containing AA as part of traditional
phytotherapies (formerly known as “Chinese herbs nephropathy”), or by the environmental
contaminants in food (Balkan endemic nephropathy). Since its discovery in the early 1990s,
many advances in understanding AAN pathogenesis have been made thanks to experimental in vitro
and in vivo models. However, considerable challenges remain since no effective treatment has
been found until now. In this review, we aimed to summarize data available in the literature
about underlying pathophysiological mechanisms leading to AAN development with a particular
emphasis on the vascular compartment as well as the imbalance between vasoactive factors that
are often forgotten in AAN. Indeed, it is now greatly recognized in the literature that altered
renal hemodynamics widely contribute to ongoing hypoxia and to the development from AKI to
CKD. Therefore, we postulate that renal microvasculature injury and imbalance between endothelial
vasoactive agents could contribute to renal dysfunction and, therefore, fibrosis in AAN. It therefore
constitutes a critical point in AAN pathophysiology.

Finally, the transition of AKI to CKD has an important significance clinically because patients
surviving an episode of AKI present a significant risk of progression to CKD [139,149,150]. However,
the mechanisms by which AKI might initiate the onset of CKD have not been fully defined and better
understanding of these pathophysiological mechanisms could lead to new biomarkers discovery as
well as new therapeutic strategies to prevent and treat AKI or impede progression to CKD. In this
regard, animal models of AAN could represent a useful tool and provide important insight into the
underlying mechanisms of AKI-to-CKD transition.

Acknowledgments: The assistance of Michel Savels (University of Namur) is greatly appreciated.

Author Contributions: Inès Jadot is the major writer of the manuscript; and Anne-Emilie Declèves, Joëlle Nortier
and Nathalie Caron have overseen the writing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vanherweghem, J.L.; Depierreux, M.; Tielemans, C.; Abramowicz, D.; Dratwa, M.; Jadoul, M.; Richard, C.;
Vandervelde, D.; Verbeelen, D.; Vanhaelen-Fastre, R. Rapidly progressive interstitial renal fibrosis in young
women: Association with slimming regimen including Chinese herbs. Lancet 1993, 341, 387–391. [CrossRef]

2. Depierreux, M.; Van Damme, B.; Vanden Houte, K.; Vanherweghem, J.L. Pathologic aspects of a newly
described nephropathy related to the prolonged use of Chinese herbs. Am. J. Kidney Dis. 1994, 24, 172–180.
[CrossRef]

3. Vanhaelen, M.; Vanhaelen-Fastre, R.; But, P.; Vanherweghem, J.-L. Identification of aristolochic acid in
Chinese herbs. Lancet 1994, 343, 174. [CrossRef]

4. Cosyns, J.; Jadoul, M.; Squifflet, J.-P.; Van Cangh, P.; van Ypersele de Strihou, C. Urothelial malignancy in
nephropathy due to Chinese herbs. Lancet 1994, 344, 188. [CrossRef]

5. Nortier, J.L.; Martinez Muniz, M.-C.; Schmeiser, H.H.; Arlt, V.M.; Bieler, C.A.; Petein, M.; Depierreux, M.F.;
de Pauw, L.; Abramowicz, D.; Vereerstraeten, P.; et al. Urothelial carcinoma associated with the use of
a Chinese herb. N. Engl. J. Med. 2000, 342, 1686–1692. [CrossRef] [PubMed]

6. World Health Organization. Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and
Styrene. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Press: Lyon, France,
2002; Volume 82.

7. Debelle, F.D.; Vanherweghem, J.-L.; Nortier, J.L. Aristolochic acid nephropathy: A worldwide problem.
Kidney Int. 2008, 74, 158–169. [CrossRef] [PubMed]

8. Chen, C.-H.; Dickman, K.G.; Moriya, M.; Zavadil, J.; Sidorenko, V.S.; Edwards, K.L.; Gnatenko, D.V.; Wu, L.;
Turesky, R.J.; Wu, X.-R.; et al. Aristolochic acid-associated urothelial cancer in Taiwan. Proc. Natl. Acad.
Sci. USA 2012, 109, 8241–8246. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/0140-6736(93)92984-2
http://dx.doi.org/10.1016/S0272-6386(12)80178-8
http://dx.doi.org/10.1016/S0140-6736(94)90964-4
http://dx.doi.org/10.1016/S0140-6736(94)92786-3
http://dx.doi.org/10.1056/NEJM200006083422301
http://www.ncbi.nlm.nih.gov/pubmed/10841870
http://dx.doi.org/10.1038/ki.2008.129
http://www.ncbi.nlm.nih.gov/pubmed/18418355
http://dx.doi.org/10.1073/pnas.1119920109
http://www.ncbi.nlm.nih.gov/pubmed/22493262


Int. J. Mol. Sci. 2017, 18, 297 17 of 24

9. Hsieh, S.-C.; Lin, I.-H.; Tseng, W.-L.; Lee, C.-H.; Wang, J.-D. Prescription profile of potentially aristolochic
acid containing Chinese herbal products: An analysis of National Health Insurance data in Taiwan between
1997 and 2003. Chin. Med. 2008, 3, 13. [CrossRef] [PubMed]

10. Lai, M.N.; Lai, J.N.; Chen, P.C.; Tseng, W.L.; Chen, Y.Y.; Hwang, J.S.; Wang, J.D. Increased risks of chronic
kidney disease associated with prescribed Chinese herbal products suspected to contain aristolochic acid.
Nephrology 2009, 14, 227–234. [CrossRef] [PubMed]

11. Ng, Y.Y.; Yu, S.; Chen, T.W.; Wu, S.C.; Yang, A.H.; Yang, W.C. Interstitial renal fibrosis in a young woman:
Association with a Chinese preparation given for irregular menses. Nephrol. Dial. Transplant. 1998, 13,
2115–2117. [CrossRef] [PubMed]

12. Cosyns, J.; Jadoul, M.; Squifflet, J.; Plaen, J.; Ferluga, D.; van Ypersele de Strihou, C. Chinese herbs
nephropathy: A clue to Balkan endemic nephropathy? Kidney Int. 1994, 45, 1680–1688. [CrossRef] [PubMed]

13. Arlt, V.M.; Ferluga, D.; Stiborova, M.; Pfohl-Leszkowicz, A.; Vukelic, M.; Ceovic, S.; Schmeiser, H.H.;
Cosyns, J.-P. Is aristolochic acid a risk factor for Balkan endemic nephropathy-associated urothelial cancer?
Int. J. Cancer 2002, 101, 500–502. [CrossRef] [PubMed]

14. Arlt, V.M.; Alunni-Perret, V.; Quatrehomme, G.; Ohayon, P.; Albano, L.; Gaïd, H.; Michiels, J.-F.; Meyrier, A.;
Cassuto, E.; Wiessler, M.; et al. Aristolochic acid (AA)-DNA adduct as marker of AA exposure and risk
factor for AA nephropathy-associated cancer. Int. J. Cancer 2004, 111, 977–980. [CrossRef] [PubMed]

15. Nortier, J.L.; Pozdzik, A.; Roumeguere, T.; Vanherweghem, J.-L. Néphropathie aux acides aristolochiques
(“Néphropathie aux herbes chinoises”). Néphrol. Thér. 2015, 11, 574–588. [CrossRef] [PubMed]

16. Mengs, U. Acute toxicity of aristolochic acid in rodents. Arch. Toxicol. 1987, 59, 328–331. [CrossRef] [PubMed]
17. Schmeiser, H.H.; Bieler, C.A.; Wiessler, M.; van Ypersele de, S.C.; Cosyns, J.P. Detection of DNA adducts

formed by aristolochic acid in renal tissue from patients with Chinese herbs nephropathy. Cancer Res. 1996,
56, 2025–2028. [PubMed]

18. Martinez, M.-C.M.; Nortier, J.; Vereerstraeten, P.; Vanherweghem, J.-L. Progression rate of Chinese herb
nephropathy: Impact of Aristolochia fangchi ingested dose. Nephrol. Dial. Transplant. 2002, 17, 408–412.
[CrossRef] [PubMed]

19. Cosyns, J.P.; Goebbels, R.M.; Liberton, V.; Schmeiser, H.H.; Bieler, C.A.; Bernard, A.M. Chinese herbs
nephropathy-associated slimming regimen induces tumours in the forestomach but no interstitial
nephropathy in rats. Arch. Toxicol. 1998, 72, 738–743. [CrossRef] [PubMed]

20. Gillerot, G.; Jadoul, M.; Arlt, V.M.; van Ypersele de Strihou, C.; Schmeiser, H.H.; But, P.P.; Bieler, C.A.;
Cosyns, J.P. Aristolochic acid nephropathy in a Chinese patient: Time to abandon the term “Chinese herbs
nephropathy”? Am. J. Kidney Dis. 2001, 38, E26. [CrossRef] [PubMed]

21. Vanherweghem, J.-L. Misuse of Herbal Remedies: The case of an outbreak of terminal renal failure in
Belgium (Chinese Herbs Nephropathy). J. Altern. Complement. Med. 1998, 4, 9–13. [CrossRef] [PubMed]

22. Pena, J.; Borras, M.; Ramos, J.; Montoliu, J. Rapidly progressive interstitial renal fibrosis due to a chronic
intake of a herb (Aristolochia pistolochia) infusion. Nephrol. Dial. Transplant. 1996, 11, 1359–1360. [CrossRef]
[PubMed]

23. Stengel, B.; Jones, E. End-Stage Renal Insufficiency Associated With Chinese Herbal Consumption in France.
Nephrologie 1998, 19, 15–20. [PubMed]

24. Lord, G.M.; Tagore, R.; Cook, T.; Gower, P.; Pusey, C.D. Nephropathy caused by Chinese herbs in the UK.
Lancet 1999, 354, 481–482. [CrossRef]

25. Krumme, B.; Endmeir, R.; Vanhaelen, M.; Walb, D. Reversible Fanconi syndrome after ingestion of a Chinese
herbal “remedy” containing aristolochic acid. Nephrol. Dial. Transplant. 2001, 16, 400–402. [CrossRef]
[PubMed]

26. Meyer, M.M.; Chen, T.P.; Bennett, W.M. Chinese herb nephropathy. Proc. (Bayl. Univ. Med. Cent.) 2000, 13,
334–337.

27. Chau, W.; Ross, R.; Li, J.Y.Z.; Yong, T.Y.; Klebe, S.; Barbara, J.A. Nephropathy associated with use of a Chinese
herbal product containing aristolochic acid. Med. J. Aust. 2011, 194, 367–368. [PubMed]

28. Chen, W.; Chen, Y.; Li, A. The clinical and pathological manifestations of aristolochic acid nephropathy—The
report of 58 cases. Zhonghua Yi Xue Za Zhi 2001, 81, 1101–1105. [PubMed]

29. Lo, S.H.K.; Mo, K.L.; Wong, K.S.; Poon, S.P.; Chan, C.K.; Lai, C.K.; Chan, A. Aristolohic acid nephropathy
complicating a patient with focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 2004, 19, 1913–1915.
[CrossRef] [PubMed]

http://dx.doi.org/10.1186/1749-8546-3-13
http://www.ncbi.nlm.nih.gov/pubmed/18945373
http://dx.doi.org/10.1111/j.1440-1797.2008.01061.x
http://www.ncbi.nlm.nih.gov/pubmed/19076288
http://dx.doi.org/10.1093/ndt/13.8.2115
http://www.ncbi.nlm.nih.gov/pubmed/9719178
http://dx.doi.org/10.1038/ki.1994.220
http://www.ncbi.nlm.nih.gov/pubmed/7933816
http://dx.doi.org/10.1002/ijc.10602
http://www.ncbi.nlm.nih.gov/pubmed/12216081
http://dx.doi.org/10.1002/ijc.20316
http://www.ncbi.nlm.nih.gov/pubmed/15300815
http://dx.doi.org/10.1016/j.nephro.2015.10.001
http://www.ncbi.nlm.nih.gov/pubmed/26515658
http://dx.doi.org/10.1007/BF00295084
http://www.ncbi.nlm.nih.gov/pubmed/3579596
http://www.ncbi.nlm.nih.gov/pubmed/8616845
http://dx.doi.org/10.1093/ndt/17.3.408
http://www.ncbi.nlm.nih.gov/pubmed/11865085
http://dx.doi.org/10.1007/s002040050568
http://www.ncbi.nlm.nih.gov/pubmed/9879812
http://dx.doi.org/10.1053/ajkd.2001.28624
http://www.ncbi.nlm.nih.gov/pubmed/11684578
http://dx.doi.org/10.1089/acm.1998.4.1-9
http://www.ncbi.nlm.nih.gov/pubmed/9553830
http://dx.doi.org/10.1093/ndt/11.7.1359
http://www.ncbi.nlm.nih.gov/pubmed/8672040
http://www.ncbi.nlm.nih.gov/pubmed/9551447
http://dx.doi.org/10.1016/S0140-6736(99)03380-2
http://dx.doi.org/10.1093/ndt/16.2.400
http://www.ncbi.nlm.nih.gov/pubmed/11158421
http://www.ncbi.nlm.nih.gov/pubmed/21470089
http://www.ncbi.nlm.nih.gov/pubmed/11766606
http://dx.doi.org/10.1093/ndt/gfh159
http://www.ncbi.nlm.nih.gov/pubmed/15199198


Int. J. Mol. Sci. 2017, 18, 297 18 of 24

30. Yang, L.; Li, X.; Wang, H. Possible mechanisms explaining the tendency towards interstitial fibrosis in
aristolochic acid-induced acute tubular necrosis. Nephrol. Dial. Transplant. 2007, 22, 445–456. [CrossRef]
[PubMed]

31. Yang, L.; Su, T.; Li, X.M.; Wang, X.; Cai, S.Q.; Meng, L.Q.; Zou, W.Z.; Wang, H.Y. Aristolochic acid
nephropathy: Variation in presentation and prognosis. Nephrol. Dial. Transplant. 2012, 27, 292–298. [CrossRef]
[PubMed]

32. Yang, C.S.; Lin, C.H.; Chang, S.H.; Hsu, H.C. Rapidly progressive fibrosing interstitial nephritis associated
with Chinese herbal drugs. Am. J. Kidney Dis. 2000, 35, 313–318. [CrossRef]

33. Lee, C.T.; Wu, M.S.; Lu, K.; Hsu, K.T. Renal tubular acidosis, hypokalemic paralysis, rhabdomyolysis,
and acute renal failure—A rare presentation of Chinese herbal nephropathy. Ren. Fail. 1999, 21, 227–230.
[CrossRef] [PubMed]

34. Hong, Y.T.; Fu, L.S.; Chung, L.H.; Hung, S.C.; Huang, Y.T.; Chi, C.S. Fanconi’s syndrome, interstitial fibrosis
and renal failure by aristolochic acid in Chinese herbs. Pediatr. Nephrol. 2006, 21, 577–579. [CrossRef]
[PubMed]

35. Tanaka, A.; Nishida, R.; Sawai, K.; Nagae, T.; Shinkai, S.; Ishikawa, M.; Maeda, K.; Murata, M.; Seta, K.;
Okuda, J.; et al. Traditional remedy-induced Chinese herbs nephropathy showing rapid deterioration of
renal function. Nihon Jinzo Gakkai Shi 1997, 39, 794–797. [PubMed]

36. Tanaka, A.; Nishida, R.; Maeda, K.; Sugawara, A.; Kuwahara, T. Aristolochic acid—Induced Fanconi’s
syndrome and nephropathy presenting as hypokalemic paralysis. Clin. Nephrol. 2000, 39, 521116.

37. Kazama, I.; Matsubara, M.; Michimata, M.; Suzuki, M.; Hatano, R.; Sato, H.; Ito, S. Adult onset Fanconi
syndrome: Extensive tubulo-interstitial lesions and glomerulopathy in the early stage of Chinese herbs
nephropathy. Clin. Exp. Nephrol. 2004, 8, 283–287. [CrossRef] [PubMed]

38. Michl, J.; Jennings, H.M.; Kite, G.C.; Ingrouille, M.J.; Simmonds, M.S.J.; Heinrich, M. Is aristolochic acid
nephropathy a widespread problem in developing countries: A case study of Aristolochia indica L. in
Bangladesh using an ethnobotanical-phytochemical approach. J. Ethnopharmacol. 2013, 149, 235–244.
[CrossRef] [PubMed]

39. Lee, S.; Lee, T.; Lee, B.; Choi, H.; Yang, M.; Ihm, C.; Kim, M. Fanconi’s syndrome and subsequent progressive
renal failure caused by a Chinese herb containing aristolochic acid. Nephrology 2004, 126–129. [CrossRef]
[PubMed]

40. Poon, W.T.; Lai, C.K.; Chan, A.Y.W. Aristolochic acid nephropathy: The Hong Kong perspective. Hong Kong
J. Nephrol. 2007, 9, 7–14. [CrossRef]

41. Nortier, J.L.; Vanherweghem, J.-L. For patients taking herbal therapy—Lessons from aristolochic acid
nephropathy. Nephrol. Dial. Transplant. 2007, 22, 1512–1517. [CrossRef] [PubMed]

42. Heinrich, M.; Chan, J.; Wanke, S.; Neinhuis, C.; Simmonds, M.S.J. Local uses of Aristolochia species and
content of nephrotoxic aristolochic acid 1 and 2—A global assessment based on bibliographic sources.
J. Ethnopharmacol. 2009, 125, 108–144. [CrossRef] [PubMed]

43. National Toxicology Program. Aristolochic Acids. Rep. Carcinog. 2011, 12, 45–49.
44. Stiborová, M.; Arlt, V.M.; Schmeiser, H.H. Balkan endemic nephropathy: An update on its aetiology.

Arch. Toxicol. 2016, 90, 2595–2615. [CrossRef] [PubMed]
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