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Synchronization over networks depends strongly on the structure of the coupling between the

oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained

into clusters by means of External Equitable Partitions of the network graph and their associated

quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster syn-

chronization, in which different groups of nodes converge to distinct behaviors. We derive condi-

tions and properties of networks in which such clustered behavior emerges and show that the

ensuing dynamics is the result of the localization of the eigenvectors of the associated graph

Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear

and non-linear models, first for the standard case of networks with positive edges, before being

generalized to the case of signed networks with both positive and negative interactions. We illus-

trate our results with examples of both signed and unsigned graphs for consensus dynamics and

for partial synchronization of oscillator networks under the master stability function as well as

Kuramoto oscillators. VC 2016 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4961065]

Synchronization of coupled oscillators is ubiquitous in

nature: from the rhythmic flashing of fireflies or the

orchestrated chirping of crickets to the entrainment of

circadian rhythms or the coherent firing of neurons in

epilepsy to the dynamics of man-made networks, such as

power grids and computer networks. Synchronization is

also related to consensus processes, such as the flocking

of birds or shoaling of fish, or opinion formation in social

networks.

Previous studies have typically focused on complete

synchronization, where all agents on a network converge

to the same dynamics. However, many networks display

patterns of synchronized clusters, where different groups

of agents converge to distinct behaviors. Here, we use

tools from graph theory to study the phenomenon of clus-

ter synchronization. We show that cluster synchroniza-

tion can emerge in networks that can be partitioned into

groups according to an external equitable partition (EEP)

of the graph. Our graph-theoretical approach allows us

to extend the analysis to networks with positive and nega-

tive links, which are important to describe social interac-

tions and inhibitory-excitatory interactions in biology.

We showcase applications to consensus dynamics and to

generic synchronization of oscillators, including the clas-

sic Kuramoto model, and discuss general applications to

networked systems of interacting agents.

I. INTRODUCTION

Synchronization phenomena are prevalent in networked

systems in biology, physics, and chemistry, as well as in

social and technological networks. The study of these perva-

sive processes thus spans many disciplines leading to a rich

literature on this subject.1–7 The synchronization literature

has traditionally focused on the problem of total synchroni-

zation, initially under mean field or global coupling1,8 and

more recently studying how total synchronization relates to

properties of the interaction topology and the dynamics of

the individual agents.1–4,9–14

Currently, there is a surge of interest in localized syn-

chronization processes, where parts of the network become

locally synchronized. This phenomenon may also be referred

to as partial synchronization, cluster synchronization, or pol-
ysynchrony.15–25 Recent work has shown that the predisposi-

tion of a network of coupled oscillators to exhibit cluster

synchronization is intimately linked to symmetries present in

the coupling.24,25 In particular, Pecora and collaborators

showed how one can use the inherent symmetry group of the

network to block-diagonalize the coupling, thereby assessing

the stability of cluster synchronization under the master sta-

bility function (MSF) formalism.10,11

Here, we will also be concerned with the subject of clus-

ter synchronization of oscillators in networks with general

topologies. However, instead of using a group-theoretic

viewpoint, we will consider this problem from an alternative

graph-theoretical perspective. Specifically, we derive results

for cluster synchronization in networks of oscillators using

a)Electronic mail: michael.schaub@uclouvain.be
b)Electronic mail: m.barahona@imperial.ac.uk
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the notion of external equitable partition (EEP), a concept

that has gained prominence in systems theory to study con-

sensus processes.26–29 The use of EEPs emphasizes the pres-

ence of an invariant subspace in the coupling structure and

leads to a coarse-grained description of the network in terms

of a quotient graph. This approach complements the group-

theoretical symmetry viewpoint in Refs. 24 and 25, while

also encompassing the analysis of networks of Kuramoto

oscillators,8,30 a prototypical model for phase synchroniza-

tion which does not lend itself to the MSF formalism.

In addition, we show how the EEP perspective of cluster

synchronization can be generalized to signed networks, i.e.,

graphs with links of positive and negative weights. To do this,

we define the notion of signed external equitable partition
(sEEP) and demonstrate its applicability on structurally bal-
anced signed networks, a classic model from the theory of

social networks.31,32 In structurally balanced signed networks,

linear consensus dynamics leads to a form of “bipolar con-

sensus,”33,34 in which nodes split into two factions, i.e., nodes

inside the same faction converge to a common value, while the

other faction converges to the same value with opposite sign.

In the synchronization setting, we demonstrate that the pres-

ence of sEEPs can induce a bipolar cluster synchronization, in

which each group of oscillators may be divided into two “out-

of-phase” groups, with trajectories of equal magnitude but

opposite sign. Below, we show how these results appear for

signed networks under the MSF framework as well as for

Kuramoto oscillators.

A. Notation

Our notation is standard. The number of nodes (vertices)

in the network is denoted by N; the number of edges (links)

by E. We denote the adjacency matrix of the graph by

A ¼ AT , where Aij corresponds to the weight of the coupling

between node (oscillator) i and j. The graph Laplacian matrix

is defined as L ¼ D� A, where D ¼ diagðA1Þ is the matrix

containing the total coupling strength of each node on the

diagonal, i.e., Dii ¼
P

jAij. From this definition, it is straight-

forward to see that the vector of ones 1 is an eigenvector of

L with eigenvalue 0. It is well known that the Laplacian may

be decomposed as L ¼ BWBT , where B is the node-to-edge

incidence matrix and W is a diagonal matrix containing the

(positive) weights of the edges. It therefore follows that the

Laplacian is a positive semidefinite matrix.

To simplify notation, but without loss of generality, our

exposition below is presented for unweighted graphs, i.e.,

W¼ I. However, all our results apply to weighted graphs by

using edge weight matrices appropriately.

II. EXTERNAL EQUITABLE PARTITIONS

External equitable partitions are of interest because the

existence of an EEP in a graph has implications for its spec-

tral properties and, consequently, for dynamical processes

associated with the graph. EEPs extend the notion of equita-

ble partition (EP). An EP splits the graph into non-

overlapping cells fCig (groups of nodes), such that the num-

ber of connections to cell Cj from any node v 2 Ci is only

dependent on i, j. Stated differently, the nodes inside each

cell of an EP have the same out-degree pattern with respect

to every cell. For EEPs, this requirement is relaxed so that it

needs to hold only for the number of connections between

different cells Ci; Cj ði 6¼ jÞ.
Algebraically, these definitions can be represented as

follows.26,28,35 A partition of a graph with N nodes into c
cells is encoded by the N� c indicator matrix H: Hij¼ 1 if

node i is part of cell Cj and Hij¼ 0 otherwise. Hence, the col-

umns of H are indicator vectors hi of the cells

H :¼ ½h1;…; hc�: (1)

Given the Laplacian matrix L of a graph, we can write

the definition of an EEP as follows:

LH ¼ HLp: (2)

Here, Lp is the c� c Laplacian of the quotient graph induced

by H

Lp ¼ ðHTHÞ�1HTLH ¼ HþLH; (3)

where the c�N matrix Hþ is the (left) Moore-Penrose pseu-

doinverse of H. Observe that multiplying a vector x 2 RN

by HT from the left sums up the components within each

cell, and that HTH is a diagonal matrix with the number of

nodes per cell on the diagonal. Hence, Hþ may be interpreted

as a cell averaging operator.27

The quotient graph associated with an EEP is a coarse-

grained version of the original graph, such that each cell of

the partition becomes a new node and the weights between

these new nodes are the out-degrees between the cells in the

original graph (see Fig. 1(a)). Although the Laplacian of the

original graph is symmetric, the quotient Laplacian will be

asymmetric in general. Note that, from the definition of the

Laplacian, there is always a trivial EEP in which the whole

graph is grouped into one cell, i.e., H ¼ 1 and Lp ¼ 0.

From (2) and (3), the definition of the EEP can be

rewritten solely in terms of L

LH ¼ HHþLH ¼ PHLH; (4)

where PH :¼ HHþ is the projection operator onto the cell

subspace, i.e., it defines an orthogonal projection onto the

range of H.

The operator PH commutes with L

LPH ¼ HLpHþ ¼ PHLPH ¼ PHL; (5)

which follows from (2), (4), and the symmetry of L and PH.

Using the commutation (5), it is easy to show that

HþL ¼ LpHþ; (6)

which summarises the relationship between the cell averag-

ing operator Hþ and the Laplacians of the original and quo-

tient graphs.

Remark 1 [Equitable partitions and coupling via adja-
cency matrices]. It is instructive to consider EEPs with
respect to the stricter requirement of equitable partitions
(EPs). Given the adjacency matrix A of a graph, an equitable
partition encoded by the indicator matrix HEP must fulfill

094821-2 Schaub et al. Chaos 26, 094821 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  138.48.77.181 On: Fri, 16 Sep

2016 06:57:12



AHEP ¼ HEPAp� : (7)

Hence, we can define the adjacency matrix of the EP quo-
tient graph Ap� induced by HEP as

Ap� ¼ HþEP A HEP: (8)

The adjacency matrix Ap� has diagonal entries corresponding
to self-loops in the quotient graph of the EP, reflecting the
number of edges between any two nodes inside each cell. In
contrast, the adjacency matrix of an EEP cannot be uniquely
defined; thus, such in-cell information is not consistently
specified. On the other hand, the quotient graphs of both EPs
and EEPs have consistently defined Laplacian matrices, due
to the well-known invariance of the Laplacian to the addition
of self-loops in a graph, so that the quotient Laplacian is unaf-
fected by the internal connectivity inside each cell. This alge-
braic argument clarifies why EEPs are defined in terms of the
Laplacian (2). It also follows directly that every EP is neces-
sarily an EEP, while the converse is not true.

Remark 2 [Network symmetries and (external) equitable
partitions]. Recently, Pecora et al.24,25 used the symmetry
groups of a graph and their associated irreducible representa-
tions to identify possible synchronization clusters in networks
of oscillators and to assess their stability. Their group-

theoretical analysis is intimately related to the graph-
theoretical perspective presented here. Indeed, the symmetry
groups of the graph induce orbit partitions. Every orbit parti-
tion is an equitable partition, yet the converse is not true:
there exist EPs not induced by any symmetry group.35,36

Recall that EEPs are a relaxation of EPs in the sense that
EEPs disregard the connections inside each cell.
Consequently, EEPs are defined in terms of the Laplacian
matrix (2), in contrast to EPs being defined in terms of the
adjacency matrix (7). Interestingly, recent work of Sorrentino
et al.25 introduced “adjusted orbit partitions” induced by
symmetry groups of a “dynamically equivalent coupling
matrix” in which internal connections inside each cluster are
ignored. Such “adjusted orbit partitions” are in fact EEPs,
but, as for EPs, there exist EEPs that cannot be generated by
the symmetry groups of such dynamically equivalent coupling
matrices. In this sense, EEPs provide a generalised setting
that includes the group-theoretical orbit partitions as a partic-
ular case.

As EEPs are a larger class of partitions than EPs and

Laplacians are of wide interest in applications, we concen-

trate here on networks with Laplacian coupling. All our

results can be applied straightforwardly to systems in which

the coupling is described by the adjacency matrix, by consid-

ering EPs rather than EEPs.

III. CLUSTER SYNCHRONIZATION UNDER THE
EXTERNAL EQUITABLE PARTITION

We first use EEPs to study cluster synchronization on

standard networks, i.e., defined by connected undirected

graphs with positive weights. We start by considering results

for linear consensus and then apply the framework to nonlin-

ear cluster synchronization both under the MSF formalism as

well as Kuramoto networks.

A. Dynamical implications of EEPs: The linear case

The definition of the EEP (2) can be understood as a

“quasi-commutation” relation, which signals a certain invari-

ance of the partition encoded by H with respect to the

Laplacian L. Similarly, Eq. (6) shows that the cell averaging

operator Hþ exhibits a (distinct) invariance with respect to L.

In particular, Eq. (2) implies that the associated cell indicator

matrix H spans an invariant subspace of L, whence it follows

that there exist a set of eigenvectors which are localised on

the cells of the partition. Furthermore, the eigenvalues asso-

ciated with the eigenvectors spanning the invariant subspace

are shared with Lp, the Laplacian of the quotient graph.27 If

L has degenerate eigenvalues, an eigenbasis can still be cho-

sen so that it is localised on the cells of the partition.27

The properties of the EEP (2)–(6) have noteworthy con-

sequences for linear dynamics dictated by L, as illustrated by

the case of linear consensus dynamics27

_x ¼ �Lx; (9)

where the N � 1 vector x describes the state of the system.

First, as shown in Fig. 1(b), the EEP is consistent with a

form of invariance akin to “cluster consensus.” In particular,

FIG. 1. External equitable partitions and invariant consensus dynamics. (a)

A graph with N¼ 8 nodes with an external equitable partition into four cells

(indicated with colors) and its associated quotient graph. (b) The evolution

of the consensus dynamics on the full graph (9) from an initial condition

x ¼ Hy is shown with solid lines. The associated quotient dynamics (10)

governing y is shown with circles. Once all states within each cell are equal

(i.e., they are cluster-synchronized), the dynamics will remain cluster-

synchronized and its dynamics will be described by the quotient dynamics

for all times. (c) For consensus dynamics, the quotient graph dynamics also

describes the cell-averaged dynamics (crosses) of the unsynchronized full

graph dynamics (solid lines), as given by (11).
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if the initial state vector is given by x ¼ Hy for some arbi-

trary y (i.e., all the nodes within cell Ci have the same value

yi), the nodes inside the cells remain identical for all times

and their dynamics is governed by the quotient graph

_x ¼ H _y; where _y ¼ �Lpy: (10)

This follows directly from LHy ¼ HLpy.

Second, the dynamics of the cell-averaged states hxiCi
is

governed by the quotient graph

dhxiCi

dt
¼ �LphxiCi

; where hxiCi
:¼ Hþx; (11)

which follows from HþLx ¼ LpHþx. Thus, the cell-

averaged dynamics is governed by a lower dimensional lin-

ear model, with dimensionality equal to the number of cells

in the EEP (see Fig. 1(c)).

Third, the results obtained for the autonomous dynamics

with no inputs (9) can be equivalently rephrased for the sys-

tem with a bounded input uðtÞ

_x ¼ �Lxþ uðtÞ: (12)

In particular, similar to (10), we also have cell invariance

under inputs: if we apply an input consistent with the cells of

an EEP (i.e., uðtÞ ¼ HvðtÞ; vðtÞ 2 Rc), the nodes inside each

cell remain identical for all times.27 This simple insight,

which follows from the impulse-response of the linear sys-

tem (12), will be useful when analysing nonlinear synchroni-

zation protocols.

Finally, it is important to remark that since there is

always a trivial EEP spanning the complete graph (with

H ¼ 1), all the results above and henceforth can be trivially

applied to the case of global consensus (global synchroniza-

tion) as a particular case.

B. EEPs and nonlinear cluster synchronization within
the MSF framework

We now extend the notions introduced above to a more

general setting describing the dynamics of interconnected

nonlinear systems. This framework is known as the Master

Stability Function (MSF) and has been pioneered by Pecora

and co-workers.10–12

We consider networks of identical coupled oscillatory

nonlinear systems in which the dynamics of each node i is

described by

_xi ¼ FðxiÞ � c
X

j

LijGðxjÞ; (13)

where c is a parameter that regulates the coupling strength;

xi 2 Rd is the state vector of node i; F : Rd ! Rd is the

intrinsic dynamics of each node; and the coupling function

G : Rd ! Rd specifies how the nodes in the network inter-

act according to the interconnection topology described by

the graph Laplacian L.

Although, as discussed above, we could consider a cou-

pling mediated by the adjacency matrix (and associated

EPs), we concentrate here on the case of Laplacian coupling

(and associated EEPs) as the more generic case of interest in

the literature.

To facilitate the subsequent discussion, we define

x :¼ ½xT
1 ; :::; x

T
N�

T 2 RNd and use the Kronecker product to

rewrite (13) compactly as an Nd-dimensional system of

ordinary differential equations (ODEs)

_x ¼ FNðxÞ � cðL� IdÞGNðxÞ; (14)

where FNðxÞ :¼ ½Fðx1ÞT ;…;FðxNÞT �T 2RNd;

GNðxÞ :¼ ½Gðx1ÞT ;…;GðxNÞT �T 2RNd, and Id is the d-

dimensional identity matrix.

A cluster-synchronized state consistent with an EEP

with indicator matrix H is then given by

xsðtÞ ¼ ðH � IdÞ ysðtÞ; where (15)

ysðtÞ ¼ ½s1ðtÞT ;…; scðtÞT �T 2 Rcd: (16)

1. EEPs and invariance of cluster-synchronized states

Let a graph with Laplacian L exhibit a nontrivial

EEP with c cells encoded by the indicator matrix H and

quotient Laplacian Lp. The dynamics of the cell variables

y :¼ ½yT
1 ; :::; y

T
c �

T 2 Rc d associated with the quotient graph

is then given by

_y ¼ FcðyÞ � cðLp � IdÞGcðyÞ; (17)

where FcðyÞ;GcðyÞ 2 Rc d are defined analogously to

FN;GN above, and we have the relations

ðH � IdÞFcðyÞ ¼ FNððH � IdÞyÞ; (18)

ðH � IdÞGcðyÞ ¼ GNððH � IdÞyÞ: (19)

In close parallel to the linear case (10), we can derive

the following result for cluster-synchronized dynamics. Let

us have an initial condition that is identical within the cells

of the EEP, i.e., x ¼ ðH � IdÞy for some arbitrary y 2 Rcd at

t¼ 0. Then, the nodes within cells of the EEP remain identi-

cal for all time t � 0, and their dynamics can be described by

the dynamics of the quotient graph

_x ¼ ðH � IdÞ _y; where

_y ¼ FcðyÞ � cðLp � IdÞGcðyÞ:
(20)

This result follows from

_x ¼ ðH � IdÞ _y ¼ ðH � IdÞ½FcðyÞ � cðLp � IdÞGcðyÞ�
¼ FNððH � IdÞyÞ � cðHLp � IdÞGcðyÞ
¼ FNððH � IdÞyÞ � cðLH � IdÞGcðyÞ
¼ FNððH � IdÞyÞ � cðL� IdÞðH � IdÞGcðyÞ
¼ FNððH � IdÞyÞ � cðL� IdÞGNððH � IdÞyÞ: �

Here, we have made use of the standard identity

ðA� BÞðC� DÞ ¼ ðACÞ � ðBDÞ.
Example [Coupled R€ossler oscillators]. Consider a net-

work of N¼ 8 oscillators where each node has a three
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dimensional dynamics (d¼ 3) given by the chaotic R€ossler

system37

FðxÞ ¼ Fð½x1; x2; x3�TÞ ¼
�x2 � x3

x1 þ ax3

bþ x3ðx1 � cÞ

2
4

3
5; (21)

with parameters a ¼ b ¼ 0:2 and c¼ 7. The oscillators are

coupled through the variable x1 according to the linear

function

GðxÞ ¼
1 0 0

0 0 0

0 0 0

2
4

3
5x:

The topology of interconnection is a star graph, which has an

EEP with two cells (c¼ 2): one cell comprises the central

node, and the other cell contains all other nodes (Fig. 2).

Let the initial condition be x0 ¼ ðH � IdÞy0. Then, the

variables of the nodes within each cell remain identical at all

times, i.e., the dynamics stays cluster-synchronized (Fig. 2).

For c ¼ 0:3, this poly-synchronous state (while remaining

cluster-synchronized at all times) evolves towards the glob-

ally synchronized state (Fig. 2(c)). In contrast, for c ¼ 0:03,

the cluster synchronization of the cells does not converge

towards global synchrony, since the completely synchro-

nized state of the quotient graph dynamics is no longer (line-

arly) stable (Fig. 2(d) and Sec. III B 3).

2. EEPs and cell-averaged synchronization dynamics

Although the invariance of cluster-synchronized EEP

states carries over to the nonlinear MSF setting, the second

finding of the linear analysis, namely, that the dynamics of

cell averages is described by the quotient graph dynamics

(17), does not hold in general. Indeed, after some algebraic

manipulations, it is easy to see that

ðHþ � IdÞ _x ¼ ðHþ � IdÞ½FNðxÞ� cðL� IdÞGNðxÞ�
¼ ðHþ � IdÞFNðxÞ� cðLp� IdÞðHþ � IdÞGNðxÞ:

Due to their nonlinearity, in general, F and G do not com-

mute with the linear cell-averaging operation

ðHþ � IdÞFNðxÞ 6¼ FcððHþ � IdÞxÞ;
ðHþ � IdÞGNðxÞ 6¼ GcððHþ � IdÞxÞ:

Hence, unlike the linear case, the cell-averaged dynamics is

not strictly equivalent to the synchronization dynamics gov-

erned by the Laplacian of the quotient graph.

However, an approximate equivalence is obtained if we

consider an � perturbation around a cluster-synchronized

state (15). To first order, we then have

FNðxs þ �Þ � FNððH � IdÞysÞ þ DFNðxsÞ �;
GNðxs þ �Þ � GNððH � IdÞysÞ þ DGNðxsÞ �;

where DFNðxÞ and DGNðxÞ denote the Jacobians of FN and

GN for state x.

This result implies that if the cluster-synchronized state

is stable, the averaging operator will approximately commute

with both FN and GN when the state is close to the cluster-

synchronized state. As a consequence, an appropriately cho-

sen initial condition of the average cell dynamics will remain

close (or converge) to the quotient dynamics, as shown in

Fig. 3(a). On the other hand, the interplay of the Jacobians of

G and F and the graph structure encoded by L and Lp can

render the initial perturbation unstable, and the state will

exponentially diverge. In that case, the quotient dynamics

will not be a good model for the cell-averaged dynamics, as

shown in Fig. 3(b). We explore these points through the

FIG. 2. Synchronization of identical coupled R€ossler oscillators. (a) Chaotic

R€ossler oscillators are coupled according to a star graph (N¼ 8). This graph

has an EEP with two cells (indicated with colors), shown with its quotient

graph. (b) Under certain conditions, the coupled oscillators (each with a

three-variable dynamics xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; x3ðtÞÞ) can exhibit cluster syn-

chronization commensurate with the EEP: spoke nodes (blue), centre node

(red). (c) and (d) Analogously to linear consensus (Fig. 1), given an initial

condition consistent with the EEP, the dynamics of the nodes within each

cell remain identical. The solid lines are the full dynamics xðtÞ governed by

(14) with an initial condition x0 ¼ ðH � IdÞy0; the circles are the quotient

graph dynamics y governed by (17). (c) and (d) correspond to two values of

the coupling parameter c, and in both cases, the dynamics remains cluster-

synchronized within the EEP. In (c), with c ¼ 0:3, the total synchronization

of the quotient graph is stable, and both x and y converge to the completely

synchronized solution. In (d), with c ¼ 0:03, total synchronization of the

quotient graph dynamics is not linearly stable; hence, the system exhibits

sustained cluster synchronization.
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MSF formalism in Sec. III B 3, where we consider the stabil-

ity of the cluster-synchronized state (including the globally

synchronized state).

3. Stability of EEP cluster-synchronized states through
the MSF formalism

The sections above lead naturally to consider the stabil-

ity of EEP cluster synchronization. Following Pecora

et al.,24,25 the linearized stability around any cluster synchro-

nized state can be evaluated using the MSF framework via

the variational expression

d _xðtÞ ¼
Xc

i¼1

ðEðiÞ � DFðsiÞÞ � cðLEðiÞ � DGðsiÞÞ
" #

dxðtÞ;

(22)

where si 2 Rd is the (consistent) state of every node in the

ith cluster, as defined in (15), and EðiÞ are identity matrices

consigned to each cluster

EðiÞ :¼ diagðhiÞ; (23)

as given by the cell indicator vectors (1). Using computa-

tional group theory, Pecora et al. block-diagonalize the

above expression to assess the stability of any cluster-

synchronized state.

As an alternative to symmetry-based arguments, the

MSF variational analysis may also be understood using

EEPs and their associated indicator matrices. Here we use

the fact that eigenvectors and eigenvalues are shared

between the Laplacians of the original and quotient graphs.27

Let us denote the c eigenvectors of the quotient Laplacian Lp

by Vp ¼ ½vp
1 ;…; vp

c � with eigenvalues Kp ¼ diagðkp
i Þ such

that LpVp ¼ VpKp. The properties of the EEP27 ensure that a

subset of the eigenvectors of the full Laplacian L are directly

related to the eigenvectors of Lp

Vs ¼ HVp 2 RN�c: (24)

These are the eigenvectors that define the cluster synchroniza-

tion manifold commensurate with the EEP. The eigenvectors

orthogonal (transversal) to the cluster-synchronized manifold

are denoted by V? 2 RN�ðN�cÞ. These are the eigenmodes

that drive the system out of a cluster-synchronized state, and

therefore we want these modes to be damped. An orthogonal

matrix of eigenvectors of L that diagonalizes the Laplacian

VTLV ¼ K where K :¼ diagðkiÞ (25)

is thus given by

V ¼ ½Vs;V?� ¼ ½HVp;V?�: (26)

Hence, the first c columns correspond to eigenvectors of L
(with eigenvalues ki ¼ kp

i ; i ¼ 1;…; c) that can be mapped

to Lp, and the second block of ðN � cÞ columns corresponds

to the transversal manifold.

Using V to diagonalize L via the coordinate transforma-

tion dv ¼ ðVT � InÞdx leads to

d _vðtÞ ¼ ðVT � InÞ
"Xc

i¼1

EðiÞ � DFðsiÞ

� c
Xc

i¼1

LEðiÞ � DGðsiÞ
#
ðV � InÞdvðtÞ; (27)

¼
"Xc

i¼1

VTEðiÞV � DFðsiÞ

�c
Xc

i¼1

VTLEðiÞV � DGðsiÞ
#
dvðtÞ; (28)

¼
Xc

i¼1

ðQðiÞ � DFðsiÞÞ � cðKQðiÞ � DGðsiÞÞ
" #

dvðtÞ;

(29)

where we have

VTLEðiÞV ¼ KðVTEðiÞVÞ ¼: K QðiÞ: (30)

The structure of the matrices QðiÞ means that the modes

in the cluster synchronization manifold are effectively

decoupled from the modes transversal to it. To see this, note

that from VT
?Vs ¼ 0 and (24) it follows that the transversal

FIG. 3. Cell-averaged dynamics and synchronization of identical R€ossler

coupled oscillators. The numerics in this figure follow Figure 2, but here, we

focus on the cell-averaged dynamics of the same system of coupled R€ossler

oscillators and its relationship with the dynamics of the quotient graph.

(a) For c ¼ 0:3 and an initial condition close to the synchronization mani-

fold, the quotient dynamics (circles) evolves closely to the cell-averaged full

system dynamics (crosses), and both dynamics converge to the totally syn-

chronized solution. Note the individual time courses of each of the eight

oscillators converging also to this solution. (b) For c ¼ 0:03, however, the

cell-averaged (crosses) and quotient dynamics (circles) diverge, as is clearly

visible for large times.
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eigenvectors V? lie in the orthogonal subspace to H:

HTV? ¼ 0. (This also means that every transversal mode is

mean-free within each cell: HþV? ¼ 0.) Therefore, we have

the following effective decoupling between the cluster-

synchronized and transversal modes:

VT
?EðiÞVs ¼ VT

?EðiÞHVp ¼ VT
?½0;…; hi; 0;…�Vp ¼ 0;

leading to

QðiÞ ¼ VTEðiÞV ¼ Q
ðiÞ
s 0c�ðN�cÞ

0ðN�cÞ�c Q
ðiÞ
?

" #
:

By examining this matrix, we can obtain information about

the (local) stability of the cluster-synchronized state (see

Ref. 25 for a related discussion). In order to check the linear

stability of the cluster-synchronized manifold, it is enough to

check that all the transversal modes are damped. Yet such

damping of the transversal modes alone does not specify the

behavior within the cluster-synchronized manifold, or indeed

the convergence towards any of the different cluster-

synchronized states within it. Further damping within the

cluster-synchronized manifold would lead the dynamics to

converge to an even lower-dimensional manifold, i.e.,

towards a particular subset of the cluster-synchronized

states. Stated differently, some of the cells in a cluster-

synchronized state could merge, leading to another state with

fewer cells. If damping within the manifold is present, it can

lead to convergence towards the completely synchronized

state, akin to the numerics in Fig. 2(c) (and in contrast to the

numerics in Fig. 2(d) where such convergence within the

manifold is not observed).

C. EEP cluster synchronization in Kuramoto networks

The MSF framework provides a powerful tool for the

analysis of nonlinear systems with diffusive couplings, yet

there are important classes of systems that do not lend them-

selves naturally to this formulation. Examples include sys-

tems with sinusoidal coupling between oscillators, as in

models of power systems38 or the classic Kuramoto model of

coupled oscillators.8,30 The use of EEPs can nevertheless

afford us insight into cluster synchronization in these cases,

too.

We consider the Kuramoto model with N oscillators

dhi

ds
¼ xi þ k

XN

j¼1

Aij sin hj � hi

� �
; (31)

where hi and xi describe the phase and intrinsic frequency of

each oscillator, respectively, k is the coupling parameter, and

Aij is the adjacency matrix encoding the network connectivity.

To simplify our notation below, let us renormalize time

t ¼ ks. The dynamics of a network of Kuramoto oscillators

coupled through a graph with Laplacian L ¼ BBT , where B is

the incidence matrix of the graph, can then be rewritten in

vector-matrix notation as14

_h ¼ 1

k
x� B sin BThð Þ (32)

¼ 1

k
x� BW BThð ÞBT h

¼ 1

k
x� LW BThð Þ h; (33)

where h and x are N-dimensional vectors, and we have

definedWðxÞ :¼ diagðsincðxÞÞ ¼ diagðsinðxiÞ=xiÞ:
This rewriting emphasizes the close relation of the

Kuramoto model to Laplacian dynamics. Not only does the

linearization for small phase differences lead to the standard

linear Laplacian dynamics, but the final equality underscores

the fact that the full Kuramoto model may still be understood

in terms of a weighted Laplacian dynamics with time-

varying edge weights14

LWðBThÞ :¼ BWðBThÞBT : (34)

It is therefore not surprising that EEPs give useful insights

into invariant dynamics of Kuramoto networks.

1. Case I: Equal intrinsic frequencies

Let us consider first the case where all intrinsic frequen-

cies are identical: xi ¼ x; 8i. In this case, we may assume

x ¼ 0 without loss of generality, as this is equivalent to

grounding the system or defining the phases with reference

to a rotating frame.14 The resulting system

_h ¼ �B sinðBThÞ ¼ �LWðBThÞ h (35)

is well known to converge4,14 to the totally synchronized

state with identical phases.

Let the graph with Laplacian L ¼ BBT be endowed with

an EEP with partition matrix H. We can then define the fol-

lowing Kuramoto dynamics taking place on the quotient

graph of the EEP:

_w ¼ �HþB sinðBTHwÞ ¼ �HþLWðBT HwÞ Hw; (36)

where w is the c-dimensional vector containing the phases

associated with the quotient graph, and we use the definition

(3) to factorize the quotient Laplacian appropriately

Lp ¼ HþLH ¼ ðHþBÞðBTHÞ: (37)

As for the linear case (10), we wish to show that the cell

dynamics on the quotient graph (36) describes an invariant

dynamics of cluster-synchronized states in the full model

(35). In other words, we need to show that

H _w ¼ �B sinðBTHwÞ; (38)

i.e., Hw is invariant under the full dynamics.

To establish this, we use the following fact:

A given EEP for a network remains an EEP if all edge
weights between two distinct cells are multiplied by a factor
that depends only on the two cells.
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This fact is a direct consequence of the definition of an

EEP, since such scaling changes the out-degree patterns of

all nodes within a cell consistently.

Remark 3 [EEPs and structured weights]. A particular
case of such a rescaling that will be useful below can be rep-
resented algebraically as follows. Consider a graph with
Laplacian L ¼ BBT and an EEP with indicator matrix H. Let
the edge weights be scaled consistently across cells (in the
above sense) leading to the modified Laplacian

LWðBT HnÞ ¼ B diagðwðBTHnÞÞBT ; (39)

where n 2 Rc is a cell vector, and wðxÞ ¼ wð�xÞ is a sym-
metric function applied element-wise. Since the EEP remains
unchanged under this rescaling, it follows from (5) that the
projection operator associated with H also commutes with
the modified Laplacian

PHL ¼ LPH ) PHLWðBT HnÞ ¼ LWðBT HnÞPH: (40)

We now use (40) to show that EEP cluster-synchronized

states are invariant under Kuramoto dynamics. To see this,

left multiply (36) with H

H _w ¼ �HHþB sinðBTHwÞ
¼ �PHLWðBT HwÞ Hw ¼ �LWðBT HwÞPH Hw

¼ �LWðBT HwÞ Hw ¼ �B sinðBTHwÞ;

where PHH ¼ H follows from the definition of the projection

operator. Note thatWðxÞ ¼ sincðxÞ is symmetric. �

The proof shows that the full Kuramoto model follows

the quotient dynamics (36) for all times, if it ever synchro-

nizes to a particular EEP. We illustrate this behavior in Fig.

4(b), where we use a network topology (Fig. 4(a)) inspired

by a construction outlined by Chan and Godsil,35,36

highlighting the difference between orbit partitions (gener-

ated from symmetry groups) and equitable partitions.

As shown in Fig. 4(c), the cell averages are also well

described by the quotient dynamics provided the initial con-

dition is not too far away from the EEP-averaged state. If the

phases of the initial condition are outside the open semicircle

(as in Fig. 4(d)), a naive linear averaging does not fully cap-

ture the convergence on the torus.

2. Case II: Non-equal intrinsic frequencies
commensurate with an EEP

The analysis for the Kuramoto model with equal fre-

quencies does not apply in general to a network of oscillators

with non-equal intrinsic frequencies. However, similar

results hold when the oscillators within each cell have the

same frequency. In particular, consider the Kuramoto system

(32) with EEP-commensurate frequencies

_h ¼ 1

k
H-� B sin BThð Þ; (41)

where - is a c-dimensional vector containing the frequencies

of the cells.

In the case of heterogeneous frequencies, the model can-

not reach globally identical synchronization, so the “most

synchronous” behavior is the cluster-synchronized state with

identical phases within each cell. By the arguments in

Section III C 1, mutatis mutandis, it is easy to see that the

cluster-synchronized state Hw is invariant under (41) and

governed by the quotient graph

_w ¼ 1

k
-� HþB sin BTHw

� �
: (42)

A numerical illustration of this invariance is given in

Figure 5. We note that there is a close analogy here to the

scenario of the linear consensus system with an input com-

mensurate with the EEP (12). Indeed, the intrinsic frequen-

cies of the cells - can be interpreted as constant inputs to

each of the cells.

We remark that our results for Kuramoto systems here

are concerned with the invariance of solutions and not their

stability. As studied previously,4,14 the stability of the syn-

chronous state depends on the magnitude of the spread of the

frequencies xi along the edges of the graph relative to the

coupling parameter k. Hence as the coupling k becomes

smaller, and the norm of -=k becomes larger, the synchro-

nized (and cluster-synchronized) solutions become unstable.

Remark 4 [Kuramoto model with a phase offset]. To
gain insight into the effect of a phase offset, let us consider
the Kuramoto model with equal intrinsic frequencies and a
constant phase offset discussed in Ref. 39, which can be
rewritten as

FIG. 4. EEP clustered dynamics on a network of Kuramoto oscillators with identical intrinsic frequencies. (a) Kuramoto oscillators (N¼ 8) coupled through

the graph shown, which has an EEP indicated by the color of the nodes. This partition is not an orbit partition; i.e., it is not directly induced by any symmetry

group. The associated quotient graph is shown below. (b) If the initial condition is constant within each cell, the dynamics of the full system (line) is exactly

equivalent to the lower dimensional Kuramoto dynamics on the quotient graph (circles). (c) Provided the initial condition for h is close to the cell-averaged

state and within an open semi-circle, the linear cell- averaged dynamics (crosses) is closely aligned with the quotient graph dynamics shown in (b). (d) If the

initial condition is spread further on the circle, the linear cell averaging is no longer aligned with the quotient graph.
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_h ¼ �B sinðBThþ a1Þ; (43)

¼ sinðaÞB cosðBThÞ � cosðaÞB sinðBThÞ: (44)

For a! 0, the first term vanishes, and we recover the stan-
dard Kuramoto model (35) for which the EEP analysis holds.
Therefore, if h is within (close proximity to) the cluster syn-
chronization manifold Hw, by our arguments above, the sys-
tem will remain in a polysynchronous, clustered state. As a
increases, the magnitude of the Kuramoto coupling parame-
ter (cos aÞ decreases, whereas at the same time the magni-
tude of the spread of the input intrinsic frequencies (sin aÞ
increases. Hence, as a is increased above a threshold, we
expect the cluster synchronization manifold to lose stability,
as for the case of non-equal frequencies above. This is in
line with Nicosia et al.,39 who observed numerically that
cluster synchrony is lost above a critical value of a.

IV. CLUSTER SYNCHRONIZATION IN NETWORKS
WITH POSITIVE AND NEGATIVE WEIGHTS

Many mathematical models for real-world networks

need to incorporate positive and negative interactions. For

instance, in social networks, relationships can be friendly or

hostile, or they reflect trust or distrust between individuals.

Therefore, the sign of a link is a central concept in social

psychology, associated with the emergence of conflict and

tension in social systems,31,32 and it has gained popularity

recently in the study of online social networks40 and online

cooperation.41 In biological systems, the sign of an edge is

also a key element, in particular, when modelling dynamical

processes. For instance, genes can either promote or repress

the expression of other genes in genetic regulatory net-

works,42 and neurons can excite or inhibit the firing of other

neurons in neuronal networks and thereby shape the global

dynamics of the system.43,44

A. Signed networks and structural balance:
The signed external equitable partition

1. The signed Laplacian matrix

For a network with positive and negative interactions,

we can define the signed Laplacian matrix of the network as

follows:33,45

Lr ¼ Dabs � A; (45)

where Dabs ¼ diagðjAj1Þ is the diagonal absolute degree

matrix, and A is again the adjacency matrix (which may

hereafter contain both positive and negative weights). As for

the standard Laplacian, it can be shown that the signed

Laplacian is positive semidefinite and its spectrum contains

one zero eigenvalue when the graph is connected and struc-

turally balanced. To see this, note that the signed Laplacian

can be expressed as

Lr ¼ BrWabsB
T
r ; (46)

where Wabs ¼ diagðjwejÞ is the absolute edge weight matrix

and Br 2 RN�E is the signed node-to-edge incidence matrix

½Br�ie ¼
1 if i is the tail of edge e;
�sign ðeÞ if i is the head of edge e:

�

Henceforth, we assume Wabs ¼ I without loss of generality.

By using the signed Laplacian, the construction of an EEP

can be extended to signed graphs. To do so, however, we

must first introduce the notion of structurally balanced graph,

which will enable us to define the notion of a signed external

equitable partition (sEEP).

2. Structurally balanced graphs

Following Cartwright and Harary,32 a signed graph is

defined to be structurally balanced if the product of the signs

along any closed path in the network is positive. This defini-

tion implies that only “consistent” social relationships are

allowed in triangles of three nodes: either all interactions are

positive, or there are exactly 2 negative links, which may be

FIG. 5. Cluster synchronization in Kuramoto networks with EEP-

commensurate intrinsic frequencies. (a) Kuramoto dynamics (41) over the

same network as in Figure 4(a), but this time with non-identical intrinsic fre-

quencies, yet aligned with the EEP. (b) If the initial condition is constant

within cells, the dynamics of the full system (lines) is identical to the

dynamics of the quotient graph (circles), and the system eventually settles to

a cluster-synchronized state. Inset: the same dynamics without subtracting

the (time-dependent) mean phase. (c) If the initial phases are within an open

semicircle and close to the cell-averages, then the quotient dynamics is a

good descriptor for the dynamics for all times.
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interpreted in the sense that “the enemy of my enemy is my

friend.”31 Equivalently, a signed network is structurally bal-

anced if it can be split into two factions, where each faction

contains only positive interactions internally, while the con-

nections between the two factions are purely antagonistic

(see Fig. 6). It has been shown that many social networks are

close to being structurally balanced,46 suggesting that there

might be a dynamical process acting on such systems driving

them towards structural balance.47,48

The following characterization of a structurally balanced

graph based on the signed Laplacian was highlighted by

Altafini.33,34 A network is structurally balanced if there

exists a diagonal matrix R ¼ diagðrÞ, with 61 on the diago-

nal, such that the matrix

L0 ¼ RLrR (47)

contains only negative elements on the off-diagonal. In other

words, the signed Laplacian can be transformed into the

standard Laplacian of an associated graph with only positive

weights through the similarity transformation defined by R.

The matrix R is called switching equivalence, signature simi-

larity, or gauge transformation in the literature.34 Using this

characterization, one can efficiently determine whether a net-

work is structurally balanced46 and obtain the corresponding

switching equivalence matrix R. Note that it follows trivially

that a standard network with only positive weights is always

structurally balanced with R ¼ IN . Hence, Lr is a generaliza-

tion of the standard Laplacian.

3. Signed external equitable partitions

Using the signed Laplacian, we extend the concept of

EEP to structurally balanced signed networks. Consider a

structurally balanced signed graph with signed Laplacian Lr

and denote the Laplacian of the positive switching equivalent

graph by L0 ¼ RLrR. Let H denote the indicator matrix of an

EEP of L0

L0H ¼ HLpr : (48)

Then, there exists a signed indicator matrix Hr ¼ RH that

defines an invariant subspace for Lr

LrHr ¼ HrLpr ; (49)

which follows from the definition (47) and R2 ¼ IN .

We define the partition pr with indicator matrix

Hr ¼ RH as the signed external equitable partition (sEEP),

and its associated quotient graph is given by

Lpr ¼ Hþr LrHr ¼ HþL0H: (50)

Therefore, cells in an sEEP contain nodes with the same out-

degree pattern in absolute value. An illustration of an sEEP

and associated quotient graph is shown in Fig. 7. Note that

the quotient graph only has positive weights.

B. Dynamics and signed external equitable partitions

The definition of an sEEP provides us with an appropri-

ate tool for the analysis of cluster synchronization in struc-

turally balanced signed networks, as we now show. The

results in this section parallel those obtained for unsigned

graphs; hence, we concentrate on the distinctive features of

clustered dynamics in signed networks.

1. The linear case: Bipolar cluster synchronization in
signed consensus dynamics

A remarkable feature of structurally balanced networks

is that the linear signed consensus dynamics33

_x ¼ �Lrx (51)

converges to a polarized state, in which the nodes are divided

into two sets with final values that are equal in magnitude

but opposite in sign (Fig. 6). Stated differently, the eigenvec-

tor of Lr associated with the zero eigenvalue has the form

r ¼ ½r1;…; rN�T , where ri 2 f�1;þ1g; 8i. As shown in

Ref. 33, this implies that the system dynamics (51) con-

verges to the final state

lim
t!1

x tð Þ ¼ rTx0

N
r; (52)

and the sign pattern of the eigenvector r corresponds pre-

cisely to the switching equivalence transformation, i.e.,

R ¼ diagðrÞ. In the following, we will refer to Rii ¼ ri as

the polarization of node i. Note that the vector r is only

defined up to an arbitrary sign, so only the relative polariza-

tion of the nodes is relevant.

FIG. 6. Structurally balanced graphs and bipolar consensus. (a) Example of

a structurally balanced signed graph (red links positive, and blue links nega-

tive). Every cycle has an even number of negative links or, equivalently, the

graph can divided into two factions given by their polarization ri (corre-

sponding to the green and magenta groups). Note that each of the factions

has only positive weights inside and only negative weights between them.

(b) The signed consensus dynamics (51) on a structurally balanced graph

always leads to a bipolar consensus, in which each node agrees with the

nodes within its own faction, but has exactly the opposite sign to any node

in the other faction.
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We now extend the analysis to networks endowed with

an sEEP. The presence of an sEEP (49) has similar dynami-

cal implications to the presence of an EEP in the case of a

positive graph. The following statements can be proved anal-

ogously to the standard (unsigned) consensus case.

First, sEEP cluster-synchronized states HryðtÞ are

invariant under the full linear dynamics (51). Hence, given

an initial condition x ¼ Hry consistent with an sEEP, xðtÞ
remains in the sEEP state xðtÞ ¼ HryðtÞ for all times, and the

dynamics is governed by the quotient graph: _y ¼ �Lpr y (see

Figure 7(b)).

In contrast to standard unsigned graphs, the variable of

every node within a cell of the cluster-synchronized state

will have the same magnitude, but its sign may be inverted

depending on its polarization ri. Therefore, in signed net-

works, each cell maybe itself divided into two factions

whose values are of equal magnitude (as given by the quo-

tient dynamics), but of opposite sign, as illustrated in

Figure 7 (see how node 8 has the opposite sign to nodes 6, 7

all in the cyan cell). We use the term bipolar cluster syn-
chronization to account for this phenomenon in signed

networks.

Second, the signed cell-averaged dynamics hxirCi
¼ Hþr x

is determined by the dynamics of the quotient graph (Fig.

7(c)). The signed consensus dynamics approaches the bipolar

consensus (52), and the final sign of each node variable is

determined by rTx0, as seen in Fig. 7(c) for nodes 1� 4 and

8 (positively polarized) and nodes 5, 6, and 7 (negatively

polarized).

Third, a system with inputs aligned with the sEEP

_x ¼ �Lrxþ Hru (53)

exhibits a bipolar cluster-synchronized state. To see this,

consider the component of the state orthogonal to the bipolar

cluster synchronization manifold

dðtÞ :¼ ðI � HrHþr Þ xðtÞ; (54)

which has a dynamics _d ¼ �Lrd, and the orthogonal compo-

nent decays asymptotically to

lim
t!1

d tð Þ ¼ rTd0

N
r ¼ 0; (55)

since rTd0 ¼ rTðI � HrHþr Þ x0 ¼ ðrT � rTÞ x0 ¼ 0: Hence,

the system converges to the sEEP manifold.

2. Bipolar cluster synchronization for nonlinear
dynamics with Laplacian couplings

All the results obtained in Section III B apply to nonlin-

ear dynamics on signed networks of the form

_xi ¼ FðxiÞ � c
X

j

½Lr�ijGðxjÞ; (56)

but now with the additional feature that the dynamics can

support a bipolar cluster synchronization based on an sEEP.

We do not discuss this case in detail again, instead illustrat-

ing these findings for Kuramoto signed networks.

3. Bipolar cluster synchronization in signed Kuramoto
networks

While standard Kuramoto networks with positive cou-

plings have been studied extensively,7 the literature on

Kuramoto networks with both attractive (positive) and

FIG. 7. Signed external equitable partitions and bipolar clustered consensus dynamics. (a) A signed graph (red links are positive, blue links are negative) with

an sEEP with four cells (indicated by colors). Note how one of the cells (cyan) contains nodes with different polarizations and another cell (blue) is of negative

polarization. The associated quotient graph is also shown (bottom). (b) Similar to the standard graphs with positive weights, if the full dynamics is given by

Hry at any time, then the full dynamics will be exactly determined by the quotient dynamics, but potentially having the opposite sign, like the node in the blue

cell with negative polarization (whose negative trajectory is shown as a dashed line to make this apparent). (c) The sign-adjusted cell averages hxirCi
¼ Hþr x

(crosses) are also determined by the quotient dynamics. Trajectories from a random initial condition are shown as solid lines. Note how the trajectory of the

blue node has the opposite sign to its sign-adjusted cell average, and in the cyan cell, two of the three nodes (with negative polarization) converge to the sign-

flipped value.
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repulsive (negative) couplings is comparatively sparse, with

only a handful of mean-field results.49

Using the definition of the signed Laplacian, we write

the Kuramoto model on a signed graph as

_h ¼ �Br sinðBT
rhÞ ¼ �BrWðBT

rhÞBT
r h: (57)

Likewise, the Kuramoto dynamics on the quotient graph

becomes

_w ¼ �Hþr B sinðBTHrwÞ: (58)

For structurally balanced signed networks, making the neces-

sary adjustments for the switching equivalence R, we then

reach the same conclusions as in Section III C.

In Figure 8, we provide numerical examples that replicate

our findings for signed graphs. As expected, in Figure 8(b),

we see that a bipolar cluster-synchronized solution remains

invariant for all times. Figure 8(c) shows that for an initial

condition h0 that is not too spread out on the unit circle, we

observe numerically that the (sign adjusted) cell-averaged

hhirCi
¼ Hþr h is well aligned with the quotient dynamics. For

nonidentical intrinsic frequencies commensurate with the

sEEP, the Kuramoto model converges to a final state consis-

tent with the cells of the sEEP, yet exhibiting out-of-phase

behavior within each cell due to the polarization of the nodes.

V. DISCUSSION

In this paper, we have shown how to coarse-grain the

dynamics of generic synchronization processes by using the

graph-theoretical framework of external equitable partitions.

Exploiting regularities present in the underlying coupling

network, EEPs give clusters of nodes that play an equivalent

dynamical role.27 The resulting coarse-grained dynamics

corresponds to cluster synchronization, in which all nodes

within a cell follow the same trajectory. Importantly, one can

extend the notion of EEPs to other types of coupling

schemes, as shown by our analysis of signed networks. In

structurally balanced signed networks, we showed that each

of the cells splits into two “out-of-phase” dynamical factions,

with the same magnitude but opposite sign.

A. Connections with symmetry groups

We have shown how our graph-theoretical approach

complements the use of symmetry groups for the analysis of

synchronization dynamics over networks.24,25,50 As discussed

in Pecora et al.,24 there exist efficient software tools to com-

pute symmetry groups in networks51,52 and hence orbit parti-

tions.24,25 The more general problem of obtaining all EEPs

for a graph appears to be computationally more challeng-

ing.25,53 However, there exist efficient algorithms to compute

EEPs centered around a node,27,54 which can be used to char-

acterize the dynamical influence of particular nodes on the

global dynamics of the network.26,27,29

B. Other signed coupling schemes

We have chosen to consider couplings given by the

signed Laplacian Lr, as it provides a direct generalization of

the standard Laplacian and has direct connections with

dynamical properties. In particular, the positive semi-

definiteness of Lr allows us to express the Kuramoto model

in terms of signed incidence matrices (57), thus facilitating

our proof and interpretation. However, the ideas developed

here may be applied to other signed coupling schemes, pro-

vided the equivalent invariance condition to (2) can be

found. For instance, another interesting coupling is given by

the Laplacian L6 ¼ D� A, where A is a signed adjacency

matrix and D ¼ diagðA1Þ. For the network in Fig. 7(a), the

EEP with respect to Laplacian L6 is almost identical to the

one with respect to Lr, except that node 8 forms its own cell.

It is worth remarking, however, that while the algebraic char-

acterization of such invariant partitions can still be exploited,

the graph-theoretical notion of “equitability,” related to the

FIG. 8. Bipolar cluster-synchronization on a signed graph of coupled

Kuramoto oscillators with identical frequencies. (a) Signed graph (red links

positive, and blue links negative) with sEEP indicated by colors (blue,

orange). Also shown is the associated quotient graph. (b) For an initial condi-

tion aligned with the sEEP, the dynamics of the full system (line) is exactly

equivalent to the lower dimensional Kuramoto dynamics on the quotient graph

(circles) up to the sign, given by the polarization of each node. (c) For an

initial condition h0 not too spread out on the circle, the sign-adjusted cell-

averaged dynamics (crosses) governed by the quotient graph is closely aligned

with the full dynamics. The system converges to a state where nodes within a

cell have phases with opposite signs.
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combinatorial count of inter-cell degrees, can be lost. As

many algorithms leverage such combinatorial properties to

search for EEPs, this may make the presence of such invari-

ant partitions harder to detect. Furthermore, their dynamical

interpretation might be problematic in generic systems since

L6 (and other coupling matrices) will in general be indefi-

nite, hence impacting the dynamical stability.

C. Relation to other synchronization notions

Because EEPs exploit the graph structure in connection

with dynamics, our approach complements other methods for

the analysis of synchronization. Here, we have concentrated

on the existence and invariance of cluster-synchronized states,

with some discussion of their stability in the context of the

MSF. Further insights could be gained by combining our

EEP-based analysis with other methodologies, such as the

analysis of potential energy coupling landscapes or various

mean-field analyses (see Refs. 3, 4, and 7 for overviews). In

particular, as EEPs are linked to the existence of invariant

subspaces, contraction-based arguments may be fruitfully

applied to global system dynamics in such networks.55–58

A particular notion of synchronization worth mentioning

is that of chimera states,6,59 in which parts of the network act

in unison, while another parts appear unsynchronized. One

may conjecture that a possible mechanism to reach such a

state is to endow the underlying network with an EEP com-

prising one large cell and a multitude of single node cells. If,

by carefully configuring the dynamics, the large cell could

be made to remain stable, while the single node cells follow

independent trajectories, a chimera state might be obtained.

D. Future work

Several other avenues of future work appear to be worth

pursuing. As the idea of signed networks and social balance is

at the core of social network theory,31,32,60 it would be impor-

tant to investigate if the bipolar cluster synchronization

described here can be related to models evolving towards

structural balance.47,48 Following the insight by Hendrickx61

that signed opinion dynamics can be understood as a 2N
dimensional dynamics with positive interactions, it would

also be interesting to understand the symmetry requirements

that an EEP implies on the lifted 2N-dimensional graph, and

whether the EEP could be used to elucidate further properties.

Another extension would be to relax the strict require-

ments of EEPs (e.g., by allowing minor perturbations on a

graph with an EEP) in order to study how the dynamics of

the system is affected. Generalizations of EEPs that allow

different kinds of couplings (e.g., directed, time-varying,62,63

delays64) would also be of interest.

Finally, it is worth remarking that while we focussed here

on the dynamics of synchronization in linear (consensus) and

nonlinear processes (coupled oscillators, Kuramoto), the con-

cept of external equitable partitions is applicable to more gen-

eral scenarios where agents interact over a graph structure.

The key ingredient is the presence of a low-dimensional

invariant subspace in the coupling (spanned by the partition

matrix) which can be exploited to obtain a dynamical dimen-

sionality reduction leading to a coarse-grained system

description. While EEPs have been used in consensus and

control, other application areas such as ecological networks or

chemical reaction networks would be worth investigating.
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