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ABSTRACT
Dissimilar test cases have been proven to be effective to re-
veal faults in software systems. In the Software Product
Line (SPL) context, this criterion has been applied success-
fully to mimic combinatorial interaction testing in an effi-
cient and scalable manner by selecting and prioritising most
dissimilar configurations of feature models using evolution-
ary algorithms. In this paper, we extend dissimilarity to
behavioural SPL models (FTS) in a search-based approach,
and evaluate its effectiveness in terms of product and fault
coverage. We investigate different distances as well as as
single-objective algorithms, (dissimilarity on actions, ran-
dom, all-actions). Our results on four case studies show
the relevance of dissimilarity-based test generation for be-
havioural SPL models, especially on the largest case-study
where no other approach can match it.

CCS Concepts
•Software and its engineering → Software product
lines; Software testing and debugging; •Mathematics
of computing → Evolutionary algorithms;

Keywords
Software Product Line Testing, Dissimilarity Testing, Fea-
tured Transition System

1. INTRODUCTION
During the two last decades, Software Product Line (SPL)

engineering has developed many techniques to perform SPL
testing [10, 17]. Many of those techniques use model-based
testing approaches in order to reduce the testing efforts
caused by variability inherent to SPLs. Among those ap-
proaches, we may cite Feature Diagram (FD) sampling tech-
niques such as pairwise testing, which generates a set of
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tested products such that each possible pair of features of
the SPL is present in at least one tested product [25,34,36].

More recently, the community has switched from the sole
selection of products to test to the generation of test cases
for SPLs. Delta-oriented SPL testing allows to incremen-
tally build test cases for product lines while ensuring sta-
ble coverage [30]. In our previous work [14], we suggested
to use Featured Transition System (FTS), a mathematical
model defined by Classen et al. [8] used to compactly rep-
resent the behaviour of a SPL, as a base model for testing.
This model-based testing process generates test cases based
on the behavioural aspect of a SPL represented by the FTS.
We formulated the test case selection from a FTS as an opti-
misation problem trying to maximise a coverage measure in
the FTS (e.g., states, actions, or transitions coverage) while
minimizing/maximizing the number of products needed to
execute all the test cases [14]. On a more theoretical aspect,
Beohar and Mousavi [3] redefined an input output confor-
mance (ioco) relation (used to ensure that given implemen-
tation is conform to a specification) [37] for FTSs.

We designed a framework to perform behavioural test
cases selection for SPLs using FTS as a model of the be-
haviour of the SPL [14]. We already redefined classical cov-
erage criteria for transition systems [14], implemented and
evaluated some of them [15] in our Variability Intensive Be-
havioural teSting (VIBeS) framework [11]. In this paper,
we introduce a new criteria based on a dissimilarity selec-
tion approach. The idea is to generate test cases that cover
different behaviours and related feature configurations based
on distance metrics. It has been empirically shown by Hem-
mati and Briand [20] that such test cases are more likely to
discover bugs. In addition, dissimilarity was shown as effec-
tive in SPLs by Henard et al. [22] for selection of products
to test (to mimic t-wise product selection for large SPLs)
in a feature model. Concerning behavioural dissimilarity,
Mondal et al. [32] showed on code that the dissimilarity-
driven test case selection is slightly more effective than code
coverage driven approaches. To our knowledge, there is no
approach combining feature and behavioural similarity for
SPLs.

In this paper, we offer:
• A dissimilarity-driven search-based algorithm that max-

imises the distance amongst FTS test cases and the dis-
tance amongst related feature configurations (product
coverage). The algorithm is configurable to provide: i)
different ways to combine objectives (adding or multi-
plying them, single/bi-objective dissimilarity) and ii)
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Figure 1: Card payment terminal FD

different distances at the behavioural level (Hamming,
Levensthein, Jaccard, Dice, Anti-dice) [18], feature con-
figuration distances are computed using the Jaccard
index [24].
• The evaluation of this algorithm on four case stud-

ies, showing the effectiveness of our approach with re-
spect to random and all-actions. We explore the in-
fluence of different distances (Hamming, Levensthein,
Jaccard, Dice, Anti-dice) on the results, showing for
example that, amongst the 120 configurations of the
algorithm, the single-objective version using Hamming
distance provides optimal performance on the largest
case study.
• The implementation and evaluation results of our ap-

proach are available on the following website: https:
//projects.info.unamur.be/vibes/

In the remainder of this paper, Section 2 presents SPL
modelling and dissimilar test cases generation; Section 3
presents our approach with its evaluation and results in Sec-
tion 4; Section 5 presents the related work; and finally Sec-
tion 6 concludes the paper as well as outlines future per-
spectives.

2. BACKGROUND
This section introduces the behavioural modelling of SPLs

with Feature Diagrams (FDs) and Featured Transition Sys-
tems (FTSs), and dissimilarity testing.

2.1 Software Product Line Modelling
Variability Modelling. Software Product Line engi-

neering is based on the idea that (software) products of a
family (i.e, a product line) can be built by reusing assets,
some common to all products and some specific to a sub-
set of the product line. This variability is captured through
the notion of feature and organised in a Feature Diagram
(FD) [26]. For instance, Fig. 1 presents the FD of a card
payment terminal. This machine t accepts card payment
with a certain payment schema ps (direct debit dd and/or
credit card cr), using a card owner authentication method
(signature sig and optionally PIN code pin), and with a syn-
chronous on or asynchronous off connection to the payment
service.

Behavioural Modelling. Various modelling techniques
exist to represent behavioural aspects of a SPL. Classen et
al. [8] define Featured Transition Systems (FTSs) to com-
pactly represent the behaviour of a SPL as a Transition
System (TS) where transitions are labelled with feature ex-
pressions, i.e., Boolean expressions over features represent-
ing the set of products able to fire the transition. For-
mally, a FTS is defined as a tuple (S,Act, trans, i, d, γ),
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Figure 2: Card payment terminal FTS

where: (i) S is a set of states; (ii) Act a set of actions;
(iii) trans ⊆ S × Act × S is the transition relation (with

(s1, α, s2) ∈ trans sometimes noted s1
α−→ s2); (iv) i the

initial state of the FTS; (v) d is a FD; (vi) γ : trans →
[[d]] → {>,⊥} is a total function labelling each transition
with a Boolean expression over the features, which specifies
the products that can execute the transition ([[d]] denotes
the semantics of the FD d, i.e., all the different products
that may be derived from d). For instance, the FTS in
Fig. 2 represents the behaviour of a card payment termi-
nal SPL corresponding to the FD in Fig. 1: for instance

App Init
check PIN online/pin∧on−−−−−−−−−−−−−−−−−→ CH verified is labelled

with the pin∧on feature expression meaning that only prod-
ucts with the PIN (pin) and on-line (on) feature may fire
this transition.

2.2 Dissimilarity Testing
Dissimilarity testing is a technique used to select a subset

of a set of test cases, which aims to maximise the fault de-
tection rate, by increasing diversity among test cases [5,19].
This diversity is characterised by a dissimilarity heuristic
defined over the different test cases. For instance, in be-
havioural model-based testing, one may define a distance
between two test cases defined as sequences of actions (α1,
α2, . . . , αn) in a TS as the number of αi actions that differ
from one test case to the other (i.e., the number of actions
in the first test case that are not in the second and vice
versa). Hemmati et al. [19] empirically demonstrate that
in single system model-based testing, dissimilar test suites
find more faults than similar ones. Mondal et al. explored
code coverage and test case diversity interact in fault-finding
abilities of test suites [32]. Results are better for diversity-
based test suites, though results are overlapping. The au-
thors conclude that coverage and diversity may complement
each other nicely in a multi-objective search-based scenario.

SPLs Dissimilar Test Case Generation. Henard et
al. [22] applied dissimilarity testing to SPL in order to gen-
erate and prioritize products to test. The idea was to mimic
the combinatorial interaction testing (CIT) generation for
SPLs [29, 34], in which valid combinations of features are



covered at least once. CIT-based generation for large SPLs
raises a computational challenge because of the number of
features and constraints involved, forming a large and com-
plex search space. To deal with this, a search-based (1+1)
algorithm [16] was designed: an initial population of prod-
ucts (computed from a FD using a SAT solver) is evolved in
order to maximise the distance amongst the combinations
of features (i.e., the products). This distance, based on the
Jaccard index [24], serves as the fitness function, improving
the global coverage of the population. This approach has
shown good results for large values of interaction strength
and large FDs (up to 7000 features) while allowing the tester
to specify their test budget. The relevance of this strategy
was independently confirmed by Al-Hajjaji et al. [1].

Considering this body of knowledge, we combine dissim-
ilarity for SPLs at the product level, that maximise prod-
uct coverage, with test case dissimilarity, that maximise be-
haviour coverage, to provide a bi-objective algorithm pre-
sented in the next section.

3. APPROACH
Prior to the introduction of our bi-objective algorithm, we

define FTS test cases and explain how they can be generated
randomly.

FTS Test Case. A test case tc is a sequence of actions
(α1, . . . , αn) in a FTS (fts) that may be executed by at least
one product in [[d]] (representing all the valid products of the
FD d). Formally:

∃ p ∈ [[d]] : fts|p
(α1,...,αn)

=⇒

Where fts|p represents the projection of fts using p (i.e., the
transition system representing the behaviour of the product
p obtained by evaluating the feature expressions in fts us-
ing p as true/false assignment for the features) [8], and

fts|p
(α1,...,αn)

=⇒ is equivalent to i
(α1,...,αn)

=⇒ , meaning that
there exists a state sk ∈ S with a sequence of transitions
labelled (α1, . . . , αn) from i to sk in the projection of the
FTS onto p. The set of FD products able to execute this
test case is defined as:

prod(fts, tc) = {p ∈ [[d]] | fts|p
(α1,...,αn)

=⇒ }

For instance, the test case nogo = (insert card, init schema,
check PIN online, no go, abort, remove card) may be exe-
cuted by products with the dd or cd features and on and pin
features, prod(cpterminal, nogo) will contain 4 products.

As in other classical model-based testing approaches, the
generated (abstract) test cases will be concretize using some
mapping [28] in order to have a (concrete) test case directly
executable by the system. This last step is beyond the scope
of this paper and left for future work.

3.1 Random FTS Test Case Generation
In our previous work [15] we presented a first implementa-

tion of a random test case generation algorithm. This algo-
rithm was not optimal as it performs validation a posteriori :
it first generates a sequence of actions using the FTS without
considering feature expressions and verifies afterwards that
this sequence may be executed by a valid product of the
product line using a SAT solver. In this paper, we improve
this algorithm to directly consider sequences of actions ex-
ecutable by a valid product. Our random algorithm, which
is presented in Algorithm 1, takes as input a FTS without

Input: fts: a FTS without deadlock
Output: A random test case
Data: tc: test case; next: state; t: transition

1 begin
2 tc = ();
3 while next 6= i do
4 t = random({(si, a, sj) ∈ fts.trans |
5 prod(fts, tc+ a) 6= ∅});
6 tc = tc+ t.a;
7 next = t.sj ;

8 end
9 return tc;

10 end
Algorithm 1: Random FTS test case selection algorithm

deadlock (which may be verified beforehand using the ProV-
eLines FTS model checker [9]) and produces a random test
case executable by at least one product of the SPL. The al-
gorithm loops while we are not back to the initial state. At
each iteration, a transition is selected such as if its associ-
ated action is added to the test case, at least one product of
the product line may execute it (line 3), the action of this
transition is then added to the test case (line 5).

3.2 Bi-objective Test case Generation
Our bi-objective test case generation algorithm tries to

maximise both the product and the behaviour coverage of
a set of test cases. To do so, it will compute a dissimilar-
ity distance between test cases based on the products able
to execute each test case (using the FTS) and the actions
appearing in those test cases. Two test cases are dissimilar
(distance equals 1) if they do not share the same actions
and they may be executed on dissimilar products. Formally,
considering a FTS fts the dissimilarity between 2 test cases
tc1 = (α1, . . . , αn) and tc2 = (β1, . . . , βn) derived from this
FTS is defined as:

diss(fts, tc1, tc2) = dissp(prod(fts, tc1), prod(fts, tc2))

⊗ dissa((α1, . . . , αn), (β1, . . . , βn))

Where dissp : [[d]] × [[d]] → [0, 1.0] computes a dissimilar-
ity distance between the products, dissa : Act+ × Act+ →
[0, 1.0] computes a dissimilarity distance between the ac-
tions, and ⊗ : [0, 1.0] × [0, 1.0] → [0, 1.0] is an operator
combining the products and actions distances to return a
global dissimilarity distance between the two test cases. In
our evaluation in Section 4, we use the multiplication (×)
and average (avg) operators.

Product Dissimilarity. To compute the product dis-
similarity distance (dissp), we use the Jaccard index [24]
which shows good results in the work of Henard et al. [22].
This index is a set-based dissimilarity distance, computed
using the following formula:

dissp(s1, s2) = 1− #(s1 ∩ s2)

#(s1 ∪ s2)

Actions Dissimilarity. The dissimilarity distance be-
tween two sequences of actions may be computed using se-
quence-based distances or set-based distances (like the Jac-
card index) if we assimilate sequences of actions to sets of
actions [19]. In our evaluation in Section 4, we consider both
set-based distances (Hamming, Jaccard, dice, and anti-dice



Input: fts: a FTS without deadlock; k: the number of
test cases; d: the duration

Output: A set of test cases
1 begin
2 s = {};
3 for i ∈ [0; k[ do
4 s.append(random(fts));

5 end
6 start = time();
7 while time() < start+ time() do
8 sort(s);
9 candidate = s.copy().removeLast()

10 .append(random(fts));
11 if fit(fts, candidate) > fit(fts, s) then
12 s = candidate;
13 end

14 end
15 return s;

16 end
Algorithm 2: Search-based dissimilarity selection algo-
rithm

distances) and a sequence-based distance: the Levenshtein
(or edit) distance. The Levenshtein distance between two
sequences indicates the number of insertion, deletion and
replacement operations to perform on the first sequence to
obtain the second one [18]. This number, divided by the
maximal length between the two sequences, gives us a dis-
similarity measure.

Fitness Function. The product and actions dissimilarity
distances are used to compute the fitness value in a (1+1)
without mutation nor crossover evolutionary algorithm [22]
(Algorithm 2 explained hereafter) to characterize a set of
test cases: fit : FTS ×Act+ × . . .×Act+ → R+:

fit : (fts, tc1, . . . , tck) 7→
k∑
j>i

dist(fts, tci, tcj)

Dissimilarity Selection Algorithm. First, the algo-
rithm initialises a random set of test cases (line 3) with k
elements, this set is improved in order to maximise the fit-
ness value during a given time d (line 7). At each iteration
of the main loop, the current set is sorted using the dis-
similarity distance between test cases (line 8). Sorting is
performed by considering either local distances or global dis-
tances. For local distances, the sort computes the distances
between every pair of test cases: ∀i, j ∈ [0; k[, dist[i, j] =
diss(fts, s[i], s[j]). It will then select the pair of test cases
such as dist[i, j] is maximal and put them at the beginning
of the list. This process loops until all elements of the set
have been processed. The global distance works in the same
way, except that the selected pair has also to be as dissimilar
as possible from the previously selected pairs1. At the end
of the sorting algorithm, the most globally or locally fittest
elements are at the beginning of the list s. The next step is
to replace the last element of this list by a new random test
case (line 10), if the fitness value of this new set (candidate)
is better than the previous one, this candidate becomes the
new set of test cases (line 12). Hemmati et al. evaluated 320
similarity scenarios, including those where a new test case

1For more information about local and global sorting, the
interested reader may refer to [22].

Table 1: Models characteristics with the number
of states, transitions and actions, the average in-
put/output degree of the states in the FTS, and the
number of features and possible products of the FD.
Model St. Tr. Act. Avg.

deg.
Feat. Prod.

S. V. Mach. 9 12 13 1.44 9 24
Minepump 25 41 23 1.64 9 32
C. P. Term. 11 17 16 1.55 21 4,774
Claroline 106 2053 106 19.37 44 5.406.720

Table 2: Execution time (dallactions) and number of
test cases (kallactions) measured for the 6 all-actions
coverage test sets generation.
Model Time (dallactions) T.c. count (kallactions)

Avg. Std. Avg. Std.
S. V. Mach. 1.03 sec. 0.093 3.86 0.35
Minepump 1.18 sec. 0.189 11.14 0.99
C. P. Term. 1.24 sec. 0.263 5.0 0.76
Claroline 3.42 sec. 1.814 52.86 2.95

is not randomly generated and found the (1+1) strategy to
be cost-effective [19]. Contrary to feature-based dissimilar-
ity [1, 22], a SAT solver is only used for prod(FTS, tc) and
cannot affect generation.

4. EVALUATION
To assess our approach presented in Section 3 we de-

fine the following research questions: RQ.1 How does the
similarity-driven search based approach compare to all-actions
and random test selection with respect to fault finding and
product coverage? RQ.2 How does the choice of a given
distance influences the results?

The evaluation has been done on 4 case studies and imple-
mented in VIBeS [11], our model-based testing framework
dedicated to variability intensive systems2.

4.1 Setup
We consider 4 models from different sources with different

sizes as input to different test case selection processes. In
order to avoid bias using random generation, we run the
evaluation 6 times for each model and each configuration
of the algorithm (6 configurations overall) presented in this
section.

Models. The four case studies are: the Soda Vend-
ing Machine representing a SPL of beverage vending ma-
chine [7], the Minepump representing a SPL of pumps used
to pump water from a mine while avoiding methane explo-
sion [7], the card payment terminal presented in Fig. 2, and
the Claroline-based system representing the navigational us-
age mined from an Apache weblog of a highly configurable
course platform used at the University of Namur [13]. Ta-
ble 1 presents the characteristics of the models: the number
of states, transitions, and actions; the average input/output
degree of the states; the number of features in the FD; and
the number of possible products for this FD.

Test Cases Generation. For each model, we generate
a set of test cases which satisfies the all-actions coverage
criteria (i.e., when executing all the test cases, all the ac-
tions of the system are executed at least once) and measure

2All the models and tools may be downloaded at https://
projects.info.unamur.be/vibes/.



Table 3: Number of faults seeded in the models.
Model F. Sta. F. Tran. F. Act.

Avg. Std. Avg. Std. Avg. Std.
S. V. Mach. 4.6 0.8 5.9 1.0 5.7 1.0
Minepump 12.4 1.4 19.3 1.7 9.6 1.5
C. P. Term. 5.3 0.9 7.9 1.1 6.8 1.1
Claroline 52.1 2.9 896.8 13.3 32.3 2.9

the generation time (dallactions). The number of test cases
in this set (kallactions) and the generation time (dallactions),
presented in table 2 for the 6 executions, are used as input
for Algorithm 2. To assess time impact (d) on the results, we
consider the following values: 1× dallactions, 2× dallactions,
10×dallactions, 100×dallactions for each action dissimilarity
distance described in Sec. 3.2 and using local and global
distances for the sort in Algorithm 2. Rows and columns
in table 4 show the parameters values used for Algorithm
2: the top rows indicate the actions dissimilarity distance
(dissa) and the operator (⊗) used to combine it with the
product distance (dissp) or if the actions dissimilarity dis-
tance is used alone, i.e., in a single-objective configuration of
the algorithm (denoted by Sing. in the table); the leftmost
columns indicate which sorting method is used (global or lo-
cal) and the time considered for the algorithm (1×dallactions,
2×dallactions, 10×dallactions, or 100×dallactions). A random
set of kallactions test cases is also generated using Algorithm
1. In total, we generated 122 sets of test cases for each
model.
Fault Injection and Test Sets Execution. To mea-

sure the quality of the generated test sets, we use fault seed-
ing, a very popular method to assess the fault-finding ability
of a test set [31]. As in our previous work [15], we randomly
select states, transitions, and actions to mark them as faulty
(i.e., containing a fault), if a state/transition/action is se-
lected more than once, it is only counted as 1 during the
fault detection. We then execute the test set on the FTS
and consider that a fault is revealed as soon as the faulty
states is reached, the faulty transitions are fired, and the
faulty actions are executed. Random selection has an upper
bound of 66% of faults of the states, actions, and transitions
of the FTS. This allows to compare in fine grain way the dif-
ferent approaches. Table 3 presents the average number of
faults seeded in the different models during the evaluation.

4.2 Results
Fig. 3 presents the coverage distribution of the differ-

ent sets of test cases generated using Algorithm 2 (©), all-
actions coverage (�), and random (�) algorithms. The X
axis is the percentage of faults (states, transitions, or ac-
tions) discovered when executing the set of test cases (fault
cov.). The Y axis is the percentage of products covered by
the set of test cases (prod. cov.): for a set s and a FD d, it

corresponds to #prod(d,s)
#[[d]]

.

To characterize the sets of test cases (i.e., , the solution
space of our bi-objective generation), we compute a reference
front, by taking the Pareto front of all the points in Fig.
3. This reference front contains all the sets of test cases
maximising the fault and products coverages (i.e., , the best
solutions). We give hereafter for each model a podium with
the 3 (or more if they have the same frequency) optimal
configurations of Algorithm 2 providing solutions that are
on the reference front:

• Soda vending machine (47 optimal solutions)

1. Hamming avg., global, t = 10 (freq. = 0.056)

2. Hamming avg., global, t = 1 (freq. = 0.056)

3. Hamming avg., global, t = 2 (freq. = 0.056)

4. Hamming avg., global, t = 100 (freq. = 0.056)

• Minepump (6 optimal solutions)

1. Jaccard sing., global, t = 2 (freq. = 0.222)

2. Jaccard avg., global, t = 10 (freq. = 0.222)

3. Antidice sing., global, t = 1 (freq. = 0.222)

• Card payment terminal (64 optimal solutions)

1. Levenshtein sing., global, t = 2 (freq. = 0.029)

2. Antidice sing., global, t = 10 (freq. = 0.029)

3. Levenshtein sing., global, t = 2 (freq. = 0.029)

4. Antidice mul., global, t = 2 (freq. = 0.029)

5. Antidice avg., global, t = 2 (freq. = 0.029)

• Claroline (1 optimal solution)

1. Hamming sing., global, t = 100 (freq. = 1.0)

Finally, table 4 presents the hypervolume values for the
Claroline model for the different sets of test cases. The hy-
pervolume corresponds, for a set of test cases s, to the vol-
ume of the solution space dominated by s [4, 21]. A high
value of hypervolume correspond to a set of test cases with
a better fault and product coverage.

The raw results for the 6 executions of the different test
case selection algorithms and their fault finding evaluation
may be downloaded at http://projects.info.unamur.be/vibes

4.3 Discussion
Dissimilarity relevance. Regarding RQ.1, dissimilarity-

based approaches are always able to obtain the optimal re-
sults in terms of fault finding ability and coverage. On the
three small models, these results are sometimes matched by
the all-actions and random approaches (Fig. 3). However,
the latter appear less frequently: neither random nor all-
actions are on the podium of optimal solutions in terms of
frequency. Additionally on the Claroline case study, the only
optimal solution found is a search-based one. We therefore
confirm the good results of similarity-driven testing for sin-
gle product testing [32] and configuration selection at the
FD level [22] for behavioural test case selection in an SPL
context. The most important finding is that being fully
bi-objective is not necessarily an advantage: on the 13 ap-
proaches present in the frequency podiums, only 6 are bi-
objective. Additionally, a single objective approach dom-
inates alone the Claroline case. This may be due to the
nature of the case study, which is not heavily constrained:
it is easy to obtain by chance dissimilar configurations. All-
actions performance may benefit of this situation as well.
Time may be involved in the explanation: for a given amount
of time, a bi-objective configuration will necessarily iterate
less than a single-objective one. When bi-objective is opti-
mal, the average (avg) composition operator gives the best
results as only one mul approach appears on our podiums.
Time given to the search-based algorithm has an (expected)
influence on the quality of the results. This is apparent on
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Figure 3: Coverage distribution for the sets of test cases for the soda vending machine (svm), Minepump,
card payment terminal (cpterminal), and Claroline models.

the Claroline case where the best hypervolumes are obtained
by approaches that are given t = 100.

Distance Impact. If we consider all the podiums, Ham-
ming and Jaccard-based distances (Dice, Antidice, Jaccard)
clearly win over Levenshtein. This may seem surprising since
Levenshtein is the only one that is sequence-based taking
into account the order of the actions. Levenshtein is more
computationally expensive than Hamming and Jaccard-based
distances, implying less iterations of the algorithm for a
given amount of time. When employed alone (single-objective)
on actions, it appears to be the second most performing dis-
tance on the Claroline case.

4.4 Threats to Validity
Internal Validity. Our evaluations have been applied to

only 4 models. To mitigate this risk, we chose one exam-
ple model (Soda Vending Machine), one academic models
(Minepump), one hand-crafted model based on card pay-
ment documentation and norms (Card payment terminal),
and one larger real world model (Claroline). Those models
come from different sources and represents different kinds
of systems: the card payment terminal, the Minepump, and
the Soda Vending machine are embedded system designed
by engineers and Claroline is a web-based platform where

the model has been reverse engineered from a running in-
stance.

Construct Validity. (i) To keep the comparison fair be-
tween the different test set generation algorithms, we use
the same number of test cases and duration time of the all-
actions test case generation to parametrize random and dis-
similar test case generations. As the dissimilar test case gen-
eration is based on a (1+1) evolutionary algorithm [16], it is
very sensitive to the maximal execution time (d). The all-
actions test case generation may be very fast (for the Soda
Vending machine for instance). In order to assess the time
influence in the quality of generation for the evolutionary
approach, we chose to repeat the test case generation with
different d values. (ii) We choose to use a (1+1) evolutionary
algorithm [16] to maximize the dissimilarity of the gener-
ated test set. This algorithm is simple and to parametrize,
and it showed good results to select products to test [22].
Many other algorithms, like adaptive random testing [6],
used to generate dissimilar test cases exist [19]. A compari-
son between those different algorithms is left for future work.
(iii) The complete process described in Section 4.1 has been
repeated 6 times for each model on a Ubuntu Linux machine
(Linux version 3.13.0-65-generic, Ubuntu 4.8.2-19ubuntu1)
with an Intel Core i3 (3.10GHz) processor and 4GB of mem-



Table 4: Hypervolumes values for the Claroline case-study
Actions dissimilarity distance

Hamming Jaccard Dice Antidice Levenshtein
t Avg. Mul. Sing. Avg. Mul. Sing. Avg. Mul. Sing. Avg. Mul. Sing. Avg. Mul. Sing.
1 0.688 0.662 0.690 0.673 0.705 0.690 0.693 0.709 0.690 0.711 0.692 0.668 0.691 0.722 0.691

Loc. 2 0.674 0.699 0.705 0.679 0.673 0.684 0.667 0.689 0.670 0.688 0.690 0.659 0.666 0.662 0.677
sort 10 0.702 0.681 0.661 0.721 0.685 0.700 0.720 0.669 0.679 0.667 0.674 0.651 0.691 0.681 0.696

100 0.667 0.693 0.672 0.672 0.720 0.713 0.691 0.703 0.678 0.696 0.685 0.655 0.655 0.678 0.687
1 0.736 0.710 0.724 0.694 0.697 0.727 0.695 0.683 0.710 0.666 0.672 0.699 0.684 0.693 0.717

Glob. 2 0.711 0.708 0.755 0.722 0.718 0.715 0.723 0.670 0.729 0.677 0.705 0.728 0.708 0.687 0.733
sort 10 0.740 0.733 0.804 0.723 0.696 0.730 0.690 0.683 0.738 0.701 0.692 0.746 0.701 0.714 0.771

100 0.794 0.800 0.831 0.747 0.729 0.756 0.750 0.714 0.755 0.747 0.740 0.758 0.747 0.730 0.781
All-act. crit. 0.771
Rand. crit. 0.706

ory. The complete experiment took approximately 4 days.
External Validity. We cannot guaranty that our mod-

els are representative of real behavioural models. The Soda
Vending Machine, Minepump, and Card payment termi-
nal models are small with few states and transitions. The
Claroline model is a larger model reverse engineered from
a running web application, this gave us a model with a
very flexible navigation (i.e., a large number of transitions)
between states (representing pages) with very few exclu-
sive constraints (i.e., feature expressions) on the transitions.
This has the side effect to allow many products to execute
a large part of the FTS with few behaviours limited to a
small subset of the SPL. However, the diversity of the mod-
els sources as well as the diversity of considered systems gives
us good confidence in the possibilities of this approach. In
our future work, we will apply our approach on other kinds
of systems from various domains where the transitions from
state to state are more constrained and/or where the SPL
has specific behaviour exercised only by a small subset of
the possible products.

5. RELATED WORK
Dissimilarity in Product Line Testing. To the best

of our knowledge, our approach is the first to consider dis-
similarity for behaviour and configurations in SPL testing,
research on the topic has solely focused on generating dissim-
ilar configurations of the feature model: Henard et al. [22]
defined a product selection approach based on selected fea-
tures dissimilarity to mimic the t-wise coverage for large sys-
tems and high values of t. This approach has been effective
also on smaller systems (with fewer products) by Al-Hajjaji
et al. [1]. As mentioned in Section 1, all these approaches
are based on the pioneering works on dissimilarity testing at
the code level (e.g., [20, 32]).

Fault Injection. Fault seeding techniques is a very popu-
lar method used to assess the quality of a set of test cases. In
our evaluation, we randomly tag states, actions and transi-
tions as faulty. Other approaches include injection of known
bugs in the system under test and mutation testing [31,33].
In mutation testing, a program is modified (mutated) using
a mutation operator (e.g., replacing an and operator by a
or operator). The number of modified programs (mutants)
detected by the test set under evaluation is called muta-
tion score and gives an indication on the fault finding abil-
ity of the test set [2]. Classical mutation testing works on
code artefacts of an application. With the development of
model-based techniques, mutation testing techniques work-
ing on model artefacts of an application (e.g., to assess a
set of abstract test cases) have been developed [35]. In our

previous work, we suggested to use FTSs to represent all the
mutants of a TS in a single model and therefore (re)define
a set of mutations operators for TSs [12]. Other approaches
also define mutation operators for FDs [23] or features to
other artefacts mapping [27]. However, to the best of our
knowledge, mutation operators for FTSs themselves do not
exist (yet). Development of such operators are part of our
future work in order to assess the presented and future ap-
proaches.

6. CONCLUSION AND FUTURE WORKS
In this paper, we have provided a configurable search-

based approach supporting single and bi-objective similarity-
driven test case selection for behavioural SPLs. Through 4
cases studies, we have demonstrated the superiority of dis-
similarity over random and all-actions coverage. We dis-
cussed the fact that being bi-objective is not necessarily an
advantage in our case studies. The examination of different
types of distances has shown that Hamming and Jaccard-
based distances are the most efficient.

Future work will investigate further single/bi-objective
differences on larger and more constrained case studies. We
will assess other selection algorithms like adaptive random
testing [6]; together with other sequence-based distances
such as global/local alignment, Needleman-Wunsch, and Sm-
ith-Waterman [19]; and other kinds of objectives such as test
case cost and/or execution time.
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