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ABSTRACT
Since the inception of Software Product Line (SPL) engi-
neering, concerns about testing SPLs emerged. The large
number of possible products that may be derived from a
SPL induces an even larger set of test-cases, which make SPL
testing a very challenging activity. Some individual solutions
have been proposed, but few are integrated in a complete
testing process. In this paper, we summarize our research
addressing variability-aware behavioural model-based test-
ing. So far we developed a statistical prioritization technique
and we have defined behavioural coverage criteria dedicated
to behavioural model of a SPL. Our overall goal is to form
an end-to-end model-driven approach, relying on Featured
Transition System (FTS), a compact formalism to represent
the behaviour of a SPL, where test-cases selection techniques
are automated and made practical to the engineers. The for-
mality of the envisioned models also makes them amenable
to model-checking, yielding innovative combinations of qual-
ity assurance activities. The evaluation will be performed in
two phases: using standard approaches (fault seeding and
mutation testing); using the approach on an industrial case-
study.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.13 [Software Engineering]: Reusable Software

General Terms
Reliability, Verification

Keywords
Software Product Line, Model-Based Testing, Featured Tran-
sition System
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1. INTRODUCTION
By analogy with the manufacturing industry, the Soft-

ware Product Line (SPL) [32] engineering paradigm relies
upon the idea that families of software systems can be built
by systematically reusing assets. Some are common to all
family members, and others are only shared by a subset of
the family [29]. Commonalities and variabilities amongst
members of a SPL are represented by means of a Feature
Diagram (FD) [20], while the individual specifications and
design of these assets may be modelled using languages such
as UML. For example, Fig. 1a presents the FD of a soda
vending machine [7]. A common semantics associated to a
FD d, noted [[d]], is the set of all the valid products allowed
by d.

As for any software engineering paradigm, appropriate
Quality Assurance (QA) techniques must be devised to in-
crease confidence into the products. Research in this area
comprise two kinds of approaches: model checking and test-
ing. Model Checking aims at checking that a given property
holds for a given model [2, 6, 23]. Testing aims at assessing
that programs and other artefacts behave as expected [25],
i.e., as described by the model. The notion of expected be-
haviour may cover different aspects: the expected output is
given by the program (Functional Testing); the time it takes
to the program to compute this output (Performance Test-
ing); the ease of use of its graphical interfaces (UI Testing);
etc.

In SPL engineering, the definition of such techniques is
very challenging due to the combinatorial explosion induced
by SPL variability. E.g., testing a SPL [26] means defining
test-cases for every product. Given that for each FD with N
features there are (at most) 2N possible products, exhaus-
tive testing of SPL is not practical for realistic SPLs. This
research topic, despite being identified since 2001 [26], is still
immature [15]. Strategies to test some selected products ex-
ist, but the selection of representative products is still in its
initial stage [14].

We believe that SPL testing research may benefit from
advances in related SPL research communities: the signifi-
cant progress in the model checking community to combat
combinatorial explosion and devise efficient checking tech-
niques [7]; and the adaptation of combinatorial interaction
testing techniques to the SPL domain [30]. In non-SPL soft-
ware engineering, Model Based Testing (MBT) [37] is a well-
established discipline in which test-cases are generated from
model(s) representing the specification of a system under
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Figure 1: The soda vending machine example [6]

test. These promising results motivate our will to apply
MBT techniques to perform practical testing of SPLs. In
this thesis, we will focus on the usage of a formal behavioural
model (based on Transition Systems) of product lines used
to generate test-cases according to given test criteria.

The rest of this paper is decomposed as follow: section
2 presents the context of this research and the background
used in the rest of this paper. Section 4 presents the method-
ology we will follow to answer the research questions pre-
sented in section 3. Section 5 presents our contribution so
far with key references in sections 6 and the thesis structure
in section 7. Section 8 presents related works and finally,
section 9 presents planned future works and our research
agenda.

2. CONTEXT
Testing issues in SPL developments are reported for years

[26] but still receive little attention [15]. A mapping study
realised by do Carmo Machado et al. in 2014 [14], presents
an overview of testing in SPL engineering. This study points
out that the selection of representative products is still in
its initial stage. One solution to select representative prod-
ucts is to use a feature coverage criteria to ensure that each
feature, couple or t-uple of features is present in at least one
tested product. For instance, in pairwise testing, the test-
cases will correspond to the minimal set of products in which
all pairs of features occur at least once. Pairwise testing has
been generalized to T-wise testing but at the cost of a scal-
ability problem. Perrouin et al. [31] describe a solution to
split T-wise combinations into solvable subsets using Alloy.
Oster et al. [28] describe a methodology to apply combina-
torial testing to a feature model. The two approaches have
been compared [30].

The verification community has made significant progress

to combat such explosion and devise efficient verification
techniques. These developments have been made at the do-
main engineering level (i.e., applicable for the whole SPL)
by finding compact models and transformations to use state
of the art solving technology. We present in the next sub-
section Featured Transition System (FTS) [7], a compact
formalism to represent the behaviour of a complete product
line.

2.1 SPL Behavioural Model
Transition Systems are used to model the behaviour of

a system [2]. To allow the explicit mapping from feature
to SPL behaviour, Featured Transition Systems (FTS) were
proposed [7]. FTS are transition systems (TS) where each
transition is labelled with a feature expression (i.e., a boolean
expression over features of the SPL), specifying which prod-
ucts can execute the transition. Formally, a FTS is a tuple
(S,Act, trans, i, d, γ) where:

• S is a set of states;

• Act a set of actions;

• trans ⊆ S × Act × S is the transition relation (with

(s1, α, s2) ∈ trans sometimes noted s1
α−→ s2);

• i ∈ S is the initial state;

• d is a FD;

• γ : trans→ [[d]]→ {>,⊥} is a total function labelling
each transition with a boolean expression over the fea-
tures, which specifies the products that can execute
the transition.

For instance: ¬f in Fig. 1b indicates that only products that
do not have the free feature may fire the pay, change, open, take
and close transitions. A Transition System (TS) modelling
the behaviour of a given product is obtained by removing
the transition whose feature expression is not satisfied by
the combination of features describing the product.

One possibility would be to use FTSs to directly model
behavioural product lines. Unfortunately, FTS are very ef-
ficient for verification and analysis but are not meant to be
used by engineers. Cordy et al. defined Featured State Ma-
chines (FSTM) [9] a formalism based on Harel’s Statecharts
that has already been used in industry. FSTMs may be
transformed to FTSs that will be processed by the tools.

ProVeLines is a dedicated model checker for FTSs [9]. It
includes the following functionalities that will be re-used for
testing purposes:

• The Reachability, simulation, and Linear Temporal
Logic (LTL) properties verification are used for test-
case generation and test-case execution by combining
model checking and testing techniques.

• The FSTM input language is more abstract than FTS
and accessible to software engineers to model the be-
haviour of a SPL.

• The Textual Variability Language (TVL) supports a
rich FD description language.

• The extensible architecture allows to add plugins.



ProVelines is not a layer above an existing model checker,
it has been designed and implemented from scratch specif-
ically to model check SPL behaviours. To the best of our
knowledge, ProVeLines is the only model checker that ver-
ify properties for all the products of the SPL. In case of
property violation, it gives all the products that violate the
property.

3. RESEARCH QUESTIONS
In this thesis, we assume that Model-Based Testing

(MBT) techniques can be used to test SPLs (Hyp.1). In
particular, we focus on behavioural product lines, which can
be formalized by means of FTSs and higher level languages.

In order to perform MBT, test engineers define SPL test-
ing criteria. To this end, an appropriate test selection lan-
guage has to be defined. We hypothesize that such criteria
will involve both variability and behavioral concerns
(Hyp.2). For instance, pairwise coverage can be combined
with structural coverage of state machines (states, transi-
tions). Additionally, existing test-cases generation meth-
ods for behavioural models have to be adapted to the SPL
paradigm. To do so, advances made by the SPL model
checking community [5] are assumed to be beneficial for
test-case generation (Hyp.3).

From Hyp.1 and Hyp.3, we derive the following research
question (RQ1): How to benefit from SPL model checking
techniques automation possibilities while still being accessible
to test engineers with no specific knowledge in model check-
ing? E.g., adapt ProVeLine symbolic algorithm to generate
abstract test-cases from a FTS.

From Hyp.2, we derive the following research question
(RQ2): How to define and select test-cases for a SPL based
on this FTS model? The test-cases we will generate will
be test-cases for a SPL (and not a product) and will contain
variability information. Similarly, test-case selection criteria
will operate both at behavioural and variability level.

From Hyp.1, we derive the following research question
(RQ3): How to combine and integrate selection and pri-
oritization techniques on FTSs in an end-to-end traceable
framework? FTS is an abstract formalism, not suited for
software engineers, and lacks hierarchical constructions.

4. RESEARCH METHODOLOGY
This thesis will make the point that involvement of the

verification and testing communities is necessary to advance
the SPL QA state of the art. We work at the theoretical level
to define novel SPL test selection and generation techniques
in relationship with the verification community. But SPL
QA is also a practical challenge for engineers. We also work
iteratively with MBT users and SPL engineers amongst our
industrial partners to ensure the relevance and validate our
research results. This research approach ensures that con-
tributions are scientifically grounded but also applicable in
industry (our main thread to validity). The main steps dur-
ing the development of this thesis are described hereafter
and will be executed in an iterative and incremental fashion
as described in figure 2.

Phase 1: State of the art. The state of the art covers
three elements: Model-Based Testing [25, 37], SPL
Testing [15, 14] and SPL Behavioural Model Checking
literature [2, 5, 7]. We have also initiated a literature
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Figure 2: Research Methodology

monitoring process that will continue until the end of
the thesis.

Phase 2: Framework design. The second phase is con-
cerned with the general design of a framework able to
answer the research questions defined in section 3 [10].

Phase 3: Test cases selection and prioritization. In
the third phase we define test-case selection strategies.
So far, those strategies include statistical test-case pri-
oritization [11] and coverage criteria [12].

Phase 4: Implementation. Techniques and methods de-
fined during step 3 will be implemented in Java us-
ing Maven in order to decompose the different ele-
ments in components that may be rearranged. The
current and future implementations may be found at
https://staff.info.unamur.be/xde/fts-testing/.

Phase 5: Validation. In order to answer RQ1, we need
to validate the techniques and methods and their im-
plementation from a theoretical point of view, but also
with test engineers. For each algorithm, a first valida-
tion in done internally to study the correction, com-
pleteness and complexity of the algorithm. A classical
approach in software testing is to use mutation test-
ing to assess a test-case generation algorithm [1, 16,
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18, 19]. We plan to develop mutation testing for FTSs
by adapting classical TS operators and add variability-
aware operators. The second validation assess the rele-
vance of the approach against an industrial case study
using an empirical approach [40]. This industrial case
study may be from one of our industrial partners or
an open source system.

Phase 6: Writing. Once the framework designed in phase 2
is implemented and validate, we will write the thesis.

5. CONTRIBUTIONS
This thesis intends to answer the research questions by

offering a framework for practical SPL testing and model-
checking. This framework relies on FTS, supports auto-
mated test-case generation and verification techniques, is
made practical to the engineers by means of transformation
from software engineer-oriented modelling language (FSTM).
We performed a preliminary study and review of the SPL
testing and behavioural MBT literature in order to review
the state of the art and to sketch a first vision of the ap-
proach [10].

Figure 3 presents an overview of the approach [10]. The
first step of the process consists in designing the input mod-
els. We use FSTM [9] as model of the behaviour of the
product line. The FD is designed using the Textual Vari-
ability Language TVL (see Chapter 8 of [5] for details). Cov-
erage criteria are defined for the SPL on FTSM elements.
We described the test selection problem in FTSs as a trade-
off between the coverage, the number of test-cases, and the
number of products to test [12]. We considered the classical
criteria: state-coverage, transition-coverage, transition-pair-
coverage, and path-coverage. In our future work, we intend

to extend those criteria to SPL coverages: e.g., the number
of products covered by a test-suite, the number of features,
the number of pairs of features, etc.

Model transformations will translate the models and test
criteria from step 1 into processing-oriented artefacts, namely
FTS and TVL as well as translated criteria. We plan to take
advantage of the various model transformation environments
available today (e.g., ATL, Kermeta) to actually implement
these transformations.

The third step of our process is concerned with test-cases
selection using model checking and test generation tech-
niques. Generated abstract test-cases may be refined in step
4 by the designer who has a deeper knowledge of the product
line (e.g., by refining actions in a sequence of transitions),
giving a refined FTS and a validation model (i.e., more de-
tailed abstract test-cases). We presented a first test gener-
ation technique by combining statistical testing techniques
with FTSs in order to prioritize product testing [11]. The
result of the process is a refined FTS representing a subset
of the original FTS that has to be assessed (using testing
and/or model checking) in priority.

In the last step, the refined FTS is used to perform model
checking while the test-cases (part of the validation arte-
facts) are concretized in order to be executed on the products
using existing techniques [37]. The last step is to present the
test results in a meaningful way to the test engineer. Indeed,
since many transformations have been performed automati-
cally, it may be difficult to understand the raw results. Our
goal is to complete the validation chain by illustrating vio-
lations and/or failures in the terms of the original models
(e.g. providing pruned visualizations of feature diagrams
showing the features that have been involved in a failed test
or highlighting transitions in the FSTM model) thanks to
traceability links.

Although other steps are important, some presents inter-
esting research challenges (e.g., traceability and evolution
issues as stated by do Carmo Machado et al. [14]), some
may be solved using standard techniques. This thesis will fo-
cuse on step 3: Test Generation. Test generation is a broad
topic, we work by considering standard testing techniques
and try to transpose them to the SPL/FTS paradigm. So
far, we worked on test-case selection and test-case priori-
tization. In the near future we intend to explore mutation
techniques for FTSs in order to assess our test-case selection
algorithms using a standard approach [25].

5.1 Test-Case Selection
In our previous work [12], we present the notions of ab-

stract test-case and the abstract test-case generation prob-
lem according to classical TS selection criteria.

Abstract Test-Case and Executable Abstract Test-
Case. Basically, an abstract test-case is a sequence of
actions (α1, ..., αn) in a FTS such as there exists a continuous

sequence of transitions labelled with those actions (i
α1−→

sk
α2−→ ...

αn−→ sn). An executable abstract test-case is a
sequence of actions such as there exists a product which
may fire a continuous sequence of transitions labelled with
those actions. For instance, on the FTS in figure 1b, the
sequences {pay, change, cancel, return} and {pay, change,
soda, serveSoda, take} are both valid abstract test-cases
(there exists 2 sequences of transitions with those actions),
but only the first one may be fired by a valid product of the
product line (product with ¬f and c features selected). The



second abstract test-case mixes free (f) and non-free (¬f)
machines behaviours.

Coverage Criteria. We define a coverage criteria
as the percentage of coverage for a given set of abstract
test-cases over a particular FTS. Coverage criteria are de-
fined as functions returning for a FTS and a set of abstract
test-cases a real value between 0 and 1. For instance, the
all − states coverage criteria gives the ratio between the
number of states reached when executing the test-cases and
the number of states in the FTS. Other considered criteria
are: all-transitions, all-transition-pairs, and all-paths.

Executable Abstract Test-Case Selection. Using
those notions, we define the executable abstract test-case
selection problem for a given selection criteria as a trade-off
between three values:

• minimizing the number of executable abstract test-
cases;

• maximizing the coverage targeted for the selection cri-
teria:

• minimizing the number of products needed to execute
all the test-cases.

We believe that this trade-off depends on the system under
test and the goal of the test engineer.

First Validation Using Fault Seeding. We devised
an FTS-aware random test generation strategy (e.g. system-
atically producing random executable abstract test-cases)
and compare randomly generated test-cases with selection
criteria [12, 13]. The random test generation consist in a
random walk in the FTS such that there exists a product
able to execute this walk. To compare the random test-cases
and coverage criteria-driven generated test-cases, we simu-
late bugs in the system by seeding faults in the FTS. So far
a fault is a state, a transition or an action (resp.) which trig-
ger the bug when it is traversed, fired or executed (resp.).
The number of faults detected by a test-case corresponds
to the number of faulty states, transitions and actions tra-
versed, fired or executed when executing the test-case. A
first comparison between random test-cases and all-states
test-cases has been presented [13]. Another widespread val-
idation technique to assess the quality of a coverage criteria
is the computation of a mutation score, corresponding to
the number of mutants killed by a (generated) test-set [25].
This will be explored in the next months.

We also plan to combine such criteria with each other
and with test-case selection based on temporal properties.
Our approach is implemented using the ProVeLines family
of SPL model-checkers [8].

5.2 Test-Case Prioritization
In our previous work [11], we developed a statistical test-

case prioritization technique based on the behaviour of run-
ning systems (i.e., products). Statistical prioritization is
particularly useful during regression testing to ensure as
quickly as possible that the most commonly used function-
alities of a system still work as expected after an update.

Usage Model. Fig. 4 presents the overall process.
First, a usage model (basically a labelled Deterministic Timed
Markov Chain) is built using logs of the running systems
(products of the product line) [17, 35]. E.g., for the soda
vending machine presented in Fig. 1b, we have the usage
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Figure 4: Prioritization overview [11]

model in Fig. 5a. The usage model is built from execu-
tion traces of the system, some transitions may be missing
(soda and serveSoda in our case) if the actions are never
performed by the running system.

Trace Selection. Traces (i.e., sequences of actions) are
selected in this usage model such as the probability of the
trace to be executed is between a lower and upper bound
given by the engineer. E.g., 0 and 0.1 in Fig. 5, which
produces the following traces:

Select(0; 0.1;usagemodelsvm) = {
(pay, change, cancel, return; 0.001);

(free, cancel, return; 0.09);

(pay, change, tea, serveTea, open, take, close; 0.009);

(pay, change, tea, serveTea, take; 0.09);

(free, tea, serveTea, open, take, close; 0.081)}

Trace Filtering. The selected traces are filtered us-
ing the FTS to keep only executable traces (sequences of
actions such as there exists at least one product able to
fire transitions with those actions). Our example contains
two unexecutable traces (i.e., not executable by at least one
valid product of the product line in Fig. 1): (pay, change,
tea, serveTea, take) and (free, tea, serveTea, open, take,
close).

Product Prioritization. The output of the filter pro-
cess is a set of executable traces ordered according to their
probability to be executed by the system and a refined FTS
representing the subset of the FTS to test and/or model
check in priority. Each executable trace is coupled with
the products that can execute it, giving a prioritized list
of products to test. The refined FTS for the soda vend-
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Figure 5: The soda vending machine prioritization
example [11]

ing machine in presented in figure 5b. If we take the trace
t = (pay, change, tea, serveTea, open, take, close), the prod-
ucts will have to satisfy the ¬f ∧ t feature expression. This
gives us a set of 8 products (amongst 32 possible):

{(v, b, cur, t, eur); (v, b, cur, t, usd); (v, b, cur, t, c, eur);

(v, b, cur, t, c, usd); (v, b, cur, t, s, eur); (v, b, cur, t, s, usd);

(v, b, cur, t, s, c, eur); (v, b, cur, t, s, c, usd)}

All of them executing t with a probability of 0.009 which is
the least probable behaviour of the soda vending machine.

Feasibility Assessment. To assess the feasibility of
the approach, we used a 5.26 Go Apache log of a running
instance of Claroline, an on-line course management system1

to derive a usage model [11]. We build the FD (44 features)
manually and used a web crawler to build the FTS (107
states and 11236 transitions) partially automatically. We
applied our technique and drastically reduced the size of the
refined FTS: 69 states and 844 transitions with the widest
interval([10−7; 1]) of our experiment. Unfortunately, the FD
contained too much variability to significantly reduce the
number of products to test and other selection criteria had
to be combined with this technique to have a proper product
prioritization.

Future Work. Future works include combining the cov-
erage criteria presented in section 5.1 and the refined FTS
generation in order to get a finer grained list of prioritized
products. We also plan to apply this technique to an in-
dustrial case of one of our partners. We intend to submit
an extended version of [11] to a journal, with the complete
validation and a connection to the work of Samih et al. [33].

6. KEY REFERENCES
Main publications (so far) are:

[10] “A vision for behavioural model-driven validation of
software product lines” presented at ISoLA ’12

1http://www.claroline.com/

[11] “‘Towards statistical prioritization for software product
lines testing” presented at VaMoS ’14

[12] “Coverage Criteria for Behavioural Testing of Software
Product Lines” accepted at ISoLA ’14

[13] “Abstract Test Case Generation for Behavioural Test-
ing of Software Product Lines” accepted at SPLat ’14
(SPLC Workshop)

7. THESIS STRUCTURE
Hereafter are presented the thesis structure and percent-

age of completion upon submitting this paper:

1. Introduction (60%)

2. Background (80%)

(a) Model-Based Testing

(b) Software Product Line Engineering

i. Software Product Line Testing

ii. Behavioural Model Checking of Software Prod-
uct Line

3. Framework Overview (50%)

4. Algorithms and Implementation (20%)

5. Validation (5%)

(a) Mutation Testing

(b) Users experience returns

6. Results Discussion (0%)

7. Conclusion and Future Works (0%)

8. RELATED WORK
Other strategies to perform SPLs testing at the domain

level have been proposed, e.g., incremental testing in the
SPL context [38, 28, 24]. Lochau et al. [24] defined a model-
based approach that shifts from one product to another by
applying deltas to state-machine models. These deltas en-
able automatic reuse/adaptation of test model and deriva-
tion of retest obligations. Oster et al. [28] extend combi-
natorial interaction testing with the possibility to specify a
predefined set of products in the configuration suite to be
tested. There are also approaches focused on the SPL im-
plementation by building variability-aware interpreters for
various languages [22]. Based on symbolic execution tech-
niques, such interpreters are able to run one test-case on a
very large set of products at the same time [21]. In [4], Ci-
chos et al. use the notions of 150% test model, i.e., a test
model of the behaviour of a product line, and of test goal to
derive test-cases for a product line but do not define coverage
criteria at the SPL level. In [3], Beohar et al. adapt the ioco
framework [36] to FTSs. Contrary to this approach, we do
not seek exhaustive testing of an implementation but rather
to select relevant abstract test-cases based on the criteria
provided by the test engineer.



9. RESEARCH AGENDA
In the nearest future, we intend to implement and extend

coverage criteria [12] in order to (1) take into account clas-
sical transitions based coverage criteria, e.g., state coverage,
transition coverage, transition pair coverage, path coverage,
etc. (2) Use existing statistical testing tools (like MaTeLo)
in order to connect to our statistical prioritization technique
[11]. (3) validate the complete approach by concretizing the
test-cases on two real systems: one coming from the open
source community (like Claroline [11], the Drupal framework
[34], or Wordpress), and one industrial systems developed by
our partners (Thales, etc.) as recommended by Metzger et
al. [27]. Our work/publication plan for the next months is
the following:

Test case prioritization. We will extend and connect
our work to Samih et al. [11, 33] using MaTeLo2, a Model-
Based Testing tool that use usage model to generate test-
cases (without variability). We will submit our work to a
journal (fall 2014).

Test case selection. The generation of test-cases ac-
cording to the all-states coverage criteria is implemented. It
has been compared with random test-case generation using
a fault seeding algorithm (i.e., state, transitions and actions
randomly selected and considered to be faulty) [13]. We plan
to validate this algorithm using mutation testing techniques
and to extend our work to other coverage criteria.

Mutation testing. Specific operators for mutation of
FTSs will be developed and implemented in the next weeks.
Those operators will be used to assess the test-case genera-
tion algorithms using coverage criteria. The complete imple-
mentation and the comparison of different coverage criteria
using mutation scores will be described in a conference paper
(winter 2014).

Next year (2015). We plan to integrate and apply
the test-case generation and mutation testing in a coherent
framework to perform Behavioural SPL Model-Based Test-
ing. The transformation from FSTM and coverage criteria
to FTS will be implemented and a traceability policy will be
chosen [39]. Coverage criteria will be composed and refine
to allow finer grained test-case selection (e.g., a specific set
of states and/or transitions and/or features, etc.).
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Model-based Coverage-driven Test Suite Generation
for Software Product Lines. In MODELS’11, pages
425–439. Springer-Verlag, 2011.

[5] A. Classen. Modelling and Model Checking
Variability-Intensive Systems. PhD thesis, PReCISE
Research Center, Faculty of Computer Science,
University of Namur (FUNDP), 2011.

2see: http://all4tec.net/index.php/en/
model-based-testing/20-markov-test-logic-matelo

[6] A. Classen, Q. Boucher, and P. Heymans. A
text-based approach to feature modelling: Syntax and
semantics of tvl. Science of Computer Programming,
76:1130–1143, 2011.

[7] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans,
A. Legay, and J.-F. J.-F. Raskin. Featured Transition
Systems: Foundations for Verifying
Variability-Intensive Systems and Their Application to
LTL Model Checking. TSE, 39(8):1069–1089, Aug.
2013.

[8] M. Cordy, A. Classen, P. Heymans, P.-Y. Schobbens,
and A. Legay. ProVeLines: A Product Line of Verifiers
for Software Product Lines. In Proceedings of the 17th
International Software Product Line Conference
Co-located Workshops, SPLC ’13 Workshops, pages
141–146. ACM, 2013.

[9] M. Cordy, M. Willemart, B. Dawagne, P. Heymans,
and P.-y. Schobbens. An Extensible Platform for
Product-Line Behavioural Analysis. In
SPLat@SPLC’14, Florence, Italy, 2014. ACM.

[10] X. Devroey, M. Cordy, G. Perrouin, E.-Y. Kang, P.-Y.
Schobbens, P. Heymans, A. Legay, and B. Baudry. A
vision for behavioural model-driven validation of
software product lines. In T. Margaria and B. Steffen,
editors, ISoLa’12, volume 7609 of LNCS, pages
208–222. Springer, 2012.

[11] X. Devroey, G. Perrouin, M. Cordy, P.-Y. Schobbens,
A. Legay, and P. Heymans. Towards statistical
prioritization for software product lines testing. In
VaMoS’14, pages 10:1–10:7, New York, NY, USA,
2013. ACM.

[12] X. Devroey, G. Perrouin, A. Legay, M. Cordy, P.-y.
Schobbens, and P. Heymans. Coverage Criteria for
Behavioural Testing of Software Product Lines. In
T. Margaria and B. Steffen, editors, ISoLa’14 (to
appear), LNCS. Springer, 2014.

[13] X. Devroey, G. Perrouin, and P.-y. Schobbens.
Abstract Test Case Generation for Behavioural
Testing of Software Product Lines. In
SPLat@SPLC’14, Florence, Italy, 2014. ACM.

[14] I. do Carmo Machado, J. D. McGregor, Y. a. C.
Cavalcanti, and E. S. de Almeida. On strategies for
testing software product lines: A systematic literature
review. Information and Software Technology,
56(10):1183–1199, Oct. 2014.

[15] E. Engström and P. Runeson. Software product line
testing-a systematic mapping study. Information and
Software Technology, 2010.

[16] S. Fabbri, J. C. Maldonado, and M. E. Delamaro.
Proteum/FSM: a tool to support finite state machine
validation based on mutation testing. In SCCC ’99,
pages 96–104, 1999.
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