
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Learning Multiple Conflicting Tasks with Artificial Evolution

Nicolay, Delphine; Andrea, Roli; Carletti, Timoteo

Published in:
Advances in Artificial Life and Evolutionary Computation

DOI:
10.1007/978-3-319-12745-3_11

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Nicolay, D, Andrea, R & Carletti, T 2014, Learning Multiple Conflicting Tasks with Artificial Evolution. in C Pizzuti
& G Spezzano (eds), Advances in Artificial Life and Evolutionary Computation: 9th Italian Workshop, WIVACE
2014, Vietri sul Mare, Italy, May 14-15, Revised Selected Papers. vol. 445, Communications in Computer and
Information Science, vol. 445, Springer, pp. 127-139, 9th Italian Workshop on Artificial Life and Evolutionary
Computation, WIVACE 2014, Vietri sul Mare, Italy, 14/05/14. https://doi.org/10.1007/978-3-319-12745-3_11

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198267803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-12745-3_11
https://researchportal.unamur.be/en/publications/5fd703fb-3313-4554-82aa-3a4bb38cdda4

Learning multiple conflicting tasks with artificial
evolution

D. Nicolay1, A. Roli2, and T. Carletti1

1 Department of Mathematics and naXys, University of Namur, Belgium
2 Department of Computer Science and Engineering (DISI), University of Bologna,

Campus of Cesena, Italy

Abstract. The paper explores the issue of learning multiple competing
tasks in the domain of artificial evolution. In particular, a robot is trained
so as to be able to perform two different tasks at the same time, namely
a gradient following and rough terrain avoidance behaviours. It is shown
that, if the controller is trained to learn two tasks of different difficulty,
then the robot performance is higher if the most difficult task is learnt
first, before the combined learning of both tasks. An explanation to this
superiority is also discussed, in comparison with previous results.

1 Introduction

Since its first appearance in the late 60’s, artificial evolution (AE) has been suc-
cessfully applied to solve a plethora of problems arising in fields such as circuit
design, control systems, data mining, optimisation and robotics. The application
of AE to robotics is commonly named evolutionary robotics (ER) and it is mainly
concerned with the artificial evolution of robots neural controllers [12]. ER has
contributed with notable results to the domain of artificial cognition and it also
provides a viable way for designing robotic systems, such as robot swarms. Nev-
ertheless, in spite of promising initial results, ER has not completely expressed
its potential, especially in the design of complex robotic controllers. In fact, ER
is still applied with large contributions of the experience and the intuition of the
designer. To close the gap between current ER achievements and its potential
applications, both theoretical and methodological advancements are required.

A case in point is the issue of training a robot controller such that the robot is
able to accomplish more than one task at the same time. The practice in robotic
learning already possesses some good practice and specific methodologies, such
as robot shaping [5], which is primarily applied to incremental training of robots.
However, general results in this context are still lacking.

A prominent study is that by Calabretta et al. [3], in which the question as
to whether a non-modular neural network can be trained so as to achieve the
same performance as a modular one in accomplishing multiple tasks is addressed.
The neural network is trained to perform two simultaneous classification tasks
on the same input, one task being harder than the other. The conclusion of the

results of these experiments is particularly interesting: the best performance is
attained by training first on the harder tasks and successively also on the second.
This learning sequence is the one enabling the search process to minimise the
so-called neural interference, which appears every time neural weights involved
in the computation of both tasks are varied considerably, leading to a detriment
of the overall network performance. If the harder task is learnt first, then neural
interference is reduced as much as possible, because the magnitude of weight
variation is kept at minimal levels. The work by Calabretta and co-authors is
particularly meaningful because it sheds light to the mechanisms underpinning
the learning sequence that leads to the best performance—which is comparable
to the one attained by a modular neural network, trained independently on the
two tasks.

In this work, we address the question as to which is the best task learning
sequence for training a robot. The case under study is more general than that
in [3], as it consists of two conflicting robotic tasks—which are computationally
more complex than classification tasks—and both network structure and weights
can undergo changes during the training phase, which is based on a genetic al-
gorithm (GA). We will show that the best results can be attained by training
the robot on the harder task first and then on both tasks, confirming the results
in [3]. Nevertheless, since our controllers and the training process are different
than those in the study by Calabretta et al., the explanation based on neural
interference is no longer valid and a different mechanism should be found. We
conjecture that in the case of GA, the interference between the two tasks induces
a rugged fitness landscape: learning first on the harder task means to keep the
landscape as smooth as possible, thus enabling the search mechanism of GA to
attain a higher performance than in the other learning cases.

In Section 2, we illustrate the scenario and two tasks the robot has to perform.
In Section 3, we detail the experiments we made and we describe the results of
the three possible training settings for the robot. Section 4 presents a discussion
on the results and Section 5 concludes the contribution with an outline of future
work.

2 Model and tasks description

The abstract application that we focus on follows ideas presented by Beau-
mont [1]. Virtual robots, controlled by neural networks, are trained to learn two
different tasks in a virtual arena. This arena is a discretised grid of varying sizes,
hereby for a sake of simplicity we fixed it to 20 × 20, with a torus topology,
i.e. periodic boundary conditions on both directions, on which robots are al-
lowed to move into any neighbouring square at each displacement, that is the
8–cells Moore neighbourhood. Assuming the arena is not flat and it possesses
one global maximum, the first task we proposed involves reaching this global
maximum, represented using a colour code in the left panel of Fig. 1; the second
task consists in moving as long as possible in the arena by avoiding “danger-

ous”zones, i.e. zones where robots loose energy, represented by black boxes in
the right panel of Fig. 1.

Fig. 1. Arenas where robots are trained. Left panel: arena for task T1, the peak level
is represented as a color code: red high level, blue lower levels. Right panel: arena for
task T2, black boxes denote the “dangerous”zones to be avoided as much as possible.

The model of neural networks [13, 14] that we use is schematically shown in Fig.
2. The topology is completely unconstrained, except for the self–loops that are
prohibited. Each neuron can have two internal states: activated (equal to 1) or
inhibited (equal to 0). The weight of each link is 1, if the link is excitatory, or
−1 if it is of inhibitory nature. Given the present state for each neuron, (xti), the
updated state of each neuron is given by the perceptron rule:

∀j ∈ {1, . . . , N} : xt+1
j =

1 if
kin
j∑

i=1

wt
jix

t
i ≥ θkinj

0 otherwise

where kinj is the number of incoming links in the j–th neuron under scrutiny, θ
the threshold of the neuron, a parameter lying in the interval [−1, 1], and wt

ji is
the weight, at time t, of the synapse linking i to j.

The robots that we consider are built using 17 sensors and 4 motors. The 9
first sensors help robots to check the local height of the square on which the
robot is with respect to the squares around it. The 8 other ones are used to
detect the presence of “dangerous”zones around it. The 4 motors control the
basic movements of robots, i.e. north–south-east and west, and combining them,
they also allow diagonal movements. Hence, the neural networks that control the
robots are made of 43 nodes: 17 inputs, 4 outputs and 22 hidden neurons. This
number has been set large enough to let sufficient possibilities of connections in
order to achieve the tasks, but still keeping reasonably low not to use too much
CPU resources.

As the state of each neuron of our neural networks is binary, we transform
the information acquired by the sensors in binary inputs to introduce them in
the networks. Consequently, the state xi of the nine first inputs is calculated

according to the formula xi =
⌊

1.9(hi−hmin
i)

hmax
i −hmin

i

⌋
where hi is the height of sensor

i and hmin
i and hmax

i respectively represent the minimal and maximal heights
among the 9 available ones for the robot. For the last eight inputs responsible

for the exploration of the neighbouring zones, their state is 1 if their associated
sensor detects a “dangerous”square and 0 otherwise.

Fig. 2. Schematic presentation of the artificial neural networks model used in our
research. The topology is unconstrained and the state of each neuron is a binary value.
The updated state of each neuron is given by the perceptron rule.

The binary neural network outputs are then transformed back into motors’ move-
ments, more precisely we devote two motors to the west-east movements and the
two others to the north-south movements. The robot movements follow the rule
detailed in Table 1.

Table 1. Movement achieved by the robots according to the network’s outputs. The
8–cells Moore neighbourhood can be reached by the robots at each displacement.

Output 1 Output 2 Movement

0 0 −1
0 1 0
1 0 0
1 1 +1

For each task, the quality of robot’s behaviour is quantified in order to determine
the network that performs the best control. In the estimation of the first task,
i.e. reaching the global maximum of the arena, the robot carries out 20 steps
for each of the 10 initial positions of the training set. For each of these displace-
ments, we save the mean height of the last five steps. Then, we calculate a fitness
value, fit, which is the mean height on all the displacements. The quality of the
robot behaviour is finally given by quality1 = f it−hmin

hmax−hmin
where hmin = 3.93 and

hmax = 9.98 are respectively the minimal and maximal heights of the grid. A
robot, and so a network, has a quality of 1 if, for each initial position, it reaches
the peak at least at the sixteenth step and stays on this peak until the end of
the displacement.

For the assessment of the second task, namely avoiding “dangerous”zones, the
robot is assigned 3 an initial energy equal to 100 for the 5 initial positions in each
of the 3 configurations of the training set. For these fifteen cases, it performs 100

3 Let us observe that such parameters have been set to the present values after a
careful analysis of some generic simulations and by a test and error procedure.

steps in the arena. If it moves to a “dangerous”square, its energy is decreased
by 5. Moreover, if it moves to a square that it has already visited, its energy is
reduced by 1. This condition is needed to force the robot to move instead of re-
maining on a safe cell. We save the final energy of each case and we compute the
mean final energy. If the energy becomes negative, we set its value to zero. The
quality of the robot’s behaviour is then calculated as quality2 = final energy

maximum energy
A robot has a quality of 1 if, for each initial position of each configuration, it
moves continuously on the grid without visiting “dangerous”squares and squares
already visited.

When both tasks are performed simultaneously, we slightly adjust our training
and our quality measures. The training set is composed by the three configura-
tions of the second task and their five respective initial positions. The robot is
assigned an energy equal to 20 instead of 100 and it performs 20 steps in the
arena. The rule for the loss of energy remains the same as well as the way of
calculating the mean height on all the displacements. Nevertheless, when the
final energy of one displacement is zero, we assigned a value of zero to its mean
height on the last five steps. If the value fit is lower than hmin, we set the quality
measure to zero. This modification in the quality of the fitness is introduced to
prevent robots from having a very good behaviour for one task and a very bad
behaviour for the other one. Let us note that these two tasks are competing each
other. Indeed, in the first task, we hope that robot stops on the peak and in the
second one, we ask it to move continuously. So, we look for a trade-off between
the two tasks in the robot behaviour.

The suitable topology and the appropriate weights and thresholds have to be
fine tuned to obtain neural networks responsible for good performance and this
strongly depends on the given arena, however we are interested in obtaining a
robust behaviour irrespectively from the chosen environment, that is why we
resort to heuristic optimisation method, namely genetic algorithms (GA), that
have been used abundantly in the literature [4, 6, 10]. The choice of making use
of genetic algorithms as optimisation method has been made for two reasons.
Firstly, the perceptron rule is a discontinuous threshold function and we can not
directly apply some well-known algorithms such as backpropagation. Secondly,
GA optimises both topology and weights–thresholds, which is necessary as the
topology of our networks is not frozen. Some preliminary results about these
heuristic methods have already been published in [11].

The genetic algorithm used in the following is discrete-valued for the weights and
real-valued for the thresholds. The selection is performed by a roulette wheel se-
lection. The operators chosen are the classical 1-point crossover and 1-inversion
mutation. Their respective rates are 0.9 and 0.01, while the population size is
100 and the maximum number of generations is 10 000. To ensure the legacy
of best individuals, the population of parents and offsprings are compared at
each generation before keeping the best individuals among both populations.

New random individuals (one-tenth of the population size) are also introduced
at each generation by replacing worst individuals in order to avoid premature
convergence.

3 Results
In a first stage, we performed each task separately to test their feasibility. Then,
we compared networks trained on each task learnt successively and networks
trained on both task simultaneously; as well as different learning sequences in
order to discover the best way to train robots for multiple tasks.

For each learning process, we performed 10 trainings in order to get valuable
results, given the heuristic characteristic of our optimisation method. We used
computation resources of an intensive computing platform. Indeed, one optimi-
sation is time consuming. The cost of our algorithm is due to the evaluation of
the quality performance. For example, the time for one evaluation of the first
and the second task quality measure are respectively 0.0192 and 0.0626 seconds
for a processor Intel Core i5-3470 CPU @ 3.20GHz x 4 and a memory of 7,5
Gio. About 1100000 evaluations are performed during an optimisation and our
algorithm is sequential, which means that one training takes approximatively 5
hours for the first task and 19 hours for the second one. All our codes are written
in Matlab.

3.1 Single tasks

Figure 3 represents the maximum performance attained at each generation of one
optimisation for reaching the global maximum of the arena on the left panel and
for avoiding “dangerous”zones on the right panel. We can remark that the second
task is the most difficult to achieve. Indeed, we observe that the optimisation of
reaching the global maximum is perfectly performed in less than 250 generations.
However, avoiding “dangerous”zones does not reach the maximum performance
at the end of the optimisation (after 10 000 generations).

Fig. 3. Maximum performance reached at each generation of the genetic algorithm for
the achievement of one particular task. Left panel: maximum performance for reaching
the global maximum of the arena. Right panel: maximum performance for avoiding
“dangerous zones”. The achievement of the first task is perfect after a few generations
while the achievement of the second task does not reach the maximal performance.

3.2 Combined tasks

Three different learning processes are considered in order to find the best way
to train robots for multiple tasks. In the first case, networks learn both tasks si-
multaneously giving to the total quality measure an equal weight (named in the
following 0.5T1 + 0.5T2). In the second one, robots are first trained to achieve
the first task and then both tasks simultaneously (named, T1 → T1+T2) while
for the last sequence, it is the second task that is trained before the simulta-
neous training (T2 → T1+T2). During the simultaneous learning, the quality
performance is once again the average of the quality measures of T1 and T2.

Remark 1. Let us observe that a fourth possible configuration could be used,
that is, to consider two smaller networks having inputs only for a given task 4

and then juxtapose the two and link in couple each motor output for each small
network, in such a way to get a larger network. Some preliminary results showed
that the network obtained by juxtaposition of two smaller ones, each one opti-
mised for a task, does not seem to have good performance. In the following we
will not consider this fourth case because in our opinion these results need to be
further analysed, before any conclusion could be done.

Table 2 presents, for each learning sequence, the mean and standard deviation
of the final performance computed from ten independent realisations. The non-
parametric hypothesis test of Kruskal-Wallis [7] is considered to evaluate the
difference of medians. As the p-value is equal to 0.1232, we accept the null
hypothesis, which means that the medians of the three learning sequences seem
to be similar on the training set.

Table 2. Mean and standard deviation, on 10 optimisations, of the final maximum
performance got for each learning sequence. The total quality measure is calculated as
the average of the quality performance of T1 and T2 for all the three learning processes.

Learning process Mean Std

0.5T1 + 0.5T2 0.7295 0.0588
T1 → T1+T2 0.7252 0.0407
T2 → T1+T2 0.7606 0.0606

In order to properly assess the quality of the controllers obtained at the end
of the training process, we compare their behaviour using validation sets, i.e.,
scenarios not present in the set used for the training. We consider different
ways of changing the arena. In the first and second validation set, we modify
respectively the zones where robots lose energy and the shape of the surface to
climb (position of the peak and slope of the surface). In the last set, we perform
both modifications. Table 3 presents, for each of these validation sets, the mean
and standard deviation of the performance got by the neural networks trained

4 More precisely, one network composed by 9 inputs, 5 hidden neurons and 4 outputs,
has only the inputs able to measure the local heights and the second one, formed by
8 inputs, 5 hidden neurons and 4 outputs, to detect the dangerous zones.

with the different learning sequences. A boxplot of the results obtained for each
learning sequence is presented on the right panel of Fig. 4.

Table 3. Mean and standard deviation of the performance obtained by random neural
networks and by the neural networks trained with the different learning sequences on
three validation sets, each of them representing a different way to modify the arena.

Area Measure Random network 0.5T1 + 0.5T2 T1 → T1+T2 T2 → T1+T2

Validation Mean 0.0047 0.1073 0.1520 0.2718
1 Std 0.0036 0.0707 0.1073 0.1290

Validation Mean 0.0120 0.2946 0.3379 0.4318
2 Std 0.0060 0.1259 0.1037 0.1593

Validation Mean 0.0053 0.1746 0.1687 0.3313
3 Std 0.0076 0.1233 0.0933 0.1390

The third learning sequence, i.e. the training of the second task followed by the
one of both tasks (T2 → T1+T2), seems to be the best way to train robots for
multiple tasks. Indeed, the mean performance of this sequence is the highest for
each validation set. Moreover, this learning sequence increases the mean perfor-
mance by at least 25 % compared to other learning sequences. But we also note
that the standard deviation is the highest for this learning process.

To confirm our intuition, we make use of statistical tests whose results are pre-
sented on the left panel of Fig. 4. the first test that we use is Kruskal-Wallis
in order to check the equality of the three medians. As the p-value is smaller
than 0.05, we come to the conclusion that the medians are significantly different.
Then, we use the non-parametric Wilcoxon test [7] to evaluate medians by pair.
With this test, we observe that sequence 1 and 2 leads to similar medians while
the one of sequence 3 is significantly different. Let us remind that the second
task, which is first trained in this sequence, is the most difficult to learn. In
conclusion, it seems better to train the hardest task before training both tasks
simultaneously.

Kruskal-Wallis

p-value

3.8281.10−4 < 0.05

Wilcoxon

Seq. 1 Seq. 2 p-value

0.5T1 + 0.5T2 T1 → T1+T2 0.4161 > 0.05

0.5T1 + 0.5T2 T2 → T1+T2 0.0002 < 0.05

T1 → T1+T2 T2 → T1+T2 0.0033 < 0.05

Fig. 4. Analysis of the quality values obtained for the three learning sequences. The
performance is evaluated on the validation sets by the optimal networks of 10 optimi-
sations. Left panel: hypothesis tests of Kruskal-Wallis and Wilcoxon used to compare
the medians of the quality performance. Right panel: boxplot of the quality measures.

Tables 4 and 5 present the performance associated with the first and the second
task, respectively. We can see that the learning sequence T2 → T1+T2 makes
it possible to attain the best results because it helps the training process to
improve the fitness function of both the tasks.

Table 4. Mean and standard deviation of the task 1 performance obtained by the
neural networks trained with the different learning sequences on three validation sets,
each of them representing a different way to modify the arena.

Area Measure 0.5T1 + 0.5T2 T1 → T1+T2 T2 → T1+T2

Validation Mean 0.0520 0.1296 0.2672
1 Std 0.0879 0.1441 0.1995

Validation Mean 0.3322 0.4305 0.4625
2 Std 0.1667 0.1736 0.1872

Validation Mean 0.2063 0.1910 0.3937
3 Std 0.2085 0.1401 0.2240

Table 5. Mean and standard deviation of the task 2 performance obtained by the
neural networks trained with the different learning sequences on three validation sets,
each of them representing a different way to modify the arena.

Area Measure 0.5T1 + 0.5T2 T1 → T1+T2 T2 → T1+T2

Validation Mean 0.1627 0.1743 0.2763
1 Std 0.0770 0.0771 0.0748

Validation Mean 0.2570 0.2453 0.4010
2 Std 0.1102 0.0594 0.1554

Validation Mean 0.1430 0.1463 0.2630
3 Std 0.0589 0.0590 0.0646

4 Discussion

The result of our study about learning sequences is that it seems to be better
to learn the hardest task before learning both tasks. This conclusion coincides
with the one drawn by Calabretta et al. Nevertheless, far from appearing as
a replicate of this study, we flesh out the spectrum of experiments on which
the results are valid. Indeed, it is worthwhile to summarise the main differences
between our context of study and the one in [3]. Firstly, the two tasks consid-
ered in this study are dynamical tasks rather than classification ones. Secondly,
both weights and structure of the networks undergo changes during learning.
Thirdly, the tasks have separate inputs but common outputs, which is the oppo-
site of Calabretta’s experiments. Finally, let us observe that the considered tasks
are conflicting and that the weights of the networks do not change in magnitude.

Although our study leads to the same conclusion of the one in [3], we can not
use the same reason to explain it. Indeed, since the networks and the learning
process are different, the neural interference is no longer valid and a different
mechanism should be found. To this aim, we study the autocorrelation of our
performance landscape [8] for each learning sequence. For this, we perform 10

random walks of 10 000 steps in all learning schemes presented before. These
walks are executed by random networks for the separate and simultaneous learn-
ing of tasks (T1, T2 and 0.5T1 + 0.5T2) while they are performed by networks
trained for task 1 and task 2 respectively in the case of successive learning (T1→
T1+T2 and T2 → T1+T2). Figure 5 presents the mean of the autocorrelation
on the 10 walks for each length from 1 to 5 and for each learning sequence on
the left panel and the mean and standard deviation for autocorrelation of length
1 in the table on the right.

Learning sequence Mean Std

T1 0.9717 0.0061
T2 0.8981 0.0192

0.5T1 + 0.5T2 0.9187 0.0122
T1 → T1+T2 0.9331 0.0181
T2 → T1+T2 0.9253 0.0184

Fig. 5. Study of the autocorrelation of the performance landscape. Left panel: mean
of the autocorrelation on 10 walks for each length from 1 to 5 and for each learning
sequence. Right panel: Mean and standard deviation of the autocorrelation of length 1
for each learning process.

The autocorrelation values explain the marked differences in the final perfor-
mance of the robot in the extreme cases, i.e., task 1—the easiest, with the high-
est autocorrelation values corresponding to a flatter fitness landscape—and task
2—the hardest, with the lowest values and thus a more rough fitness landscape.
Moreover, the learning sequence 0.5T1 + 0.5T2 clearly corresponds to autocorre-
lation values just above the ones of T2, but below the others. This explains why
this sequence is the worst among the three ones with the compound task. The
final high performance attained by the learning sequence T2→ T1+T2 does not
seem to find support in the autocorrelation values, which are quite close. How-
ever, we must observe that the measure is taken on a landscape corresponding to
the final phase of evolution on task 1 (T1→ T1+T2) and task 2 (T2→ T1+T2),
respectively. Therefore, at the beginning of the search with the composite fitness
(accounting for both the tasks), the autocorrelation of the landscape is strongly
influenced by the initial training phase with only one task active. Hence, the
landscape autocorrelation in the sequence T2→ T1+T2 heavily depends on the
autocorrelation of the landscape for learning task 2, which is the very low. We
can conclude that in the T2 → T1+T2, the addition of the fitness component
corresponding to task 1 is considerably beneficial to the search process, enabling
the genetic algorithm to explore a way smoother landscape, whilst the addition
of the task 2 fitness has a dramatically detrimental effect, harming search effec-
tiveness.

The second point that we discuss is the existence of correlation between the
tasks. With this aim, we perform the removal of one hidden neuron at once

and we analyse the modifications of the quality measures. These modifications
are shown in Fig. 6 for 10 optimisations of the networks on both tasks simul-
taneously. We can observe a linear relation between the modifications, which is
confirmed by the correlation coefficient (0.8138). However, can we conclude that
neurons that are important for the first task are also important for the second
one? Or, is this correlation due to the important number of links in the networks,
that we modify too strongly by removing one neuron?

Fig. 6. Relation between the modifications of the two tasks when a hidden neuron is
removed from the network. Networks that are considered are the ones obtained after
the training on both tasks simultaneously (0.5T1 + 0.5T2).

To provide a first answer to this question we run the same kind of experiments
but with a definitive removal of respectively 3 or 5 random chosen hidden nodes
before temporarily removing each of the remaining ones and we observed that
the correlation between the tasks decreases.

In order to learn more about the topology of our networks and the relations
between the two tasks, we need to study the modularity of our networks. Two
kinds of modularities can be considered. The first one is a topological modu-
larity [9] that can be studied with some community detection methods such as
the Louvain method [2] or by using measures of centrality or similarity. In order
to analyse the second one, namely the functional modularity, that is to group
together neurons that have similar dynamic behaviours, we plan to use some
recent information-like indicators [15]. This study will be done in future work.

5 Conclusion

Evolutionary robotics has led to important progress in the domain of artificial
cognition. Nevertheless, general results are still lacking about the issue of training
a robot controller such that the robot accomplishes multiple tasks. This paper
has examined what is the best learning sequence for the training of two tasks
with different difficulty. The conclusion of this study has expanded the results
brought to light by Calabretta et al. [3] to a more general framework.

In this work, we train robot controllers such that the robot is able to reach the
maximum of a surface while avoiding “dangerous”zones where it looses energy.
The optimisation is executed both on weights and structure of the networks. Dif-
ferent learning sequences are envisaged in order to find the best way for learning
multiple tasks.

The learning sequence that has been shown to be appropriate for the learn-
ing of conflicting multiple tasks is the sequence in which the most difficult task
is learnt before the learning of both tasks simultaneously. Contrary to the study
of Calabretta, we can not ascribe the difference in the performance to neural
interference, because of a different experimental setting. However, a possible ex-
planation can come from the study of the autocorrelation of the fitness landscape.

The conclusion of this study is promising and supports the claim about the
generality of the result, as it extends the application framework with respect to
previous works. Further work will address the topology of the networks as well
as the relations between the two tasks by the study of the networks modular-
ity. This better knowledge of the structure and the tasks relations could lead to
important progress in the understanding of learning process.

Acknowledgements

This research used computational resources of the “Plateforme Technologique
de Calcul Intensif (PTCI)”located at the University of Namur, Belgium, which
is supported by the F.R.S.-FNRS.

This paper presents research results of the Belgian Network DYSCO (Dynamical
Systems, Control, and Optimisation), funded by the Interuniversity Attraction
Poles Programme, initiated by the Belgian State, Science Policy Office. The
scientific responsibility rests with its authors.

References

[1] M.A. Beaumont. Evolution of optimal behaviour in networks of boolean automata.
Journal of Theoretical Biology, 165:455–476, 1993.

[2] V. D. Blondel, J-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008.

[3] R. Calabretta, A. Di Ferdinando, D. Parisi, and F. C. Keil. How to learn multiple
tasks. Biological Theory, 3(1):30, 2008.

[4] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons Ltd, Chichester, 2008.

[5] M. Dorigo and M. Colombetti. Robot Shaping: An Experiment in Behavior Engi-
neering. The MIT Press, 1998.

[6] D E Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, 1989.

[7] M. Hollander, D. A Wolfe, and E. Chicken. Nonparametric statistical methods,
volume 751. John Wiley & Sons, 2013.

[8] H. H. Hoos and T. Stützle. Stochastic local search: Foundations & applications.
Elsevier, 2004.

[9] N. Kashtan and U. Alon. Spontaneous evolution of modularity and network
motifs. Proceedings of the National Academy of Sciences, USA, 102(39):13773–
13778, 2005.

[10] D. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, Cambridge, 2005.

[11] D. Nicolay and T. Carletti. Neural networks learning: Some preliminary re-
sults on heuristic methods and applications. In A. Perotti and L. Di Caro, edi-
tors, DWAI@AI*IA, volume 1126 of CEUR Workshop Proceedings, pages 30–40.
CEUR-WS.org, 2013.

[12] S. Nolfi and D. Floreano. Evolutionary robotics. The MIT Press, Cambridge, MA,
2000.

[13] P. Peretto. An introduction to the modeling of neural networks. Alea Saclay.
Cambridge University Press, Cambridge, 1992.

[14] R. Rojas. Neural networks: A systematic introduction. Springer, Berlin, 1996.
[15] M. Villani, A. Filisetti, S. Benedettini, A. Roli, D. A. Lane, and R. Serra. The

detection of intermediate-level emergent structures and patterns. In Advances in
Artificial Life, ECAL, volume 12, pages 372–378, 2013.

