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Tip-geometry enhanced cooling of field emission from the n-type semiconductor 
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   The cooling effect of field emission from an n-type semiconductor was theoretically 
investigated in quest for a solid state cooler. The vacuum potential was exactly expressed in 
terms of the semiconductor cathode geometry. This leaded to the more accurate configuration-
dependent calculations of the energy exchange and the cooling power. A sharp tip of 
semiconductor yielded either a large field emission current density or a large energy exchange. 
An optimized configuration of n-Si cathode produced a meaningful electron emission cooling, 
especially at high temperatures.  
 

Field emission undergoes the energy exchange process. Due to the Nottingham effect, a 
cathode is heated or cooled according to temperature  and field F .1-3 Half a century ago, the 
inversion temperature  of the tungsten cathode was measured to vary from 500 K to over 
1000 K as a function of .4,5 Even though the energy exchange process was not well described, 
many theoretical calculations of  were made to be in reasonable agreement with the measured 
values of .3,6 The high value of  results from the planar tip of a metallic cathode. For the 
same reason, the low value of  is accessible by the use of a sharp tip which produces a thin 
and shallow vacuum barrier so as to filter high-energy electrons in quantum tunneling. Thus 
Fisher’s group7,8 used carbon nanotube tips to obtain a noticeable cooling at room  but 
unlikely made a success. This might reflect that a metallic cathode can yield no useful cooling at 
room  owing to the half-filled band, regardless of the tip sharpness. It was once suggested 
that thermionic (or thermal-field) emission from metal would serve as a new method of 
refrigeration.9-13 However, thermionic cooling can be achieved only at very high temperatures 
and very low values of work function, which seems to be unrealistic.9  
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Recently, Chung et al.14 have developed a formal theory for the energy exchange in field 
emission from the n-type semiconductors in consideration of the configuration shown in Fig. 1. 
The theory predicts =0 K even for a planar tip, implying that the Nottingham effect yields 
cooling at all . In the previous calculation,15 we used the formal theory to obtain the 
Nottingham effect comparable to the Peltier effect for the n-type PbTe. In the current work for 
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the n-type Si semiconductor, we apply the same scheme along with the sharp tip effect.7,16  
When a bias V is applied between a planar semiconductor and a planar metallic anode with 

separation of , the potential energy in vacuum is given by7,17 d
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This is r a spherical semiconductor cathode. Here, s 
umerically obtained in the calculation of the potential energy in the semiconductor.

that  is reduced to  in the limit 
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The last approximation is almost exact since the current calculation was made for R<2 nm nd 
d =1000 nm. 
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   We use Eq. (2) to calculate )x(U  for x >0 (in vacuum) at R =∞ , 2.0, 0.5 and 0.25 nm. To 
visualize the effect of the barrier on tunneling, we take V =1000 volts for R =∞  and =4.0 
volts f

V
=finite. We set  and the carrier n =1019 cm-3 through the 

)x(U  are shown in Fig. 2. Wh
or R d =1000 nm  concentration 

current work. The obtained en R =∞ (dotted  alls
en 

 line), )x  f(U  
V (=1000 volts) linearly over d . Whdown by the value of R  is finite (solid lines), )  

falls down more rapidly for small x and more slowly for large x even if the total fall is equal to 
(=4 volts). T

x(U

V he value of V =4.0 volts is chosen because χ  is 4.05 eV
ne

 for Si. It is shown that 
the smaller the radius, the better rrier has its role to filter hi -e rgy electrons in tunneling. 
Therefore, we take 

 the ba gh
R as small as possible.16,19 

   For 0x <<−  (in the semiconductor region), we obtained )x(U by solving the Poisson 
equation numerically. This leaded to find the numerical values of )0x(Us =

∞  
U = . Wh e bias 

of V =4.0 volts is applied across the gap between tip and anode, we have sU =-0.13, -0.36
0.61 eV for 

en th
 and -

R =2.0, 0.5, and 0.25 nm, respectively. For V =1000 volts and ∞=R , we have 

s =-0.08 eV. Since it represents the lowering of the barrier height, sU  is crucial in tunneling. 
Once )x(U  is given for dx <<∞− , we used the scheme of Lui and Fukuma20 to make the 
more exact calculation of the transmission coe

U

fficient )( xD ε  for an electron of normal energy 

 Replacement 

   

the =

xε . It is assumed that F  was applied in the x-direction.  
Field emission consists of electron emission and replacement. is meant by the 

process that injected electrons occupy the same number of empty states as evacuated by emission. 
If the conduction band makes a major contribution, then the field emission current density j  is 
given by  

 

                       εε= ∫
∞

d)(jj eUs

,                       (3) 

 
where )(je ε  is the field electron energy distribution. The calculation of )(je ε  is made using 

 expression14 )(j εe ∫ εεπ2 dkdk)(D)(f)h2/e( , where )(f ε  

e

zyx is the F ibution, and 

with write the replacem nt electron energy distribution 

in the f  

ermi distr

k=(kx, ky, kz) the electron wave vector. It is known that tunneling in question takes place in a 
shorter time than thermal excitation. Electron emission should be a factor to evacuate energy 
states along 

orm14

 therm

)(ε = 

al excitation. Thus we 

jr ( ))( xεD)(f( ε+)(f1dkdk)(f)h2/e zy
2 ε−επ ∫ . We use Eq. (3) calculate j  

for R =0.25 0.5, and 1.0 nm. The obta are shown as a function of V  at ined j  T =300(dotted 
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R =0.25 nm, is almost saturated at j  ≈+χ= gEV 5line) and 600(solid) K in Fig. 3. For .2 
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i distribution through tunneling. It is worthwhile to note
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Equation (4) denotes the positive εΔ  as the energy loss of the cathode. Then the cooling 
power density (i.e., cooling power per unit area) is the product of the energy loss per electron and 
the number of electrons emitted per unit time per unit area, )/j( eεΔ . On the other hand, j  also 
produces the Joule heating 2Ljρ , where ρ  and e resis ity and length of the cathode. 
Thus the net cooling power density, 

L  are th tiv
Γ , produced about the e ission site is9,14  
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calculation of Γ  is straightforward, where we choose L =0.1 cm. The obtained Γ  are shown 
as a function of V  i Fig. 5. he maximum va e of n  T lu Γ  are approximately 398, 3105, and 
10000 watts/cm2 at T =300, 600, and 900 K, respectively. The maximum is located ab t 
V =5.2 volts (i.e., F =20.8 V/nm) at 300 K, shifting very slightly to the left with increasing T . 
The corresponding current density mj are 

ou

6.4, 13.2, a .8 x104 A/cm2 at each  Cooling 

own ele
 and ield a 

 

j  

nd 21 T .
continues until j  reaches twice mj , which is very large in comparison with typical values in a 
normal life. This implies that field emission from the n-Si cathode always yields cooling, in 
usual. Even if so, cooling is unlikely large enough to cool d ctronic devices at room T . 
At high T, however, both are large to y meaningful value of . When the bias 
of V =4.5 volts was applied, we obtained pairs (

εΔ Γ
εΔ =0.05 eV, j =44 A/cm2) for Γ =2.0 W/cm2 

at T =300 K, ( εΔ =0.18 eV, j =424 A/cm2) for Γ =74.7 W/cm2 at T =600 K, and (Δε
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=0.30 eV  
=2375 A/cm c =900 K. 
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It is now supposed that a field em  cooler produces the (net) cooling power 

AΓ=Φ . The performance of the cooler is Γ
given in terms of the efficiency  
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increases at the less rate that j  as V  increases. This means that η  is small for large V  even 
if Γ  is large. It may be a drawback of field emission cooling that either Γ  or η  only can be 
large over the entire range of V . As mentioned above, however, there are two factors, T  and 
R ,  improve cooling. At high T ,  to Γ  and η  c  altogether be large. For small an R , η  can 
become large since j  is larg  even for small V iche values of e . N εΔ , Γ , and η  ar  shown in 
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per tip. This make it poss  to consider (= ) in the range from 0.1 mA to 100 A . This will 
s find 

I jAible
make u ≈A 0.01 cm2. When the bias of V =4.5 volts is applied, we have ≈Γ=Φ A , 
0.75 and 7.1 watts at T 600, and  K, respectively. For V =5.0 volts, we hav

0
e 

.02
=300, 900 ≈Φ 2.3, 

21.6 and 80.3 watts at the same above temperatures, respectively. It looks hat the current  
obtained Nottingham effect is comparable to the Peltier effect.15,23 Ac ording to the situatio , 
either one may be more effective than the other in cooling an electronic device.  
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Table 1. Cooling Characteristics. Cooling of field emission from the n-type Si tip is described by 
the energy exchange , the power density εΔ Γ , and the efficiency η  at temperature  and 
for the bias . We take the tip radius 

T
V R =0.25 nm and the tip-anode distance =1000 nm.  d

V (volts)=4.0 εΔ (eV) Γ (W/cm2) η(%) V (volts)=4.5 εΔ (eV) Γ (W/cm2) η(%)
T (K)= 300 0.40 8.0x10-6 10 T (K)= 300 0.05 2.0 1.0 

600 0.58 0.17 15 600 0.18 74.7 3.9 
900 0.71 15.7 18 900 0.30 712.5 6.7 
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Figure Captions 
Fig. 1 Schematic of a Supposed Field Emission Cooler. Energy exchange process takes place 
between the n-type semiconductor cathode and the conduction electron. The positive energy 
exchange cools down a sample at temperature . T
  
Fig. 2 Vacuum Potential Energy  for a Spherical Cathode of N-Type Si. The potential falls 
down in a different way according to the bias (in volts) and the tip radius 

U
V R (in nm).  

 
Fig. 3 Plot of Current Density  vs. Bias . The  exhibits different Fowler-Nordheim plots 
according to the tip radius 

j V j
R  and temperature T . The effect of R  results from the enhanced 

field and the modified barrier. 
 
Fig. 4 Plots of Exchange Energy  vs. Bias . We set the tip radius εΔ V R =0.25 nm and the tip-
anode distance =1000 nm. The d εΔ  increases with decreasing V  and increasing T . 
 
Fig. 5 Plots of Cooling Power Density Γ  vs. Bias . The maximum cooling power increases 
rapidly with increasing  but is located about =5.2 volts with a slight T-dependence. 
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