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Preferential attachment with partial information

Timoteo Carletti1, Floriana Gargiulo1, Renaud Lambiotte1

1. Department of Mathematics and Namur Center for Complex Systems - naXys,

University of Namur, rempart de la Vierge 8, B 5000 Namur, Belgium

We propose a preferential attachment model for network growth where new entering nodes have a
partial information about the state of the network. Our main result is that the presence of bounded
information modifies the degree distribution by introducing an exponential tail, while it preserves a
power law behaviour over a finite small range of degrees. On the other hand, unbounded information
is sufficient to let the network grow as in the standard Barabási-Albert model. Surprisingly, the latter
feature holds true also when the fraction of known nodes goes asymptotically to zero. Analytical
results are compared to direct simulations.

I. INTRODUCTION

Since the pioneering works of Erdos-Reny [1, 2] and
Rapoport [3], network theory has become a central topic
of research, providing a set of tools and algorithms
adapted to any type of system made of elements in in-
teraction, with applications in a broad range of scientific
disciplines. The increasing availability of large-scale data
in networked systems has lead, over the last 15 years,
to a new wave of research [4], with the identification of
universal properties in social, biological and information
systems [5–7], the development of algorithms to extract
information from their structure [8], and the analysis of
theoretical models reproducing the observed patterns and
explaining the impact of structure on dynamics [9].

A key property of complex networks is their broad de-
gree distribution, often described in terms of power-laws,
– an observation not always supported by statistical ev-
idence [10]–, with important implications in terms of re-
silience and dynamics. As is often observed, the degree
distribution strongly deviates from a binomial distribu-
tion, and presents a high heterogeneity, as most of the
nodes have very few connections and few of them act
as well-connected hubs. A well-known model for gener-
ating scale-free networks is the preferential attachment

(PA) model of Barabási-Albert [6], where the network
is assumed to grow, and where new nodes preferentially
connect to highly connected nodes, with a probability
proportional to their degree. This model, and variants of
it, are known to asymptotically produce networks where
the tail of the degree distribution behaves like pk ∼ k−α,
where α depends on the details of the model.

PA suffers from a series of limitations, such as its lack
of local motifs and community structure, but also its
unrealistic assumptions. First, PA only focuses on the
role of degree and neglects other types of constraints for
link formation. Important examples include the effects
of ageing, as nodes tend to lose their ability to acquire
new links as time goes on [11, 12], of physical distance
in spatial networks [13, 14], or of homophily in social
networks [15]. These additional constraints tend to limit
the effective size of the system when a new node enters
it, and to introduce cut-offs to the power-laws generated
by the models, as observed in empirical data [16]. An-

other important limitation is the global nature of PA, as
a new node requires complete knowledge of the degrees
of all existing nodes to decide which connections to draw.
However, it is a piece of information not usually available
at nodes in real systems [17]. In order to circumvent this
limitation, local models of network growth have been pro-
posed, such as redirection, copying, duplication, or local
exploration by random walks[17–20].

The main purpose of this paper is to explore further the
effects of partial, local information on network growth.
Our model assumes that a node, when entering the sys-
tem, only has access to a fraction of the existing nodes,
and that it creates new connections with nodes inside this
known set (KS) with a probability proportional to their
degree. By construction, PA is thus applied, but only to
a subset of the whole system. Let us observe that our
model is reminiscent of, but different from, the one pro-
posed in [21] where the new node connects to the node
with highest degree in KS. We show that, if the size of
KS steadily increases with time, and hence with network
size, the network asymptotically exhibits the same degree
distribution as in the original PA model. Surprisingly,
this result holds true even if the fraction of nodes in KS
goes to zero as the network size increases. On the other
hand, if the size of KS is bounded, and in particular if
it is a constant, the asymptotic distribution converges to
power law with an exponential cut-off, that can be char-
acterised in terms of this maximum value. The analytical
results are complemented and supported with dedicated
numerical simulations.

II. THE MODEL

The network G0 is initially composed by a single node.
At each time step, a new node enters the system and
creates a new link with an already existing node [22]. In
general, the latter is selected proportionally to its degree
among Mt ≥ 1 nodes randomly selected in the network,
where t is the time step. This set ofMt randomly selected
nodes is KS defined in the introduction and it is renewed
at each time step. The parameter Mt is a measure of the
information held by the entering node, and it can, in gen-
eral, vary during the network growth. It is an ingredient
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of the model, and we will focus on different scenarios for
its evolution in the following. We denote by s = 0 the
single node in G0. Each subsequent node is labelled by
the timing s = t of its introduction in the network. The
number of nodes at time t is given by Nt = t+1 and the
number of links Et = t. Let us denote by zst the degree
of node s at time t, such that we have s ≤ t and trivially
∑t

s=0 z
s
t = 2t.

The time evolution of the probability qt(s, k) that node
s has degree k at time t is given by

qt+1(s, k) =
Mt

Nt

k − 1

Σt

qt(s, k − 1) +

(

1− Mt

Nt

)

qt(s, k)

+
Mt

Nt

(

1− k

Σt

)

qt(s, k) .(1)

The normalizing factor is given by Σt =
∑t

j∈KSt

zjt ,
where KSt is the known set at time t composed of the Mt

randomly selected nodes. The terms on the right hand
side denote respectively: the probability that s has de-
gree k − 1, it has been selected in KS and the new link
is established with it proportionally to its degree. The
second term represents the probability that s has already
degree k and it does not belong to KS; finally, the last
term denotes the probability that s has degree k, it be-
longs to KS, but it has not been chosen to be linked with.
Eq.(1) is complemented with the conditions

q1(0, k) = q1(1, k) = δk,1 and qt(t, k) = δk,1 ∀t ≥ 2 ,
(2)

namely the initial two nodes s = 0 and s = 1 have degree
k = 1 at time t = 1 and the entering node always has
degree k = 1.
In the following, we are interested in the fraction of

nodes that have degree k at time t

pt(k) =
1

Nt

t
∑

s=0

qt(s, k) . (3)

The time evolution of pt(k) is straightforwardly obtained
by plugging its definition into the rate equation Eq. (1)

Nt+1pt+1(k) = δk,1 +Mt

k − 1

Σt

pt(k − 1) +Ntpt(k)

−Mt

k

Σt

pt(k) . (4)

To go one step further, we need to estimate the normal-
izing factor Σt, that is the sum of the degrees of Mt ran-
domly selected nodes. First, let us observe that, among
such nodes, we know that one node has degree k − 1
in the second term, while it has degree k in the fourth
term. Neglecting such nodes, the remaining sum in the
normalizing factors is approximated by

t
∑

j∈KS′

t

zjt = 2t
Mt − 1

Nt

, (5)

that is (Mt − 1) times the average degree k̄t = 2t
Nt

in
the network. This approximation is expected to be ac-
curate when Nt is sufficiently large, due to the central
limit theorem, but it is also expected to be rough when
Nt is small, especially due to the expected heterogene-
ity of the degree distribution. However, the very good
agreement between analytical results and numerical sim-
ulations support its validity in both cases. Under this
approximation, the rate equation (4) rewrites as follows:

Nt+1pt+1(k) = δk,1 +Ntpt(k)

+Mt

k − 1

(k − 1)Nt + 2t(Mt − 1)
Ntpt(k − 1)

− Mtk

kNt + 2t(Mt − 1)
Ntpt(k) . (6)

III. ASYMPTOTIC SOLUTION

Let us first observe that Eq. (6) contains two well-
known results as limiting cases. If the information is at
its smallest value, that is Mt = 1, the model reduces to
a random attachment scheme. At each time step, one
node is chosen at random among the existing ones and a
link is formed with the new node. In that case, Eq. (6)
reduces to

Nt+1pt+1(k) = δk,1 +Ntpt(k) + pt(k − 1)− pt(k) , (7)

whose asymptotic solution p
(rnd)
∞ (k) := limt→∞ pt(k) is

p(rnd)
∞

(k) =
1

2k
∀k ≥ 1 , (8)

and an exponential distribution is recovered.
Another limit case is when Mt takes its maximum

value, Mt = Nt, and the model reduces to the standard
PA model [6]

Nt+1pt+1(k) = δk,1+Ntpt(k)+(k−1)
Nt

2t
pt(k)−k

Nt

2t
pt(k) ,

(9)
whose asymptotic solution is well-known to be

p(PA)
∞

(k) =
6

k(k + 1)(k + 2)
, (10)

and whose tail behaves like k−3.
In order to compute the analytical solution of Eq. (6)

for generic choices of Mt, let us consider two distinct
cases, when it is bounded and it is unbounded. We fur-
ther make the realistic assumption that Mt is a growing
function of time [23], i.e. Mt+1 ≥ Mt, ∀t.

A. Bounded information

Because it is growing, the bounded sequence Mt

asymptotically converges to the limit M∞ when t is suf-

ficiently large. The asymptotic distribution p
(bnd)
∞ (k) is
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thus solution of

p(bnd)
∞

(k) = δk,1 +
M∞(k − 1)

k − 1 + 2(M∞ − 1)
p(bnd)
∞

(k − 1)

− M∞k

k + 2(M∞ − 1)
p(bnd)
∞

(k) , (11)

where we used the fact that k̄t → 2. Setting πk =

kM∞p
(bnd)
∞ (k), we can rewrite the previous equation as

πk =
kM∞(k + 2(M∞ − 1))

k(M∞ + 1) + 2(M∞ − 1)

πk−1

k − 1 + 2(M∞ − 1)
,

∀k ≥ 2 ,(12)

and thus

πk =
M∞(k + 2(M∞ − 1))

3M∞ − 1

(

M∞

1 +M∞

)k−1

k!
∏k

j=2 [j + 2(M∞ − 1)/(M∞ + 1)]
∀k ≥ 2 , (13)

which leads to the following solution for p
(bnd)
∞ (k), in

terms of the Euler Beta function B(x, y) [24]

p(bnd)
∞

(k) =

(

M∞

1 +M∞

)k−1
k + 2(M∞ − 1)

k(M∞ + 1)

B

(

k,
2(M∞ − 1)

M∞ + 1

)

∀k ≥ 1 . (14)

As previously claimed, when M∞ = 1 the asymp-
totic distribution follows an exponential law, as shown
in Fig. 1. For larger but still bounded M∞, the distri-
bution presents two regimes: for small k (compared to
M∞), the distribution is close to a power law, while for
large k (still compared to M∞), it follows an exponential
law (see Fig. 1).
This behaviour can be understood by the following ar-

guments. Let us take M = M∞ strictly constant for the
sake of simplicity. If M is larger than the size of the
system, which is valid for small enough times, the enter-
ing node has a complete information about the system,
and the model behaves like the standard PA. Moreover,
because t is small, the degrees of the nodes involved in
this process are also small. When the size of the net-
work is sufficiently large, in contrast, M becomes too
small to provide a good sampling of the network, and
the new nodes attach almost randomly to the existing
ones, which leads to an exponential tail for the distribu-
tion. This exponential law dominates for large degrees,
because it emerges at a time when the network is large
enough to exhibit large degrees.
To prove our claim more rigorously, let us recall a basic

property of the Euler Beta function:

B(x, y) → Γ(y)x−y for x → ∞ and x >> y.

As M∞ is bounded, taking the limit of k >> M∞ leads
to

log p(bnd)
∞

(k) ∼ k log
M∞

1 +M∞

− 2
M∞ − 1

M∞ + 1
log k
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FIG. 1: Asymptotic probability distribution p
(bnd)
∞ (k) for

bounded M∞ (loglog plot). Main panel, solid lines corre-
spond to the analytical solution, while dots to a numerical
realisation of the network with Nt = 10000 nodes, red (on
line) circles with M∞ = 1 and blue (on line) squares with
M∞ = 10. Inset, we report the case M∞ = 1 in semilogarith-
mic scale to appreciate the exponential law.
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t=∞
t=250
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t=15

FIG. 2: Time evolution of the degree probability distribution
pt(k) for M∞ (loglog plot), for M∞ = 10. The solid black line
corresponds to the asymptotic distribution, the dashed, blue
(on line) curve to a large but finite time (t = 250), the dot-
dashed, red (on line) curve to an intermediate time (t = 50)
and the dotted, green (on line) to a very short time (t =
15). One observes that the “power law”behaviour emerges
for small times, and small degrees, and that the exponential
tail is progressively filled as time goes on, until the asymptotic
distribution is reached.

+ log Γ

(

2(M∞ − 1)

M∞ + 1

)

, (15)

and thus to an exponential behaviour for large k:

p(bnd)
∞

(k) ∼ α−k , (16)

with α = 1+M∞

M∞

∈ (1, 2]. Let us also recall that
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B(x, y) → 1 for y → 0, hence if M∞ → 1 we recover
the exponential distribution of the random model, as ex-
pected:

lim
M∞→1

p(bnd)
∞

(k) =
1

2k
∀k ≥ 1 . (17)

In the other extreme, fixing k and taking the limit
M∞ >> k, we get

p(bnd)
∞

(k) ∼ 2

k
B (k, 2)) =

2

k

Γ(k)Γ(2)

Γ(k + 2)
=

2

k2(k + 1)
∼ 1

k3
.

(18)

B. Unbounded information

Let us now consider the case when Mt diverges with
t, keeping in mind that it satisfies the bound Mt ≤ Nt,
as a node can not have more information than the total
number of nodes at time t. By using the fact that k̄t → 2,
the following expression simplifies as

kMt

k + (Mt − 1)k̄t
→ k

2
,

which allows to rewrite Eq. (6) as follows:

p(unbnd)
∞

(k) = δk,1 +
k − 1

2
p(unbnd)
∞

(k)− k

2
p(unbnd)
∞

(k) .

(19)
This equation is exactly equivalent to Eq. (9), originally
obtained for the standard PA, which allows us to deduce
that the dynamics is not affected by the partial amount of
information in the case when this information is growing
and unbounded.
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FIG. 3: Asymptotic probability distribution p
(unbnd)
∞ (k) for

unbounded M (log log plot). The solid line correspond to the
analytical solution (10), while dots correspond to a numerical
realisation of the network with Nt = 10000 nodes, blue (on
line) squares with Mt = t/10 and red (on line) circles with
Mt =

√
t.

Fig. 3 shows the very good agreement (and thus a pos-

teriori the goodness of the approximation (5)) between
the analytical results and numerical simulations of the
model. Two different growth behaviours for Mt are re-
ported in the Figure, the case Mt = t/10 (blue squares),
corresponding to a finite fraction, Mt/Nt = 1/10, of
nodes that are accessible, and the case Mt =

√
t (red

circles), where the fraction of known nodes goes to zero
as the network size increases, i.e. Mt/Nt → 0.

IV. CONCLUSION

In this paper, we have considered a variation of the
well-known preferential attachment model for network
growth. Our main purpose was to explore the effects
of partial information on network dynamics. We have
shown that the presence of bounded information modi-
fies the degree distribution by introducing an exponential
tail, while it preserves a power law behaviour for small
k, thus over a finite range of degrees. In the case of un-
bounded information, in contrast, the network grows as
in the standard PA model. Surprisingly, this property
also holds true also in situations when the fraction of
known nodes goes to zero.

This model offers an interesting explanation for the
emergence of power-laws with cut-offs, as generally ob-
served in empirical data, without requiring a finite ca-
pacity for the nodes, but by emphasising instead the im-
perfect sampling of the network when new nodes enter
the system.
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