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Abstract

We propose to make use of the wealth of underused DNA chip data available in public repositories to study the molecular
mechanisms behind the adaptation of cancer cells to hypoxic conditions leading to the metastatic phenotype. We have
developed new bioinformatics tools and adapted others to identify with maximum sensitivity those genes which are
expressed differentially across several experiments. The comparison of two analytical approaches, based on either Over
Representation Analysis or Functional Class Scoring, by a meta-analysis-based approach, led to the retrieval of known
information about the biological situation – thus validating the model – but also more importantly to the discovery of the
previously unknown implication of the spliceosome, the cellular machinery responsible for mRNA splicing, in the
development of metastasis.
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Introduction

Cancer & metastasis
Despite the development of effective therapies for many cancers

[1-3], the prevalence of cancer is growing alarmingly in aging

populations [4]. Metastases are one of the main causes of death

related to cancer [5]. It is therefore not surprising that a large

number of labs and researchers focus on gaining a better

understanding of the metastatic process [6–8].

Cancer is known to be a genetic disease, implying either

alteration of DNA or dysregulation of gene expression [9]. In

addition, the metastatic phenotype involves the combination of

several factors [7], among which a hypoxic micro-environment has

been reported to be a major/key parameter [10–12]. Several

hypotheses have been proposed to explain this observation. First, a

mechanism of adaptation is initiated, mediated by the HIF-1

transcription factor, to enhance cell survival [13]. Second, the cell

response to hypoxic conditions also triggers the angiogenesis

process [14]. Lastly, hypoxia has been reported to affect the

selection of high potential metastatic cells [15]. As this manuscript

focuses on the bioinformatics analysis of the data, we direct the

reader to the following reviews for a more detailed discussion of

the role of hypoxia in the development of metastasis [16–18].

Microarrays
In the last decade, the availability of microarray datasets in

public repositories has grown dramatically (i.e. ArrayExpress [19],

GEO [20]...). As an example, the number of datasets in the Gene

Expression Omnibus (GEO) has increased from 2,000 to more

than 780,000 over the last ten years (2002–2012). Previously, most

researchers focused on a small handful of probe sets spotted on the

arrays, ignoring thousands of other probe sets. Despite the

financial cost associated with creating large collections of public

datasets (millions of euros/dollars), the incomplete and/or partial

analysis of the datasets consequently suggests that a large body of

underexploited information could be put to use in further analyses.

Many authors has also significantly improved the performance of

statistical analyses by solving methodological issues [21–23], and

developing the alternative chip definition file (CDF) [24]. We

propose to make use of this wealth of information by including

several microarray datasets, from experiments studying similar/

common biological issues, in a single analytical pipeline that makes

use of the latest and best-performing algorithms, without

preconceived biases.

Data preparation
Datasets must be preprocessed in preparation for statistical

analysis to improve the quality of the data (background

correction), to allow for a fair comparison between arrays
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(standardization), and to summarize probe-level intensities to

meaningful probe set values [25,26]. Several benchmarks have

previously been reported to assess the performances of preproces-

sing methods [27,28].

The last preprocessing step, called summarization, consists of

gathering probe-level information regarding the same target. The

mapping of the target definition to the probe coordinates on the

chips involves a chip definition file (CDF). The annotation of the

human genome has improved since the first release of CDFs by the

manufacturer (Affymetrix) and several authors have thus reported

the need to update the definition of chip definition files [29,30]. In

2007, Liu et al described the affyprobeminer as a tool to ease the

mapping of current knowledge to probe sequences in Affymetrix

arrays [24]. The authors reported discrepancies ranging from 30

to 50% between standard Affymetrix and remapped chip

definition files. Affyprobeminer can also be used to build both

transcript- and gene-consistent CDFs, meaning that a probe-set is

defined to gather probes that specifically target only one transcript,

or gene, respectively.

Single gene analysis of one dataset
Microarray data can be used to track the expression profile of

the transcriptome following a hierarchical strategy that involves

many levels of interpretation. The first level refers to individual

analyses aimed at inferring the positive/negative regulation of

transcripts and/or genes, as defined in the chip definition file

(probe set definition in CDF). Wet-lab biologists mainly interpret

microarray experiments based on the results of this step.

Additional layers of analysis are described briefly in the next

subsections (meta-analysis and gene set analysis).

In previous work, we described a relationship between the

number of replicates and the selection of the best performing

methods [31]. The two main results are that the best method

overall is the Shrinkage t test [22], bested solely by the Window t

test [32] and Regularized t test [21] when only two replicates are

available; the other main result is that the overall power of such

an analysis is relatively low, depending on the number of

replicates available. Therefore, the authors claimed that future

methodological developments should focus on augmenting that

power and on an appropriate filtering of the results.

Annotation of a list of candidate genes
After the individual analyses, the list of genes detected as

differentially expressed is typically annotated using over-represen-

tation analysis (ORA) methods to highlight meaningful informa-

tion. In a previous work, we described the use of the DAVID

webtools to perform such an analysis on the results of microarray

studies [33]. The DAVID webtool analyzes the list of differentially

expressed genes and returns a list of the pathways containing part

of these genes, associated with an over-representation score (EASE

score) [34].

Differential expression analysis of gene sets
Small datasets with only a few replicates are still a major

hindrance to statistical power in conventional analyses. Gene set

analysis and meta-analysis are interesting and common ways to

extract more information from the data, and to test higher-level

hypotheses with a power level associated with an increased

number of available values.

Gene set analysis using Functional Class Scoring methodologies

(FCS) has improved the understanding of differences in expression

profiles, and helped unravel the biological processes underlying

experimental data in several ways. First, joint analysis of multiple

genes involves a higher number of values than individual analyses,

hence providing the potential for a higher power level, even when

conducted on small datasets (small number of replicates). Second,

computation of differential expression from multiple levels of

interpretation enriches the qualitative description of biological

variations between experimental conditions. The criteria used to

define the gene sets consequently guide interpretation of the results

(i.e. regulation element/transcription factor, metabolic pathways,

pathology signatures, locus, cellular components...). By extension,

the comparison of the results of individual and gene set analyses

allows, as with ORA methods, to refine the list of candidate genes

for further testing, thanks to the criteria-based approach (i.e. if all

but one gene of a set of related genes are detected as "silenced" due

Figure 1. Summary of the analytical pipeline.
doi:10.1371/journal.pone.0086699.g001

A Bioinformatics Analysis of Micrarray Data
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to deletion, one can remove this potential false negative or screen

the genome for an additional copy of the gene).

Over the last decade, various Functional Class Scoring

methodologies (FCS) have been developed to analyze gene sets,

including 2-step or global methods, competitive or self-contained

null hypothesis and inference (gene-sampling, label-sampling...):

GSEA [35,36], SAMGS [37], GlobalTest, [38]...

Method-specific biases in the detection of gene sets are

associated with methodological choices, and are due to correla-

tions between genes, the simultaneous presence of up/down

regulated genes, the level of expression and the number of genes in

the set.... In order to detect all kinds of sets with an expression

profile that differs between conditions, we developed FAERI,

tailored from the two-way ANOVA [39]. Prior to analysis, FAERI

applies a 2-step data reduction to avoid previously observed biases.

The null distribution can then be evaluated from simulations or

sample permutations. Performance comparisons conducted both

on simulated and biological data illustrate that FAERI, evaluated

using sample permutations, provides the most accurate results

versus other methods, regardless of the composition of the gene

sets (in terms of direction, level of expression, correlation and

proportion of DEGs in the set). Mansmann and Meister similarly

Table 1. List of the 16 datasets used in this manuscript.

Dataset Identifier Number of replicates (Control + Tests) Biological context

E-MEXP-445 6 (3+3) Normoxia vs. hypoxia (monocytes)

GSE4725 6 (2+4) Normoxia vs. hypoxia (arterial smooth muscle cells)

GSE11341 23 (6+17) Normoxia vs. hypoxia (lung cells)

E-MEXP-1896 4 (2+2) Normoxia vs. hypoxia (HEK293T cells)

GSE4086 4 (2+2) Normoxia vs. hypoxia (lymphocytes B)

GSE5579 4 (2+2) Normoxia vs. hypoxia (lymphatic endothelial cells)

GSE9234 6 (3+3) Normoxia vs. hypoxia (HT-29 cells)

E-GEOD-1323 6 (3+3) Primary tumor vs. metastasis (colon cancer cell lines)

E-GEOD-2280 27 (8+19) Primary tumor vs. metastasis (lymph node cells)

GSE7929 32 (21+11) Primary tumor vs. metastasis (A 375 metastatic cell line)

GSE7930 6 (3+3) Primary tumor vs. metastasis (prostate subcutaneous tumors)

GSE7956 39 (29+10) Primary tumor vs. metastasis (A 375 metastatic cell line)

GSE8401 83 (31+52) Primary tumor vs. metastasis (melanoma cells)

GSE3325 19 (13+6) Primary cancer vs. metastasis (prostate cancer cells)

GSE8977 22 (15+7) Primary cancer vs. metastasis (breast cancer cells)

GSE9576 12 (9+3) Primary cancer vs. metastasis (Midgut carcinoid liver cells)

doi:10.1371/journal.pone.0086699.t001

Figure 2. Volcano plots for two datasets. Each volcano plot is related to a single data set, chosen among the different technologies and
biological group tested. The green bars represent fold change log2 values of +–2 and the blue bar represent a p-value threshold of 0.05. The red dots
are the 1156 genes selected in the meta-analysis step.
doi:10.1371/journal.pone.0086699.g002

A Bioinformatics Analysis of Micrarray Data
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reported that sample permutations of microarray data should be

preferred for evaluation of the null distribution in the GlobalAn-

cova methodology, due the variability observed with real samples

[40]).

Meta-analysis
Meta-analysis is a natural extension of the dataset-based analysis

conducted using individual and gene set methodologies, and

examines several datasets relating to similar experimental condi-

tions. A meta-analysis strategy was reported previously by

Simpsons et al in 1904 [41] and has been extensively used in the

field of medical sciences [42–44].

To identify commonly regulated genes in multiple datasets, a

higher-level analysis must be defined as opposed to the

dataset-specific strategies described above. The ideal meta-analysis

design would consist of the joint analysis of multiple datasets

following a higher-order multivariate analysis procedure. How-

ever, post-hoc strategies require less computing time than full-on

transversal analyses, which still remains a major concern in the

analysis of large datasets. In a previous study, we explored an

intersection-based post-hoc strategy, defined as an additional

analytical step performed on results generated with several dataset-

specific analyses [45].

To compare the results of differential expression analyses of

genes (or gene sets) across datasets, we reported use of the number

of dataset-specific analyses that result in a significant detection of

the gene (the number of top-lists in which each gene is present).

This score, which monitors systematic differences in expression

profiles across datasets, was then used as a selection criterion to

define candidate genes. The reported strategy leads to three

situations, depending on the strictness of the comparison across

datasets: 1) the selection of genes that are detected in all (or the

highest number of) datasets (intersection of all top-lists) results in a

very low number of genes, which are often already well known; 2)

selection of the genes detected in at least one dataset (union of all

top lists) results in too many candidates for further investigation,

and does not exclude false positives; 3) a balance can be reached

between both situations, with an intermediate selection threshold

at the number of DEGs across datasets. That intermediate

situation (union of intersections between a given number of top

lists) allows for inference of a workable amount of new candidates.

Along these lines, several techniques have been developed to

describe the intersections between lists of genes [33,45,46].

Table 2. List of pathways identified by DAVID with either a significant p-value or 14 or more genes of the 1156 DEG list detected in
the map.

Pathway Count EASE score Benjamini FDR

Spliceosome 30 2.15E-07 3.75E-05 2.64E-04

Cell Cycle 25 6.33E-05 5.49E-03 7.75E-02

Glycolysis / Gluconeogenesis 14 9.55E-04 4.07E-02 1.16E+00

Aminoacyl-tRNA biosynthesis 10 5.21E-03 1.66E-01 6.19E+00

Pentose phosphate pathway 7 1.39E-02 2.93E-01 1.57E+01

Cysteine and methionine metabolism 8 1.87E-02 3.37E-01 2.07E+01

Prion diseases 8 2.18E-02 3.47E-01 2.37E+01

Lysosome 17 2.94E-02 4.05E-01 3.06E+01

One carbon pool by folate 5 3.73E-02 4.52E-01 3.72E+01

Antigen processing and presentation 13 3.80E-02 4.29E-01 3.77E+01

Pyruvate metabolism 8 4.25E-02 4.41E-01 4.12E+01

Purine metabolism 20 4.51E-02 4.37E-01 4.32E+01

Oocyte meiosis 15 6.63E-02 5.04E-01 5.68E+01

Pathways in cancer 34 1.29E-01 6.33E-01 8.16E+01

Ubiquitin mediated proteolysis 16 1.55E-01 6.63E-01 8.74E+01

Wnt signaling pathway 16 2.60E-01 7.31E-01 9.75E+01

MAPK signaling pathway 23 5.34E-01 8.58E-01 1.00E+02

Focal adhesion 15 7.85E-01 9.59E-01 1.00E+02

Regulation of actin cytoskeleton 15 8.59E-01 9.74E-01 1.00E+02

The ‘count’ column shows the number of significant genes identified within a pathway. Significant p-values (either the EASE score, the Benjamini-corrected or the FDR-
corrected p-values) are shown in bold.
doi:10.1371/journal.pone.0086699.t002

Table 3. Robustness analysis of the spliceosome pathway
enrichment.

DEG # threshold Count EASE score

2 (1 and 1) 30 2.15E-07

4 (2 and 2) 23 3.40E-05

6 (3 and 3) 14 4.10E-04

The strictness of the meta-analysis step was increased (selection of genes DEGs
in 2 datasets out of 16 available, then 4 datasets out of 16 and 6 datasets out of
16; the number between brackets represent the minimal number of datasets for
which the genes have to be DEG to be selected per biological group, i.e.
hypoxia or metastasis), the count of genes highlighted in the pathway (second
column) and EASE score given by DAVID (third column).
doi:10.1371/journal.pone.0086699.t003

A Bioinformatics Analysis of Micrarray Data
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Aim of this study
We propose to use a set of statistical and bioinformatics tools to

reanalyze metastasis and hypoxia-related data to gain further

insight into the processes involved. The comparison of two

analytical pipelines (ORA and FCS) is used to detect meaningful

pathways (a diagram of the analytical pipeline is shown in figure 1).

Moreover, this analysis rationale could be transposed to virtually

any biological situation with microarray data available.

Results and Discussion

A major biological topic of interest in our lab is the investigation

of expression profiles to describe common mechanisms between

metastasis and adaptation of cells to hypoxic conditions. PathEx

[47] was queried (performed on data present in PathEx in June

2012) with the keywords ‘‘hypoxia’’ and ‘‘metastasis’’ to identify

datasets available from Affymetrix HGU-133a and HGU-

133Plus2 arrays. We found 7 and 9 experiments focused on

hypoxia and metastasis respectively. The datasets selected (16) and

are listed and described in Table 1.

Meta-analysis and over-representation in pathways
In the first analytical step, the individual analyses of differential

expression for each dataset were performed using the Shrinkage t

methodology, which produced 16 lists of dataset-specific p-values.

Volcano plots are provided in figure 2 for two of the individual

datasets, to illustrate the distribution of significant values in a

separate analysis. The most interesting genes are usually identified,

in such graphs, in the upper left- and right-hand corners of the

plot, depicting genes with low p-values (Y-axis) and high fold

changes (X-axis). The meaning of the red dots is explained below.

A meta-analysis was performed in two steps to refine the list of

significant genes and to define a unique top list from the 16 lists of

p-values. Significant genes were first gathered from the two

categories of experiments, producing two lists of detected genes

(respectively specific to hypoxia and metastasis). The intersection

of both lists was then performed, as described in the materials and

methods section, to identify candidate genes expected to be

involved in both hypoxia and metastasis, while removing potential

false detections from the large lists retrieved in the first step. The

meta-analysis yielded substantially different results, as shown in

figure 2 by the repartition of red dots (final DEGs detected).

Table S1 provides the list of 1156 candidates identified in the

meta-analysis procedure, and figure 2 shows the scattering of the

candidates in volcano plots for 2 of the 16 datasets we analyzed.

The wide range of values observed in figure 2 is due to the

variability of the results between the 16 dataset-specific lists (p-

values), and the well-known under-estimation of fold changes in

microarray experiments [48]. Meta-analysis does not select the

most differentially expressed genes in single experiments. As we

selected the DEGs across different biological conditions, we can

hypothesize that they are representative of the common

components of the cellular responses to these situations, which

fits well with the purpose of this study.

The list of the identifiers for the 1156 genes obtained after the

meta-analysis step was then entered into the DAVID web tool. A

Figure 3. Plot of the EASE score and number of hits in the spliceosome pathway for the 500 random selections of 1156 gene
identifiers (in blue), compared with the actual result of the analysis (red). This graph plots the number of hits (X-axis) against the EASE
score (Y-axis). The difference between the random selection scores and the actual result score supports the assumption that the spliceosome is over-
represented in our list of genes.
doi:10.1371/journal.pone.0086699.g003

A Bioinformatics Analysis of Micrarray Data
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total of 102 pathways containing at least 3 gene members of that

list was generated (see Table S2). Among these pathways, only 12

of them have an EASE score under the threshold of 0.05. This

number was further reduced to 3 pathways by applying a

correction for multiple testing (Benjamini correction) and only

one pathway (the spliceosome) was significant when applying a

correction based on the false discovery rate (FDR) (see Table 2).

However, the EASE score (and the corrected p-values derived

from it) should be interpreted with caution, according to the

biological relevance in the context studied, the wideness of the

pathways stored in the Kegg maps and the obvious rate of false

negatives induced by our screening. Many top list pathways,

although characterized by low EASE scores, are well-known to be

involved in metastatic processes and are therefore likely false

negatives: MAPK and Wnt signaling pathways, focal adhesion

pathway and the regulation of the actin cytoskeleton [49–52],

which corroborates the consistency of the mapping of significant

genes by our strategy. On the other hand, the robustness of the

spliceosome pathway with regards to the most stringent statistical

corrections supports the hypothesis of its implication in the process

studied.

To further assess the significance of the spliceosome pathway in

the over-representation results, we first performed 500 random

selections of 1156 EntrezGeneIDs among all the identifiers present

on the microarray and ran them in the DAVID tool. The EASE

scores and number of hits in the spliceosome pathway were then

plotted (see figure 3). The plot shows clearly the gap between the

random selections (with a maximum of 19 hits and an associated

EASE score of 0.0085) and the actual result (30 hits, EASE score

of 2E-7). Then, we analyzed the robustness of the discovery of the

spliceosome pathway by performing a more stringent selection in

the meta-analysis step (see Table 3). This table shows the EASE

score obtained for the spliceosome pathway when performing a

meta-analysis for genes differentially expressed in two (one in each

biological group), four (two in each group) or six (three in each

group) of the 16 datasets. The spliceosome pathway was largely

significant even in the most stringent selection (EASE score of 4E-

4). These comparisons tend to support the assumption that the

spliceosome pathway is actually over-represented in our meta-

analysis results.

Moreover, the spliceosome, whose implication in cancer has

been reported by several authors [53–55], has never been

described as specifically involved in metastasis, which is not

surprising based on the red dots in our volcano plots from single

analyses (figure 2). The spliceosome is a complex of RNA and

many protein subunits required for the splicing of pre-mRNA. It is

composed of five small nuclear RNA (snRNA) and numerous

associated protein factors. Proteins and snRNA form the RNA-

protein complexes (snRNP), called U1, U2, U4, U5 and U6 (see

figure 4). The list of genes detected as differentially expressed

contains genes coding for proteins that take part in the spliceosome

pathway (see Table S4). The results of our analysis identify genes

in all 5 snRNPs, reinforcing the hypothesis that this pathway plays

an important role in metastatic and hypoxic processes. The list of

genes detected as differentially expressed and their respective p-

values per dataset are presented in the Table 4.

Figure 4. Spliceosome units. The red stars mark the genes from our list mapped on this pathway.
doi:10.1371/journal.pone.0086699.g004
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Table 5. Summary of FAERI results.

Gene set Name 5% Hypoxia 5% Metastasis % Total

KEGG_PATHWAYS_IN_CANCER 7 9 100

KEGG_GLYCOLYSIS_GLUCONEOGENESIS 7 8 93.75

KEGG_PURINE_METABOLISM 7 8 93.75

KEGG_RIBOSOME 7 8 93.75

KEGG_PPAR_SIGNALING_PATHWAY 7 8 93.75

KEGG_MAPK_SIGNALING_PATHWAY 7 8 93.75

KEGG_ERBB_SIGNALING_PATHWAY 7 8 93.75

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 7 8 93.75

KEGG_CHEMOKINE_SIGNALING_PATHWAY 7 8 93.75

KEGG_ENDOCYTOSIS 7 8 93.75

KEGG_APOPTOSIS 7 8 93.75

KEGG_VEGF_SIGNALING_PATHWAY 7 8 93.75

KEGG_FOCAL_ADHESION 7 8 93.75

KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 7 8 93.75

KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 7 8 93.75

KEGG_HUNTINGTONS_DISEASE 7 8 93.75

KEGG_PANCREATIC_CANCER 7 8 93.75

KEGG_CHRONIC_MYELOID_LEUKEMIA 7 8 93.75

KEGG_RENAL_CELL_CARCINOMA 7 8 93.75

KEGG_CITRATE_CYCLE_TCA_CYCLE 6 8 87.5

KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM 7 7 87.5

KEGG_OXIDATIVE_PHOSPHORYLATION 6 8 87.5

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 6 8 87.5

KEGG_GLUTATHIONE_METABOLISM 6 8 87.5

KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM 7 7 87.5

KEGG_PYRUVATE_METABOLISM 6 8 87.5

KEGG_RNA_DEGRADATION 6 8 87.5

KEGG_SPLICEOSOME 6 8 87.5

KEGG_CALCIUM_SIGNALING_PATHWAY 6 8 87.5

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 6 8 87.5

KEGG_CELL_CYCLE 6 8 87.5

KEGG_OOCYTE_MEIOSIS 6 8 87.5

KEGG_P53_SIGNALING_PATHWAY 6 8 87.5

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 6 8 87.5

KEGG_LYSOSOME 6 8 87.5

KEGG_MTOR_SIGNALING_PATHWAY 6 8 87.5

KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION 6 8 87.5

KEGG_WNT_SIGNALING_PATHWAY 6 8 87.5

KEGG_AXON_GUIDANCE 6 8 87.5

KEGG_ECM_RECEPTOR_INTERACTION 6 8 87.5

KEGG_ADHERENS_JUNCTION 6 8 87.5

KEGG_TIGHT_JUNCTION 6 8 87.5

KEGG_GAP_JUNCTION 6 8 87.5

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 6 8 87.5

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 6 8 87.5

KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY 6 8 87.5

KEGG_JAK_STAT_SIGNALING_PATHWAY 6 8 87.5

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 6 8 87.5

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 6 8 87.5
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Gene set analysis
The second part of the analytical pipeline (figure 1) relies on the

inference of differentially expressed pathways in a gene set analysis

procedure (functional class scoring). Here, we used FAERI, a

multivariate procedure tailored from the two-way ANOVA

procedure. FAERI computes a gene set statistic from the

expression data of all member genes in a single step, and avoids

the loss of information inherent to 2-step procedures and the risk

of false negatives due to slight differences in all member genes (that

would not be individually detected in the first part of the pipeline).

In addition, FAERI relies on a self-contained procedure (label

sampling) that only requires the expression values of the set of

member genes (and not the complete dataset). Table 5 summarizes

the results obtained by individual analysis of the 16 selected

datasets conducted with FAERI. These results were then used to

compute, for each gene set, a ratio of discovery across all the

experiments (Table 5, third column). The definition of the sets was

retrieved from the C2.Kegg category of MsigDB (v3.0). The full

list of p-values is provided in Table S3.

Table 5 summarizes the information contained in Table S3 and

highlights the high number of differentially expressed sets across

both categories of experiments. The pathways identified by

FAERI are involved in glycolysis, neoglucogenesis, tricarboxylic

cycle, oxidative phosphorylation and other sugar metabolism

pathways. These results are relevant to the cell/tissue response to

hypoxic conditions. Here, only one gene set was detected across all

datasets: PATHWAYS_IN_CANCER. Many other cancer-re-

lated gene sets were detected in all but one experiment. Several

signaling pathways were also systematically called differentially

expressed, including PPAR, ERBB, MAPK, VEGF, P53, MTOR,

WNT, … The pathway for the regulation of the actin cytoskeleton

was also detected. The hypothesis of involvement of the

spliceosome is supported by 6 out of 7 datasets related to hypoxia

and 8 out of 9 datasets related to metastasis.

Both parts of the analytical pipeline described here have

detected the spliceosome pathway as involved in the hypoxic and

metastatic phenotypes. Among the 31 genes detected as differen-

tially expressed in this pathway, 11 have recently been shown to be

involved in the metastatic process (see Table 6). The remaining 20

genes are not yet known to be involved in these processes (see

Table 6, in bold). These results suggest that abnormal alternative

splicing regulation can modulate the metastatic potential of cancer

cells. Indeed, it is known that the recognition of splicing sites

depends on the protein composition of the spliceosome [56].

Dysregulated expression of the genes coding for these proteins

could therefore change the composition of the spliceosome

architecture, thus affecting the splicing process. A change in the

splicing process may influence the cell at all biochemical levels,

from the transcriptome to the proteome and even to the genome.

The 20 genes we have identified thus hold strong potential as

candidates for further studies.

The results also demonstrate the potential of sensitive and

specific analytical pipelines: new hypotheses can be proposed, and

previously known biological features can be used as positive

controls. However, comparison of the results between both parts of

the analytical pipeline suggests that the two analyses behave

differently: over-representation analysis of the most significant

genes across datasets detects some important pathways, and the

ability of gene set analysis using FAERI to detect slight cumulated

differences detects more pathways. Statistical analysis with FAERI

detects meaningful differences between samples, even when only

small numbers of replicates are available. Nevertheless, both parts

of the pipeline lead to detection of relevant information based on

current knowledge, and both suggest the involvement of the

spliceosome.

Table 5. Cont.

Gene set Name 5% Hypoxia 5% Metastasis % Total

KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY 6 8 87.5

KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY 6 8 87.5

KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 6 8 87.5

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 6 8 87.5

KEGG_NEUROTROPHIN_SIGNALING_PATHWAY 6 8 87.5

KEGG_LONG_TERM_DEPRESSION 6 8 87.5

KEGG_ALZHEIMERS_DISEASE 6 8 87.5

KEGG_PARKINSONS_DISEASE 6 8 87.5

KEGG_VIBRIO_CHOLERAE_INFECTION 6 8 87.5

KEGG_EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER_PYLORI_INFECTION 6 8 87.5

KEGG_LEISHMANIA_INFECTION 6 8 87.5

KEGG_COLORECTAL_CANCER 6 8 87.5

KEGG_PROSTATE_CANCER 6 8 87.5

KEGG_MELANOMA 6 8 87.5

KEGG_BLADDER_CANCER 7 7 87.5

KEGG_ACUTE_MYELOID_LEUKEMIA 6 8 87.5

KEGG_SMALL_CELL_LUNG_CANCER 6 8 87.5

KEGG_VIRAL_MYOCARDITIS 6 8 87.5

The first column presents the name of the gene sets tested, the second and third columns show the number of times each gene set was detected as differentially
expressed at a threshold of 5% for the p-values, for each biological group. The last column contains the discovery rate across all experiments (7 hypoxia datasets and 9
metastasis datasets).
doi:10.1371/journal.pone.0086699.t005
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Conclusion and Perspectives

We implemented a pipeline of bioinformatics tools to explore

archived microarray data, from preprocessing to mapping of the

results. We used that pipeline to examine metastasis and hypoxia

data and found results in keeping with previous reports, as well as

a new hypothesis. The combination of high-level analysis (Over

Representation Analysis and Functional Category Scoring) with a

meta-analysis step led to the discovery of involvement of the

spliceosome in the hypoxic and metastatic processes, and the

generation of a list of 20 new candidate genes.

Bioinformatics approaches will never replace bench validations;

however we were able to form a plausible hypothesis just by re-

analyzing available data. Biological investigations should therefore

be performed to further refine the interpretation of the relation-

ships between the pathways detected and understand how a

hypoxic environment and metastasis affect both general and

energetic cell metabolism. Further investigations should be

conducted to clarify the results of the statistical analyses and to

discriminate between causes and consequences (mechanisms of

perturbations and symptoms). However, that validation is out of

the scope of this methodological paper.

We think that this analytical protocol could be used successfully

in many other biological contexts, wherever several datasets are

available. Indeed, we have shown that single gene analysis alone

yields poor results, though this is often the only step performed by

wet-lab biologists. The methodology presented here allows for

improved performance, comparison with previously known

information and discovery of recurrent patterns (through meta-

analysis), all of which were performed using freely-available

resources and software packages and without the need to perform

expensive de novo microarray experiments. We think that this work

will contribute to the creation of a virtual atlas for cellular biology

containing the known characteristics of cells in diverse biological

conditions, which is one of the major goals of the bioinformatics

community.

Table 6. List of the 31 genes highlighted in the spliceosome pathway.

Gene References in literature

DHX 15 NA

LSM6 NA

NAA38 NA

NHP2L1 NA

PRPF19 NA

RBM8A Kim et al, 2008 [60] and Salicioni et al, 2000 [61]

ACIN1 Lee et al, 2008 [62] and Shu et al, 2006 [63]

Cdc40 NA

CRNKL1 NA

HSPA1A NA

HSPA1B NA

HSPA8 NA

HNRNPA1P2 NA

HNRNPC Park et al, 2012 [64]

HNRNPK Inoue et al, 2007 [65] and Li et al, 2011 [66]

HNRNPM Palermo et al, 2012 [67] and Thomas et al, 2011 [68]

SNRPG NA

NCBP1 NA

PUF60 NA

SNRPD1 NA

SNRPD3 Cunha et al, 2010 [69]

SNRPEL1 NA

SNRPF NA

SF3B3 NA

SFRS1 Mukherji et al, 2006 [70], Hatakeyama et al, 2009 [71] and Meseguer et al, 2011 [72]

SFRS3 NA

SFRS5 Hatakeyama et al, 2009 [71]

SFRS7 Hatakeyama et al, 2009 [71]

SFRS9 Mukherji et al, 2006 [70]

TRA2B Watermann et al, 2006 [73]

USP39 NA

Eleven of those genes are previously known in the literature to be involved in metastasis (shown in grey), the 20 other are previously unknown (shown in bold) to be
involved in the metastatic process.
doi:10.1371/journal.pone.0086699.t006
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Methods

Selection and retrieval of datasets
For the purposes of the study reported here, two sets of criteria

were used to retrieve datasets with PathEx (described in [47]):

technological keywords to specifically retrieve Affymetrix Gene-

Chips HGU-133a and HGU-133plus2 array models; and

biological keywords to retrieve datasets that met the topics of

interest in this study: hypoxia or metastasis.

Entry of these technological and biological keywords into

PathEx resulted in a collection of 16 distinct datasets, as listed in

Table 1: 9 datasets specific to hybridizations performed on the

HGU-133a chip model, including 3 experimental designs

dedicated to hypoxia and 6 dedicated to metastasis; 7 datasets

obtained using the HGU-133plus2 array model, including 4

hypoxia-related and 3 metastasis-related experiments. The

number or replicated measurements ranged from 2 to 52

hybridizations (see Table 1). In addition, we preferred datasets

reporting in vivo gene expression levels and discarded data that

came from in vitro experiments.

Preprocessing and statistical analyses
The preprocessing of the data and the individual analyses

reported in this paper were performed using R 2.7 and 2.10,

available on the website of the R-Project (http://cran.r-project.

org), and a set of packages available in the Bioconductor repository

(http://www.bioconductor.org).

We used GCRMA to preprocess each of the 16 retrieved

datasets, in accordance with the performances reported in

previously reported benchmarks [26,57,58]. The summarization

step performed by GCRMA was guided by the affyprobeminer

transcript-consistent chip definition files (CDF) specific to the

HGU-133a and HGU-133plus2 chip models. The probe set

identifiers provided by alternative CDFs (affyprobeminer) differ

from the identifiers defined by the manufacturer of the arrays

(Affymetrix). Supplemental functions implemented in the affypro-

beminer packages were used to convert probe set identifiers into

EntrezGeneID. The identification of probe sets with EntrezGene

ID identifiers allowed us to compare the gene lists between HGU-

133a and HGU-133plus2 chip models, and to facilitate annotation

of the results from the individual analyses.

The differential expression of individual probe sets was analyzed

with the ’st’ package, which implements the Shrinkage t

methodology. This procedure was conducted on each dataset,

resulting in 16 dataset-specific lists of p-values, each p-value

referring to a specific probe set.

Meta-analysis, annotation, and gene set analysis
For each dataset, we selected the list of genes detected as

differentially expressed (p-value , 0.05). The 16 dataset-specific

lists of the most significant genes were gathered into two groups,

according to the experimental design (Hypoxia/Metastasis

studies). In each group of datasets, a new list of genes was defined

from the list of genes found to be differentially expressed in at least

one dataset of the group. Lastly, the intersection of the list of genes

from the two groups was performed by selecting genes that were

detected in both groups, resulting in a list of 1156 unique gene

identifiers (provided in Table S1, along with all the p-values

computed for the 16 datasets, p-values ranking for each dataset

and mean ranking across the 16 individual ranks).

The 1156 selected EntrezGene ID identifiers were mapped to

the Kegg Pathways database using the ‘‘Functional Annotation

Tools’’ available on the DAVID web interface [59]. Using

DAVID, 102 pathways, containing at least 3 of the 1156

candidate genes, were identified (see Table S2). To avoid biases

due to potential false positives, we selected for further analysis the

pathways that displayed a significant p-value (see Table 2).

Alongside the selection and annotation of the most significant

genes by the meta-analysis approach, differential expression

analyses of gene sets were conducted on each of the 16 datasets.

Gene set analyses were performed on preprocessed data in a single

step using the multivariate FAERI test. Gene set definitions were

retrieved from the MSigDB database (v3.0) [36]. We evaluated the

differential expression on gene sets belonging to the C.2 KEGG

category, composed of 186 curated pathways. Lastly, the 16

dataset-specific lists of p-values were used to compute, for each

gene set, the ratio of detection as differentially expressed across all

datasets. The full code for this analysis can be found in the Table

S5. For more details on the FAERI methodology, see [39].

The different steps in the analytical pipelines are summarized in

figure 1. The left part of the diagram contains the single gene

analysis steps (Shrinkage t test treatment, meta-analysis and over-

representation analysis (ORA) in DAVID). The right part contains

the gene set analysis steps (Functional Class Scoring (FCA) by

FAERI and meta-analysis of the results).
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of the 1156 genes highlighted in the analysis.
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Table S2 List of pathways highlighted in the over-representation

analysis using DAVID.
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Table S3 Full list of p-values obtained in the geneset analysis.

(PDF)

Table S4 Distribution of the highlighted genes in the spliceo-
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(PDF)
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(PDF)

Checklist S1
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