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1. INTRODUCTION 
We have previously presented a method for optical rectification that has been 

demonstrated both theoretically and experimentally and can be used for the development of a 
practical rectification and energy conversion device for the electromagnetic spectrum including 
the visible portion. This technique for optical frequency rectification is based, not on 
conventional material or temperature asymmetry as used in MIM or Schottky diodes, but on a 
purely geometric property of the antenna tip or other sharp edges that may be incorporated on 
patch antennas. This “tip” or edge in conjunction with a collector anode providing connection to 
the external circuit constitutes a tunnel junction.  Because such devices act as both the absorber 
of the incident radiation and the rectifier, they are referred to as “rectennas.”  Using current 
nanofabrication techniques and the selective Atomic Layer Deposition (ALD) process, junctions 
of 1 nm can be fabricated, which allow for rectification of frequencies up to the blue portion of 
the spectrum (see Section 2). 

In this paper we treat in detail the role of geometry in nanoscale rectennas for 
rectification and energy conversion.  We also discuss different model analyses and mathematical 
treatments for electron emission from a sharp tip. which all exhibit the same focusing and 
tunneling features due to asymmetrical geometry. 

Due to the incident radiation AC currents are induced along the length of the antenna, 
which produce oscillating charges at the top or edge of the geometrically asymmetric tunneling 
junction and corresponding image currents in the anode. The presence of the constricted 
geometry of the tip or edge gives rise to an enhanced field at the tip. The oscillating charges in 
the tunnel junction induce an AC voltage across the gap. If the induced field is sufficient for field 
emission, a tunneling current is produced.  Due to geometric asymmetry (and possible material 
asymmetry or plasmonic coatings), there is a difference between the potential barriers for 
forward and reverse bias, which results in a rectified DC current (see section 3).   

An SEM image of our fabricated geometrically-asymmetric device that we use in our 
own research is shown in Fig. 1.  Note that we have chosen a device structure that has been 
fabricated on a large scale using standard nanofabrication techniques. 
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rectification of radiation with frequencies in the visible range is possible due to the 
short transit time allowing electron tunneling before field reversal. 

• Impedances must be matched for efficient energy collection and conversion in 
rectenna devices. 

• The device has a high conversion efficiency.  For a simple p-n junction PV cell, the 
efficiency is limited by the Shockley-Quissier Limit of about 33%.3,4  The 
theoretical understanding of the operation and description of antennas at the 
nanoscale in the optical regime is only now being studied in a rigorous way taking 
into account that the behavior of metals in the optical regime differs from that at 
frequencies below the IR.  

In this paper, we discuss the modeling, characterization, and nanofabrication of a 
geometrically-asymmetric rectenna device that acts as both an antenna and rectifier for IR and 
optical radiation.  In Section 2, we review the response time of such devices, focusing on the 
results and implications of an important study by Nguyen et al.  We also explain how tunnel 
junctions are capable of rectifying signals in the visible regime.  In Section 3, we review the 
mechanisms of rectification and the experimental data confirming optical rectification, including 
quantum-based theoretical analyses. We also show the significance of geometry in providing 
both the focusing effect and the asymmetric tunneling for rectification. 
 
2. RESPONSE TIME OF TUNNEL JUNCTIONS 

In addition to the issues regarding the fabrication of reproducible nanoscale devices, the 
response time of the rectifying device to optical radiation is a critical element for successful 
operation. The response time consists of several contributions.  One is the collective response of 
the conduction electrons that establish the AC bias.  Generally for metals, the collective response 
corresponds to frequencies well beyond the UV (or periods of about 10-16 sec).  Two other 
elements affecting device response time are the electrodynamic response of the junction to the 
changing fields (RC-time) and the “transversal time” for electrons to cross the gap region in the 
tunnel junction before field reversal. These latter two times are considered in the following 
subsections. 
 
2.A.  “Traversal Time” or “Tunneling Time” for Nanoscale Tunneling Junctions 

The concept of “traversal time” applied to electron transmission through time-dependent 
barriers, is needed to estimate the limiting frequency for the tunneling rectifiers used in 
nanoscale devices.  Qualitatively, an electron of a given energy incident on the oscillating barrier 
“interacts” with the barrier for a time, bτ .  Consider the two limiting cases.  In one limit where 
the period of the oscillation, T, of the radiation is longer than this time of interaction, the electron 
effectively interacts with a “static” barrier and, hence, can tunnel before the field direction 
reverses.  On the other hand for the limit where the frequency of the radiation is very high with

Tb <<τ , then the electron interacts with many cycles of the radiation and the tunneling barrier is 
essentially unchanged due to the oscillating voltage.  In this limit, the tunneling current is 
comprised of the photon-excited electrons which have absorbed or emitted quanta equal to n ωh , 
where 1,2,...n =  and ω  is the angular frequency of the incident radiation.  The crossover 
between these two limiting behaviors may be determined by the relationship, 1ωτ ≈ .5  The 
validity of such a conceptual approach has been the subject of debate and controversy ever since 
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the advent of quantum mechanics and the recognition that there can be particle tunneling through 
classically forbidden barrier regions. Basically the problem lies in the difficulty of defining and 
measuring the traversal time for the simple time-dependent scattering experiment in which an 
electron represented by a wave packet tunnels through a spatially localized barrier and is 
detected beyond the tunneling region.6,7,8  

A seminal experiment by Nguyen et al.9 used a dynamical approach to probe tunneling 
times in which a natural time scale is provided by a laser that is an integral part of the 
experimental arrangement. The laser incident upon an STM junction, consisting of a W-sharp tip 
and a polished, flat Si anode, causes the tunneling and, at the same time, provides a “clock” to 
measure the duration of the event. Given that the laser induced electric field is larger near the 
pointed apex of the tip than at the planar surface of the sample means that the vacuum tunnel 
barrier will tend to buckle inward (concave) or become thinner for forward bias and balloon 
outward (convex) or become thicker for reverse bias (see discussion and Figure 5 in Section 
3.A). Moreover, if there is material asymmetry as in the Nguyen STM junction, there is an 
additional barrier asymmetry introduced. Such an STM junction can be a rectifier and under 
irradiation leads to a net DC current.  

It can be argued that, if for a fixed spacing the laser frequency is too high, few electrons 
will be able to transfer from one electrode to the other during the half of the period when the 
electric field vector in the laser beam accelerates the tunneling electron. This means that one 
should observe a cutoff in the strength of the rectified DC signal either 1) when the frequency is 
increased beyond a critical value while maintaining the tip-to-surface distance s fixed or 2) when 
the gap width s  is increased beyond a characteristic value es , while keeping the laser frequency 
constant. This latter method was used in these experiments by Nguyen, when the junction was 
illuminated by a 1.06-μm YAG laser. The tip-to-base gap s was then progressively increased 
until the laser-induced current vanished. The DC rectified current as a function of gap width for 
fixed frequency indicated a cutoff distance of about 2.5 nm for the 1.06 mμ  YAG laser line. 

The Nguyen study explained such experimental results in terms of a simple model that 
assumes that the particle acts as if it obeys the kinematical equations of motion as the particle 
traverses the classically inaccessible region defining the barrier at a velocity approximately equal 
to the Fermi velocity.  If we assume an average tunneling velocity to be the Fermi velocity, Fv  , 
then cutoff /Ff v s= . This analysis predicts that for a 1 nm gap with a metallic tip and vacuum 
barrier, the transit time of about 10-15 seconds corresponds to radiation approaching the UV.9  The 
technological difficulty of producing arrays of nanometer gap junctions over areas of cm2 has 
recently been overcome by Gupta and Willis using selective ALD.10 Planar arrays of Cu-
vacuum-Cu tunnel junctions were produced on silicon wafers using conventional lithography 
techniques, followed by selective ALD to yield tunnel junctions of ~ 1nm. This selective atomic 
layer deposition (ALD) process that is self-limiting at gap separations of 1 nm for Cu.  At this 
spacing, the tunneling time is sufficiently short for electrons to transit the barrier before field 
reversal in the visible frequency range, leading to rectification for asymmetric barriers.   
 

These estimates for the “traversal” time have been corroborated in a series of simulations 
by Mayer et al.11,12,13,14,15, who have used a quantum-mechanical transfer matrix approach for the 
modeling of a geometrically-asymmetric, metal-vacuum-metal junction subject to an oscillating 
potential.  This quantum mechanical scheme accounts for the three-dimensional aspects of the 
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problem as well as the time dependence of the barrier.  The currents are obtained by solving the 
time-dependent Schrödinger equation with a Floquet expansion of the wave function. For 
simulations using a full range of frequencies in the solar spectrum, Mayer et al. investigated how 
the efficiency of the rectification is affected by the aspect ratio of the tip, the work function of 
the metallic elements and the occurrence of polarization resonances. Their results demonstrate 
that the rectification of infrared and optical radiation is possible using devices of the type 
proposed by the authors. 

 

2.B. RC-Time for Geometrically-Asymmetric Tunneling Junction (GATJ) Rectifiers 
For the case of a planar MIM structure, the RC response-time of the junction is limited by 

parasitic capacitance yielding a practical limit of 10-100 THz.16 By contrast, point-contact 
devices (i.e., whisker diodes, and GATJs whose geometry is essentially the same) have been used 
in measurements of absolute frequencies up to the green part of the visible spectrum, 
demonstrating a response time of the order of femtoseconds, orders of magnitude faster than 
conventional MIM diodes.17 The asymmetrical, non-planar geometry of the pointed whisker in 
conjunction with the flat anode is an essential requirement for increasing the cutoff frequency cω  
of the diode, but inconsistent with the planar geometry of MIM tunneling theory for which the 
cutoff frequency is independent of contact area. In earlier studies of the detection and harmonic 
generation in the submillimeter wavelength region, Dees18 emphasized the importance of using the 
point-contact geometry to reduce the shunting effect of the capacitance and thus increase the high 
frequency cutoff of the device.  Indeed the response time RCc == ωτ /1  is independent of contact 
area for a planar MIM geometry since C, the capacitance of the contact, is proportional to A, the 
contact area, whereas R the resistance is inversely proportional to A. On the other hand, for a point 
contact geometry, it can be shown using a solvable model with a spherical tip that cω  is no longer 
independent of the tip radius (or area), and the sharper the tip, the faster the response time of the 
diode.16,19  Although mechanical stability of these earlier devices placed a limitation on producing 
robust sharp tips, modern fabrication techniques have overcome the mechanical fragility of 
previous point contact diodes and issues related to reproducible fabrication of nanoscale devices.   

Below we provide a more detailed discussion of why it is necessary to use GATJs with 
sharp tips to obtain RC times short enough for rectifying radiation at high frequencies.  

Such models are important for understanding individual device operation and final 
integration of devices into complex circuits. These device-circuit equivalents, such as that for a 
tunneling diode, allow for the direct application of the Kirchhoff Current and Voltage Laws which 
are, in turn, applications of conservation of charge and energy. In determining the equivalent 
device model, resistances (R), capacitances (C) and inductances (L) are used either as lumped ( 
wavelength independent) or distributed (wavelength dependent, transmission line, R,L,C per unit 
length) elements. 

For the case of the rectenna with a GATJ rectifier, a lumped circuit model consists of a 
resistance for the metallic antenna taking into account its geometric properties (i.e., the tip that is 
part of the GATJ) while the junction is modeled as a capacitance with a large shunt resistance. This 
junction corresponds to the traditional modeling of a low leakage capacitor. Such a junction and 
resistive line feeding element represent a single time constant circuit as illustrated in Fig. 3. It can 
be shown that this transient circuit has a time constant τ given by:   
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As the tip radius decreases the cutoff frequency increases.  This reasoning led to the use of “ultra-
fine” tips in the absolute frequency measurements of Javan and collaborators20 in which a thin, 
Tungsten wire several microns in diameter and approximate length of 1 mm was mounted at the 
end of a coaxial cable.  The tip of the W wire was sharpened by means of a standard etching 
technique to a diameter of less than 100 nm. 
 Although neither the transient nor ac circuit approaches truly represent the GATJ but 
represent reasonable models for the rectifier, these approaches indicate that the RC response of the 
GATJ depends on the radius of curvature of the tip or contact area. The RC time constant has a 
dependence ranging between being proportional to sr  and 1/2

sr , thus predicting that sharp tips used 
in the GATJ rectifer can be used to produce devices that can rectify radiation in the visible region. 

As an example, we estimate the RC time constant of a rectenna with a GATJ (coupled to 
the anode) device with geometric parameters associated with one of our prototype devices similar 
to the one illustrated in Fig. 1.  We consider a typical periodic unit cell of this device, with a single 
nanoantenna. The prototype device consists of ten thousand unit cells, placed in parallel. For this 
first-order estimation of the RC time constant, we use material parameters that correspond to the 
limit when 0ω → .  It is understood that frequency-dependent parameters should be used when 
considering frequencies in the visible, in particular for frequencies at which polarization 
resonances occur. The experimental device is essentially a two-dimensional flat structure. The 
periodic unit cell in our modeling has a length 350xL nm=  along the x-axis and a cathode-anode 
spacing 295yL nm=  along y. A value of 100 nm is taken for the thickness W of the structure. 
We represent the antenna by a flat triangle whose apex is replaced by a half-circular disc of 
radius rapex that connects smoothly to the sides of the triangle. Initially, before the ALD 
metallization, the antenna has a base 110B nm= , a height 245H nm=  and a radius of 
curvature apex 16r nm= .  The gap spacing between the apex of the antenna and the anode is 50 
nm. The Ohmic resistance is estimated from a simple model in which we represent the antenna 
by the succession of slabs. For Cu, we obtain an Ohmic resistance 0.737R = Ω . 

In order to determine the geometric capacitance C of a unit cell of the device, we 
calculate numerically the electrostatic energy 2 / 2CV , under a static voltage acV  between the 
cathode and the anode. The electric potential in the unit cell of the device is obtained by solving 
Laplace’s equation 0))( =∇∇ Ve  (this expression is relevant to the static limit in which 0ω →  
and the antenna is assumed to have a dielectric constant ε → −∞  ). The resolution of Laplace’s 
equation is achieved by using a finite-difference technique.21  This resolution provides the 
electric potential ( )V r  in the system from which we can compute the electric field, VE −∇=  . 
The geometrical capacitance C of the system considered is finally obtained from the relation 
 

221 1
2 2_unit cell
CV E dvε= ∫ ∫ ∫         (5) 

 
in which the right-hand side provides the electrostatic energy one must provide to a unit cell of 
the device in order to establish acV .  For the system represented in Fig. 14, we obtain a geometric 
capacitance 182.94 10C F−= ×  and a resulting RC time constant of 182.2 10 s−× , a value 
corresponding to frequencies beyond the visible.  
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treatment of nanoscale tunnel junctions operating in the near IR and visible requires a quantum-
mechanical treatment.11-15  
 
3.B. Experiments Verifying Rectification Mechanisms from the Microwave through the 
Visible Region—Geometrical Effects 

In this section we review some of the experiments verifying that an STM and other nano-
junctions structures can act as antennas and rectifying devices for electromagnetic radiation from 
the microwave through the visible.  

In a series of experiments, Kuk et al.29,30 used an STM consisting of a metal tip (Au) and 
a semiconductor sample anode (e.g., Si), which was illuminated with laser radiation below and 
above the semiconductor indirect band gaps, specifically, photon energies of 2.94 eV, 1.96 eV, 
1.17 eV, and 0.95 eV.  The STMs were modified using a small lens to focus the laser beam to 
near its diffraction limit, yielding power densities up to 25.0 /kW cm  on the junction.31  The 
resulting induced bias was measured laterally along the surface as light-induced excess current 
and voltage.  For photon energies exceeding the band gap energy, surface photovoltages (SPV) 
of about 300 mV were induced across the gap independent of illumination intensity and 
frequency.  For a photon energy of 0.95 eV, no surface photovoltage was detected.  A small, 
atomically scaled (laterally along the surface) varying dc signal of 3 to 5 mV was also observed 
in the experiments.  The authors suggest that this small signal is due to optical rectification 
associated with the geometric asymmetry of the junction.  These striking results using a Au tip 
and collector demonstrate that the STM junction can absorb and rectify radiation corresponding 
to wavelengths shorter than 1.06 µm in agreement with the experimental results of Nguyen et 
al.9  

Tu et al.32 have experimentally verified that an STM junction can rectify radiation in the 
microwave region, which has led to the first direct, quantitative measurement of the rectification 
current due to single atoms and molecules.  In their work, microwave of known amplitude and 
frequency irradiated the junction of a low temperature scanning tunneling microscope producing 
an electric field between the tip and an atom or molecule on the anode surface.  It induced a DC 
signal that is spatially localized and exhibits chemical sensitivity at the atomic scale. 
 In 1998, Bragas et al.,33 used a laser with wavelength of 670 nm to irradiate an STM 
junction to determine the field enhancement as measured by optical rectification.  A field 
enhancement factor between 1000 and 2000 was obtained for highly oriented pyrolytic graphite 
and between 300 and 600 for gold.  Analysis of their data indicated optical rectification due to 
junction geometry as well as thermal asymmetry.  The admixture of 2 2/

dc
stat stat V

I V∂ ∂  was 

determined to be significant only for p-polarized light and in phase with the intensity variation, 
consistent with the expected behavior for the rectified current. Their experiments indicate that 
visible light (640 nm) can be rectified using nm-sized tunnel junction devices. 

Most recently, Ward et al. have shown both experimentally and theoretically that 
“nonlinear tunneling conduction” between gold electrodes separated by a subnanometer gap 
leads to optical rectification when the gap is irradiated by a 785 nm laser source, producing a DC 
current.27 

Proc. of SPIE Vol. 8824  88240P-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/30/2013 Terms of Use: http://spiedl.org/terms



1 1 1 "'

0.7 0.8 0.9

1 1

0.1 0.2 0.3

"'1 1 1 "'
0.4 0.5 0.6

Applied bias (Volt)

 

U
nanowire
illustrate
compared
(with r →
reverse c

 

Fig. 6.  Ef
junction; (b
   
 E
approxim
typically 
make it p
including
Such stud
that are im

L
dimensio
theory. T
parallel e
of each 
distributi
on transf
STM mic

A
point sou
single ato
agreemen
filtering 
the partic

Unlike a con
e tip achieve
d in Fig. 6 w
d using plan
→ ∞ ) provid
current) of on

ffect of tip rad
b) 10r nm= ; 

Early theoreti
mations in t

based on a
possible to a
g three-dime
dies make it
mportant in 

Lucas et al.3
onal, non-sep
They applied
electrodes, o
metal elect

ion peaks wi
fer-Hamilton
croscope, wh

A theoretical
urce of elec
om yield a r
nt with expe
by an adiab
cular geomet

nventional p
e rectificatio
where the re
nar and poin
des no recti
ne.34 

ius, r, on the r
(c) 2r nm= ;

ical work on
the shape o
a one-dimen
address this 
ensional asp
t possible to
optimizing t
37 used a f
parable, spat
d this approa
one of which
trode is ass
ithin a narro
nian formalis
hen operatin
l study by N
ctrons indica
relatively fo

erimental stu
atic constric
try, 

planar MIM
on solely or 
ectification r
nted geometr
fication, i.e

rectification ra
; (d) 1r nm= ;

n the tunnelin
of the barrie
nsional mod
problem mo

pects of the
o investigate 
the performa
formulation 
tially-localiz
ach to a mo
h containing
sumed to be
w angle arou
sm and in a

ng with atom
N. D. Lang, 
ates that the
ocused, high
udies.38 The r
ction.  This i

M or MVM
primarily w

ratio of a W
ries.  Figure
., a rectifica

 
atio.  The calcu
; and (e) 0.r =

ng character
er and in th
del.6,36  Ho
ore rigorousl
detailed ato
the geometr

ance of geom
of elastic,

zed barriers w
del metal-va
a hemisphe

e free-electr
und the boss
greement w

mic-size tips. 
A. Yacoby 

e current fro
-current bea
results are p
is a consequ

M diodes, de
with geometr

W-W junction
e 6 shows cl
ation ratio (

ulations were d
.5 nm , all for a

ristics of the
he tunneling

owever, mod
ly using qua

omic structur
ric, material

metrically-as
one-electro

within the c
acuum-meta

erical protrus
ron-like.  T
s axis, confir

with the obse
 
and Y. Imr

om a field-e
am with a na
physically in
uence of the

evices empl
rical asymm
n (no materi
learly that a 
(forward cu

done for (a) r
a separation of

se junctions 
g probabilit
dern comput
antum-mecha
re and the t
l, and operat
symmetric d
on tunneling
context of po
al junction, c
sion. The ele

They found 
rming earlie

erved atomic

ry in 1989 o
emission tip 
arrow energ

nterpreted in 
e potential di

loying a po
metry.34,35  Th
ial asymmetr

planar geom
urrent divide

→ ∞ , planar-
f 2 nm.34 

usually relie
ties, which 
tational faci
anical techn
tunneling ba
tional param
evices. 
g through t
otential-scatt
consisting o
ectronic stru
that the cu

er estimates b
c resolution 

on a single-
terminated 

gy distributio
terms of ch

istribution d

ointed 
his is 
ry) is 
metry 
ed by 

-planar 

ed on 
were 

ilities 
niques 
arrier.  
meters 

three-
tering 
f two 

ucture 
urrent 
based 
of an 

-atom 
by a 

on, in 
annel 

due to 

 
3.C. Simulation Studies of Geometrically Asymmetric Tunnel Junctions 
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Mayer et al.11 presented a transfer-matrix analysis of a GATJ with a flat anode and a 
cathode with a hemispherical protrusion.  This work confirmed the conclusions of Lucas et al.34 
and explored how the rectification properties of such systems depend on their physical and 
geometrical parameters.  This analysis still relied on a quasi-static approximation, in which it is 
assumed that one can compare currents obtained for static values of the external bias. This 
approximation is valid in the far-infrared ( 0ω → ) but must be replaced by a more exact 
approach in order to treat situations in which the time that electrons take to cross the junction is 
comparable with the period of the oscillating barrier.  

In a subsequent paper Mayer et al.12 extended their previous work by taking into account 
the time dependence of the external bias explicitly using the transfer-matrix approach and the 
time dependent Schrödinger Equation.  They assume that the geometrically asymmetric tunnel 
junction consisted of a cathode metal supporting a hemispherical protrusion with a height of 1 
nm, a radius of 0.5 nm, and separation between the apex of the tip and the planar electrode of 1 
nm.  Due to the external electromagnetic radiation of varying frequency and intensity, there is an 
impressed oscillating potential across the junction, ( ) ( )cosacV t V tω= .  In the simulations, acV  
varies from 0.01V to 1.0V and frequencies that correspond to quanta of energy between 0.2 eV (

6200nmλ = ) in the IR and 5eV ( 248nmλ = ) in the UV. The rectification ratio that one obtains 
by taking the ratio of the mean values of the forward, I + , and reverse, I − , currents is plotted in 
Fig. 7.  The values obtained at low frequency, 0ω → , agree with those obtained in the quasi-
static analysis.11 Because of the photon-absorption processes, the rectification ratio, R, first 
increases with ω  before decreasing at higher frequencies. The intermediate region proves that 
the rectification of optical frequencies can be achieved by the device, which agrees with 
conclusions reached earlier by Sullivan, et al.16  In a quasi-static analysis, they predict a cutoff of 
the rectification for a photon-energy around 4 eV (radiation with wavelength of 300 nm in 
ultraviolet) because the field would then reverse before the electrons can cross the junction. 
Indeed, this oscillating-barrier analysis shows a significant decrease in rectification at that 
frequency. 
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5. SUMMARY  
 We have surveyed developments related to the fabrication and theoretical understanding 
of our proposed nanoscale rectennas.  These rectenna devices, based on the geometrically-
asymmetric tunnel junction, can collect and rectify electromagnetic radiation, from the infrared 
through the visible regimes.  Studies of electron transversal time and RC response time 
demonstrate that tunnel junctions formed with a sharp tip (early examples of which are the 
whisker diode and the STM probe) are capable of operating into the UV regime.  Recent efforts 
to construct nanoscale antennas reveal a wealth of promising geometries and fabrication 
techniques.  Other recent experimental work confirms that nanorectennas are capable of not just 
receiving, but also rectifying, signals through the visible regime.  A number of past and recent 
ongoing simulation studies not only demonstrate the viability of the geometrically-asymmetric 
tunnel junction, but also establish the importance of certain design parameters (choice of 
geometry and materials) that will be crucial in efforts to optimize such devices.   
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