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Abstract
We study various stereoregular polymers (monoatomic (Beryllium chains), diatomic (Hydrogen
fluoride chains and polyyne) and polyatomic (polyethylene and polymethineimine)) and monitor the
effective convergence of the lattice summations, especially the one corresponding to the exchange
contribution. The relations to geometry (bond length alternation), quasi-linear dependencies, basis
set and band gap are adressed. Even for extremely conjugated system, the exchange is found to
present an exponentially decreasing behavior, rather than a 1/N? behavior, although convergence

can be extremely slow.
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I. INTRODUCTION

In order to tackle the properties of macromolecules, two strategies may be chosen. In
the oligomeric approach, one computes the desired properties on increasingly long oligomers
and extrapolates to obtain the polymeric value. For most properties, this convenient molec-
ular approach does not require any new theoretical developments. However, in conjugated
systems, the convergence of the properties with respect to chain length may be extremely
slow, especially for properties connected to high-order derivatives of the total energy. As
a consequence, extremely long oligomers may be necessary in order to obtain accurate ex-
trapolations. In the polymeric approach (or crystal orbital (CO) method), one considers
explicitly the translational symmetry of the infinite chain and only a single-shot calculation
is necessary to obtain the desired property. This approach was first proposed, independently.
by André and Ladik at the end of the sixties and has been reviewed in two monographs more
than a decade ago [1, 2]. However, it is only more recently that new developments have been
succesfully achieved in order to include electron correlation effects [3—6], to analyze excited
states [5, 7], to calculate polarizabilities [8, 9], to compute (hyper)polarizabilities [10-14],
to correctly determine dipole moments [12] and to evaluate geometrical derivatives of the
energy [15-22]. This time gap between initial methodological developments and subsequent
works. originates mainly from two factors. On the one hand, polymeric calculations are
computationally demanding. On the other hand, numerous difficulties specific to polymeric
calculations have been unveiled. In the simple SCF procedure, three main problems have
been encountered: 1) To perform a polymeric calculation, one has to perform numerous
and complex numerical transformations (in comparison with molecular calculations). Sub-
sequently, when the eigenvalues of the overlap matrix are small (typically, smaller than 1072
a.u.), the inaccuracies on the density matrix tend to propagates rapidly, leading to unphysical
results. This is traditionally call a quasi linear-dependency (QLD) problem, to distinguish it
from real linear-dependencies (L.D) that are found in molecules when the eigenvalues of the
metric are smaller than 107% a.u. As QLD are more frequent with large basis sets and/or
when diffuse functions are used, these type of basis sets is generally not used in polymer
calculations, although some exceptions can be found, mainly for very alternant systems [23].
Note that the use of relatively small basis sets on extended systems has some theoretical

justifications (see, for example Ref. [24]). 2) The integration of the density matrix from



reciprocal to real space may be difficult and requires a specific treatment. especially if a wide
range of unit cells has to be used. Indeed, in this case, one has to integrate rapidly oscillating
functions. Different procedures have been designed to tackle this phenomena properly [25].
3) The convergence of the lattice summations is problematic. The largest problem arises
for the Coulombic effects that are so long-range (LR) that distant unit cells (UC) interact
significantly in every polymers. It has been shown by various authors that the different
lattice sums corresponding to Coulomb interactions diverge in the expression of the total
energy per UC [26-29]. Hopefully, when the reference UC (RUC) has no net charge (i.e. for
neutral polymers), all diverging terms cancel each other and a physical energy per UC is
obtained [26-29]. Nevertheless, an accurate estimation of the energy requires to take a very
large number of UC into account. To limit the number of UC for which the interactions
are exactly computed, the multipole expansion technique has been proposed [2, 27, 28]. In
this technique, one considers that UC with negligible overlap interact via multipoles rather
than via the full Fock operator. For stereoregular polymers, the multipole sums over all
cells (up to infinity) can be obtained exactly at a negligible cost once the multipoles of the
RUC have been evaluated. This original technique has been extended to the geometrical
energy derivatives [20-22]. Together with an analyzis of each lattice summations, this has
led to the so-called Namur threshold illustrated in Figure 1. In this scheme. all the terms are
evaluated completely for 2N + 1 cells in the short-range region. N has to be large enough
to allow correct evaluation of the overlap-type and exchange-type integrals. The Coulombic
terms are computed exactly up to M (medium-range region, containing 2M + 1 cells; with
M > 2N) and are approximated by Taylor series in the LR region. Teramae has shown that
this thresholding technique is the most efficient among the different used in the litterature
[30]. This succes is probably due to the good balance between Coulombic and exchange con-
tributions to the energy that is generally difficult to maintain because they are not treated
on an equal footing. For the exchange component, one should consider both integral and
density convergence behaviors. For the integrals, it is expected that they decrease as 1/N.
The density has been studied theoretically by various authors using quite simple models
[31-33]. For polymers with a non-zero gap, the convergence of the density between cell ()
and cell 7 should be proportional to exp (—E\/Ej), where ¢ is a proportionality factor and
AF is the band gap [31]. For metallic chains (zero gap), that are generally not treated at

the HF level, the convergence pattern of the density is 1/N, giving an overall convergence



of 1/N?. A convergence accelerating procedure for exchange terms would therefore be an
highly desirable feature, especially for small gap systems. Unhoppefully, a multipole tech-
nique adapted to the exchange has only been developped at the simple Pariser-Parr-Pople
level [34, 35]. To obtain a fully converged (i.e. exactly up to infinity) exchange term, the
Fourier transform method developped by Delhalle, Fripiat and Harris is, at the present, the
only available technique, although it is limited, at the moment, to s-type orbitals [36-38].
In this paper, we use a variety of polymers (polar, non-polar, conjugated or not, ...) in
order to assess the behavior of the exchange summations and to determine what are the
relations between the basis sets, geometries, quasi-linear dependencies, ... and the actual
speed of saturation of the exchange term in Hartree-Fock calculations. To our knowledge,
the only similar study has been performed by Suhai in 1980 on polyacetylene using the
STO-3G basis set [39]. He found that a N=20 limit was necessary in order to obtain fully

converged properties for very conjugated polyacetylene [39].

II. METHODOLOGY
A. SCF-LCAO-CO equations

In a polymer, the crystalline orbitals are build as LCAO combinations of real atomic
orbitals, y,, given by:

R — 7aé,

E: M2N+— E: Ty Gt_q ) (1)
Z: \QN+ E:IW 2)

where n is the band index, w the number of basis functions in the reference unit cell. R is
the position of a AO center in the RUC, and €, a unit vector in the z direction. a is the
unit cell length, j the cell index and N the number of cells in the short-range region. As

can be seen, the LCAO coefficients C,, (k) depend on the quasi-momentum vector of the



reciprocal space. k. The corresponding SCF equations are:
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where we have defined the k-space overlap (S, (k)) and Fock (F}, (k)) matrices:
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qoi is the overlap integral between y, in the reference unit cell (0) and x, in the 7 cell.

F;?,’g is a term of the real-space Fock matrix, computed as:
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with Q4 is the nuclear charge of atom A and the density matrix, PS:Z, is obtained by an

integration over the first Brillouin zone:
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with Ny, the number of occupied bands. The two-electron integrals are defined as:
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In this framework, the Hartree-Fock electronic energy is obtained by:

Jpelec—SCF _ Z iz HOJ _I_FOJ pOJ (12)



The exchange contribution of cell 7 to the SCF energy is therefore given by

+N +M w
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In Eq. (9), the 2 summations of the Coulombic terms extend actually to infinity when
correct LR terms are included (see introduction). Except for the j sum of exchange, the other
summations are directly related to overlap-type terms and, subsequently are guaranteed to
converge exponantially. As a consequence. the only open-question is the effective rate of

convergence of this j sum.

B. How to analyze the convergence of the exchange ?

The sole knoweldge of the final SCF energy as a function of N is a quite poor measure
of the saturation rate of the exchange. because the energy is very unsensitive to the quality
of the density matrix in a variational procedure. On the other hand. other properties can
be very sensitive to exchange convergence [32, 39]. A very recent example can be found
in Ref 12: N=9 (i.e. 19 cells) is not sufficient to obtain converged hyperpolarizabilities of
conjugated macromolecules. To analyze the exchange convergence, we have computed its

contribution to the total SCF energy as a function of 7 and defined the following parameters:

1. N¢(12) : the unit cell index such as the exchange contribution to the energy (Eq. (13))
is smaller than 107! a.u. for all the cells beyond |N¢(12)|. Such a strict threshold has

been chosen in order to ensure a perfect convergence for all properties.

2. N?(6) : the unit cell index such as the average density element of P)7 is smaller than
107¢ a.u. for cells beyond |N?(6)|. This threshold has been chosen consequently with

Ne(12) : 1076 = V10712,

3. ¢ : the factor obtained from a least-square fit of the exchange contribution performed
with an exponentially decaying function [a + bexp(—c®])]. To perform the fits, we
consider all the exchange contributions to the energy except those of the cells that
are very close to the RUC (from 7 =0 to 7= 0.2N) or close to the extremities of the
short-range region (from 7 = 0.9N to j = N) [See later the reason of these limits].

4. c? . but for the real-space density, POJ



These parameters are compared to the band gap (AE = eLuco — €noco). the smallest
exponent of the chosen basis set (SEBS), the number of QLD removed (NQLD) i.e. the
number of basis set vectors removed from the SCF procedure, and the smallest eigenvalue
of the overlap matrix (S5, (k)) considered in the calculation after removal of NQLD basis
vectors (SESK).

All calculations have been performed with DJpol [40]. The SCF convergence and integral
discarding threshold have been set to 107'° a.u. and 107'? a.u., respectively. in order to
ensure accurate results. M = 2N in all calculations, 2 orders of LR correction have been
included. The integration method over the first-Brillouin zone has been chosen as a function
of N: 1) for 30 > N : a 48 k-points Gauss-Legendre quadrature 2) for 50 > N > 30 : a
256 k-points Clenshaw-Curtiss quadrature 3) for N > 50 : a 501 k-points Filon procedure.
This integration scheme guarantees an accuracy of at least 107'° a.u. on the individual PS:Z
elements [41]. For the smaller basis sets used, we have checked that the polymeric energies
correspond effectively to the extrapolated oligomeric values per unit cell. All calculations
have been performed with very large N (from 15 to 200 depending upon the system, whereas,
most polymer calculations tend to use between 3 and 10 [12, 14, 42]).

III. RESULTS

The chosen systems are sketched in Fig. 2 whereas Table I summarizes the main results.
Although there is a wide variety of behaviors (see next sections) some generic conclusions

apply to all the system treated.

e The convergence with respect to j of the kinetic or Coulombic terms is always faster
than the corresponding exchange saturation even for very alternant polymers (H-F).
For all systems treated, N=8 is sufficient to obtain correct (up to 107'* a.u.) kinetic
and Coulombic interactions even for basis sets containing diffuse functions. As a

consequence, no further treatment of these terms is necessary.

e The convergence rate of the average density or the maximal density element with
respect to ) are extremely similar, the latter being generally larger by one to two

orders of magnitude.



o The decrease of the density and the exchange are exponential in all cases. Indeed, the
correlation coefficients of the exponential fits used to determine ¢© and ¢? are always

larger than 0.99.

o The square of the average PJ:J value for a given j can be larger or smaller than the
exchange contribution to the energy (N¢(12) can be shorter or longer than N?(6) in
Table I). Consequently, the knowledge of the density is only an indication but not an
accurate measure of the exchange convergence. In other words, the average P?; value

is not sufficient to acertain the exchange convergence.

e The sign of the total exchange contribution is of course negative, but it may vary for
individual cell. However, in most cases, we found that for cells not close from the
center (j=0), the sign for a given system (polymer, geometry and basis set) tends
to be the same for all cells. although it may differ for the positive and negative cell
indices. Nevertheless the magnitude of exchange decreases with a similar rate for 7 >0
and j <0. Therefore, we consider only the absolute value of exchange contributions

and leave the discussion about its sign for further investigations.

e Close to the limit of the short-range region (|j] = N), the exchange contribution to the
energy presents an incorrect behavior. especially for conjugated polymers and when
large basis set are used. In general the magnitude of the exchange contribution in the
"last” few cells is too large by 1 to 3 orders of magnitude. This overestimation is due to
the thresholding technique used: some contributions to cell |7] ~ N exchange cannot
be included, because they would require the density (or Fock) matrix for |j| > N in
order to compute it (see Ref. 43 for details). Of course if N is large enough, this odd
behavior is negligible but one has to be a little generous in setting N, or one has to

cut the extreme cell exchange contributions when using Namur’s threshold.

A. Be Chains

In a recent article, Delhalle and coworkers, using a distributed s-type gaussian function
(DSGF) basis set, pointed out, that the exchange contribution should converge extremely
slowly in infinite linear Be chains [36]. Despite a large band gap (6.2 V) they were not able

to obtain, using their real-space program, a physical energy whereas. they found possible,



with a Fourrier-space program to get a meaningful energy per unit cell (-14.487927 a.u.)
[In Ref. 36, the given energy of -14.7489 a.u. is actually a missprint]. In their chosen
basis, the s-type orbitals that mimic the effective 3-21G p orbitals are situated outside but
close to the extremeties of the reference unit cell. Subsequently the s-type functions of
neighboring cells overlap substantially (distance < 0.5 A) although all the eigenvalues of
the k-space overlap matrix are still larger than 10~% a.u. Moreover, the geometry chosen
does not correspond to the global minimum (a = 2.32 A, whereas Be atoms are more
stable than any oligomer at this level of theory, see Table II), presumably leading to a
quite difficult SCF convergence pattern. Doing the oligomeric calculations with Gaussian94
[44] for chains as large as 54-cell chain, we extimate, by using our usual fitting procedure
[45], a polymeric energy of -14.48766 + 0.00002 a.u. (see Table II). Using our direct-space
code [40] with a large number of cells (N=100, M=200) and with an unaltered basis set
(NDLQ=0), we are able to obtain a converged energy (-14.487684 a.u.) that is actually
closer to the extrapolated oligomeric energy than the Fourier-space one. In these chains,
the density and exchange contributions are actually following an exponentially decreasing
behavior [R > 0.99]; x exp (—0.267), o< exp (—0.537), respectively. For such special case,
direct-space calculations are thus completely valid as long as the number of cells taken
into account is large enough; in the present case N=45 is necessary to obtain a density
converged to 107° a.u. (see Table I). The N actually used (N=100, i.e. 201 cells in the
short-range region and 401 cells in the medium-range region) could seem unreasonable but
using an efficient thresholding technique during integral computation [41], our cpu-time is
only ~ 1/6 of the time used by the current implementation of the Fourier-space method.
Of course in the latter, one is guaranteed to obtain converged exchange without having to

guess (or modify during the run) the N value.

B. H-F Chains

Linear H-F chains (dy_r = 1.78622 a.u., a = 4.67557 a.u., corresponding to the optimal
HF/6-31G geometry [21]) are simple enough to allow the use of basis sets containing up to
f orbitals. For this alternant system which presents a large gap, N=7 is sufficient to obtain
perfectly converged exchange term for any basis set size, as long as no diffuse functions are

included. When diffuse functions are added (6-314+G*, 6-314++G*), the short-range region



has to be extended (up to 22) and ¢” and ¢® become smaller. As a consequence there is
a relationship between SEBS and the speed of saturation. although SEBS is not sufficient
to determine this speed. Indeed 6-311G exchange converges faster than 6-314G* exchange,
although the minimal exponent of the latter is a bit larger. The same kind of relationship
could be found with SESK: the smallest SESK correspond to the largest N¢(12) and N?(6),
but again there is no complete continuity in this relationship. As expected, SESK is not
only a function of SEBS but also of the basis set size: SESK is divided by ~ 10 by adding
polarization functions on the 6-31G basis set although SEBS is unchanged. Similarly cc-
pVTZ and 6-311G have the same SEBS but very different SESK. Fig. 3 gives the plot of
¢ as a function of VVAE (AE is the band gap). If the relationship PP o exp (—&V/AE7)
was totally valid, all points of Fig. 3 should belong to the same line. The actual correlation
found (R = 0.88) is quite poor. Consequently it appears that AF is a good but not perfect
indication of the rate of convergence of the exchange for a given system studied with different

types of basis sets.

C. Polyyne

Polyyne (PY) is a very difficult system to tackle. Indeed, already with a split-valence basis
set (6-31G), oligomeric evaluations are limited to short chains [46] and polymeric calculations
face QLD/LD troubles [22]. The optimal RHF/6-31G geometry presents an optimal bond
length alternation (Ar = d._. — d.=.) of 0.1623 A (see Ref. 22). We have modified Ar by
keeping @ (= d._. + d.=.) constant and by changing the triple and single bond lengths. In
RHF/6-31G polymeric PY calculations, the smallest eigenvalue of the overlap matrix is of
the order of 1077 a.u. [22] and the related basis set dimension has to be removed from all
calculations: it is a LD [it is not included in NQLD in Table I, because it is an actual LD].
Another small eigenvalue exists (~ 2 107* a.u., QLD) and we have monitored the importance
of its removal. By reducing the basis set, one eases the calculations: N?(6) is divided by a
factor ranging from 3 to 8, depending on Ar. This means that one removes the part of the
basis set which is related to the long-range conjugation. If the basis set is untouched we have
N?(6) > N¢(12), whereas it is the reverse when one dimension is removed. The band gap is
almost unaffected by this procedure. Consequently, in some cases. removing a QLD could be

a valid procedure: it does not affect the desired property but makes the computation (much)
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more simple. When Ar decreases, AE decreases proportionally to v/Ar [R > 0.999] for the
range of Ar considered here. A smaller Ar corresponds to a better delocalization, larger
N¢(12) and N?(6) and smaller ¢” and ¢ coefficients. The N°(12) obtained for Ar = 0.0023
A is smaller than for Ar = 0.0423 A because the density is extremely "flat” in the former
case. In this case ¢© is a better indicator of exchange saturation speed than N°¢(12). For very
small Ar, one needs extremely large NV to obtain an accurate exchange. As an example for
Ar =0.0423 A, N = 120 is necessary in order to reach the convergence of the average density
matrix to 107 a.u. Fig. 4 sketches the relationship between the v/Ar and ¢?. We found a
linear relationship with or without including QLD [R> 0.99 in both cases]. So VAE can
take into account geometry modifications although if the basis set is modified one has to use
different curves. This corroborates our results on H-F chains. Plots of the logarithm of the
exchange contribution as a function of 7 for the Ar =0.0423 A and 0.0023 A cases have been
drawn (Fig. 5). On this figure it appears that the decay of the exchange is exponential for the
two Ar [R=0.999 and 0.998, respectively]. As a consequence, PY with Ar=0.0023 A is still
not in the metallic regime. although the convergence of the density elements and exchange
contributions is extremely slow. Finally, we note that SEBS is a very weak indicator of the
exchange saturation rate because it is unsensitive to the geometry. SESK depends on the

geometry but not enough to predict the large change in saturation speed noted when Ar is

modified.

D. Polyethylene and Polymethineimine

A standard geometry has been chosen for polyethylene (rc_c=1.54 A, re_p=1.09 A,
ac—c—c=109.5 degrees). For polymethineimine, a polymer similar to polyacetylene where
half of the C-H groups are replaced by a N atom, we have used the RHF/6-31G geometry
given by Sun [47]. For polyethylene, the prototype of insulators, the convergence with
respect to 7 is fast: N =10 cells are sufficient to obtain converged density matrix and
exchange contribution. For polymethineimine, a m-conjugated chains, N=20 is required
because the speed of saturation (¢® and ¢?) is halved. As for H-F, adding of polarization

functions does not modify the saturation rate even for polymethineimine.
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IV. CONCLUSIONS

We have studied the convergence of the density matrix elements and exchange contribu-
tions to the energy in various polymeric systems. For the non-metallic chains treated here,
the convergence is exponential, although for very conjugated polyyne the saturation speed
becomes extremely slow. For a given system, the addition of diffuse functions tends to slow
the convergence whereas polarization functions do not affect it. The exchange convergence
rate is only very loosely related to the smallest eigenvalue of the metric. The square root of
the band gap appears as the key parameter to assess convergence for a given system (basis
set and NQLD) but becomes quite irrelevant when different basis sets are used. For conju-
gated systems, large short-range limit (N =~ 20 to 40) could be needed in order to obtain
perfectly converged properties. For non-conjugated macromolecules one can restrict to NV ~
10.

This work highlights the need for developments of schemes able to efficiently accelerate
the saturation of the exchange with respect to cell index when studying extremely conjugated

polymers.
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Captions of the figures

Figure 1 : Illustration of the Namur thresholding scheme for polymer calculations.
Figure 2 : Sketch of the different unit cells used.

Figure 3 : Relationship between the square root of the band gap and ¢ for H-F chains

treated using different basis sets.

Figure 4 : Relationship between the square root of the band gap and ¢ for polyyne of
different bond length alternation. Open (closed) boxes correspond to NQLD=0 (NQLD=1).

Figure 5 : Evolution with cell index of the logarithm of the exchange contribution for

polyyne chains (RHF/6-31G, Ar=0.0423 A[circles] and Ar=0.0023 A[triangles]).
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TABLE I: Results obtained on the different polymers. See section II.B for the definitions of the

different parameters.
Geometry Basis set SEBS AE SESK NQLD N¢(12) NP(6) c¢® «¢P

Be Chains
a=2.32A DGSF 0.0774 0.2273 0.001853 0 36 45 0.53 0.26

H-F Chains
RHF/6-31G STO-3G 0.1689 0.9285 0.390845 0 8 9 2.84 1.38
RHF/6-31G  3-21G 0.1832 0.8982 0.102111 0 7 7 3.23 1.56
RHF/6-31G  6-31G 0.1613 0.8917 0.046328 0 7 7 3.40 1.64
RHF/6-31G  6-31G* 0.1613 0.8926 0.004237 0 7 6 3.45 1.66
RHF/6-31G  6-31G** 0.1613 0.8953 0.004201 0 7 6 3.48 1.67
RHF/6-31G  6-31+G* 0.1076 0.8421 0.001553 0 10 12 1.83 0.81
RHF/6-31G 6-314++4+G* 0.0360 0.7381 0.000629 0 22 16 0.75 0.34
RHF/6-31G  6-311G 0.1027 0.8399 0.008364 0 7 7 2.62 1.22
RHF/6-31G  6-311G* 0.1027 0.8396 0.008224 0 7 7 2.64 1.23
RHF/6-31G  6-311G** 0.1027 0.8413 0.007189 0 7 7 2.76 1.27
RHF/6-31G  cc-pVDZ  0.1220 0.8681 0.033862 0 7 6 3.17 1.40
RHF/6-31G  cc-pVTZ  0.1027 0.8333 0.000834 0 7 6 2.45 1.15

Polyyne

Ar=0.2423 A 6-31G 0.1687 0.3561 0.000230 0 25 36 0.44 0.20
Ar=0.2023 A 6-31G 0.1687 0.3287 0.000220 0 27 39 0.38 0.18
Ar=0.1623 A 6-31G 0.1687 0.2999 0.000210 0 30 48 0.32 0.15
Ar=0.1223 A 6-31G 0.1687 0.2692 0.000200 0 35 58 0.24 0.11
Ar=0.0823 A 6-31G 0.1687 0.2359 0.000190 0 42 75 0.17 0.08
Ar=0.0423 A 6-31G 0.1687 0.1983 0.000181 0 53 120 0.09 0.04
Ar=0.0023 A 6-31G 0.1687 0.1525 0.000171 0 46 >200 0.04 0.01
Ar=0.2423 A 6-31G 0.1687 0.3559 0.021450 1 15 13 1.56 0.76
Ar=0.2023 A 6-31G 0.1687 0.3285 0.021572 1 18 14 1.41 0.69
Ar=0.1623 A 6-31G 0.1687 0.2997 0.021673 1 18 15 1.24 0.60
Ar=0.1223 A 6-31G 0.1687 0.2690 0.021752 1 21 17 1.09 0.53
Ar=0.0823 A 6-31G 0.1687 0.2357 0.021809 1 24 20 0.93 0.45
Ar=0.0423 A 6-31G 0.1687 0.1982 0.021844 1 29 24  0.70 0.34
Ar=0.0023 A 6-31G 0.1687 0.1524 0.021856 1 38 32 0.52 0.26

Polyethylene
Standard STO-3G 0.1689 0.8789 0.197236 0 9 9 2.72 1.31
Standard 3-21G 0.1832 0.6182 0.007290 0 10 9 2.41 1.15
Standard 6-31G 0.1613 0.5838 0.002866 0 9 9 2.45 1.16
Standard 6-31G* 0.1613 0.5886 0.002160 0 10 8 2.46 1.19
Standard 6-31G** 0.1613 0.5880 0.001861 0 9 8 2.48 1.18
Standard cc-pVDZ  0.1220 0.5472 0.000852 0 9 9 1.67 0.85

Polymethineimine

RHF/6-31G  STO-3G 0.1689 0.3267 0.197019 0 18 14 1.31 0.64
RHF/6-31G  3-21G 0.1832 0.3027 0.010060 0 18 15 1.24 0.61
RHF/6-31G  6-31G 0.1613 0.3017 0.003883 0 18 14 1.22 0.61
RHF/6-31G  6-31G* 0.1613 0.3244 0.002191 0 17 15  1.27 0.61
RHF/6-31G  6-31G** 0.1613 0.3240 0.002038 0 17 12 1.33 0.65
RHF/6-31G  6-311G 0.1027 0.3026 0.003019 0 18 13 1.23 0.66



TABLE II: Energies per unit cell (AE = E (N°liee) — p(Neliee — 1)) of Be chains obtained from
oligomeric and polymeric calculations using the DSGF basis set of [36]. The extrapolated oligomeric
value has been obtained by a specific fitting procedure, see Ref. 45. The Fourier-space value is

taken from Ref. 36.

Oligomeric calculations

Noligo SCF energies
1 -14.488962230
10 -14.478056633
20 -14.485781262
30 -14.487359887
40 -14.487576024
50 -14.487626158
51 -14.487628916
52 -14.487631457
53 -14.487633808
54 -14.487635988

Extrapolation : oc -14.48766 + 0.00002

Polymer calculations

Direct-space -14.487684
Fourier-space  -14.487927 (Ref. 36)
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