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LINEARIZING THE METHOD OF CONJUGATE GRADIENTS∗

SERGE GRATTON† , DAVID TITLEY-PELOQUIN‡ , PHILIPPE TOINT§ , AND JEAN

TSHIMANGA ILUNGA¶

Abstract. The method of conjugate gradients (CG) is widely used for the iterative solution of
large sparse systems of equations Ax = b, where A ∈ ℜn×n is symmetric positive definite. Let xk

denote the k–th iterate of CG. In this paper we obtain an expression for Jk, the Jacobian matrix of xk

with respect to b. We use this expression to obtain computable bounds on the spectral norm condition
number of xk, and to design algorithms to compute or estimate Jkv and JT

k
v for a given vector v.

We also discuss several applications in which these ideas may be used. Numerical experiments are
performed to illustrate the theory.

Key words. Conjugate Gradients Algorithm, Lanczos Algorithm, Perturbation Analysis, Lin-
earization, Automatic Differentiation

AMS subject classifications. 65F10, 65F20, 65F22, 65F35

1. Introduction. The method of conjugate gradients (CG) of Hestenes and
Stiefel [12] is widely used for the iterative solution of large sparse systems of equations
Ax = b, where A ∈ ℜn×n is symmetric positive definite. Let xk denote the k–th iterate
of CG. This iterate is a nonlinear differentiable function of b. In this paper we obtain
an expression for the Jacobian of xk with respect to the right-hand side vector b,

Jk =
∂xk

∂b
∈ ℜn×n.

The norm of the Jacobian (for any chosen norm) is by definition the absolute condition
number of xk with respect to perturbations in b. We use our expression for the
Jacobian to obtain computable bounds on the spectral norm condition number of xk.
We also discuss methods to compute or estimate the quantities Jkv and JT

k v for a
given vector v.

Sensitivity analysis of computational problems is considered by many to be a very
important topic. Reference books in numerical linear algebra (such as [2], [6], [13])
typically present a sensitivity analysis of the problems they consider. For example,
for the exact solution x = A−1b, the Jacobian is

∂(A−1b)

∂b
= A−1

and the condition number of x in the spectral norm is ‖A−1‖2, the reciprocal of the
smallest singular value of A. Hence we are warned that the exact solution x = A−1b
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2 GRATTON et. al.

may be very sensitive to perturbations in b (such as noise in the data or rounding
errors in finite precision arithmetic) when A has some very small singular values.

In many practical applications, however, one is not concerned with the exact
solution x = A−1b. Rather, one performs k ≪ n iterations of CG and accepts the
resulting iterate as the computed “solution” even though it may be very far from
A−1b. For instance, when n is very large, this may be the only feasible approach.
Performing k ≪ n steps of CG is also considered a form of regularization when A
is very ill-conditioned; see for example the survey in [11]. Then one may wonder at
quantifying this effect as a function of b. This is the question we consider in the
present manuscript.

There has been some work done on the sensitivity of Krylov subspace methods.
Kuznetsov et. al. [1, 16] obtain expressions for the condition number of a Krylov
subspace Kk(A, b) with respect to perturbations in A and b. Here, however, we are
interested in the sensitivity not of a whole subspace but of only one vector in the
space, namely, xk. We also mention the papers of Greenbaum [8] and Strakoš [26]
(see also [10]) who consider the sensitivity of CG iterates to changes in the eigenvalue
distribution of A. A summary and more thorough bibliographies can be found in [19,
20]. One important aim of such work is to understand how rounding errors in finite
precision arithmetic affect the convergence of the algorithm. Here our motivation is
different: we are interested in applications in which b is an observation vector greatly
contaminated by noise, and in which very few iterations of CG are performed. In
such cases, a sensitivity analysis of xk with respect to perturbations in b is certainly
relevant.

One application of this work is in statistics. Consider the linear model Kx = c,
where K has full column rank. It is well known (see, e.g., [14, §17]) that given an
observation c̃ = c+ v with v ∼ (0,Σ), Σ non-singular, the least-squares estimator

xLS = argmin
x

‖c̃−Kx‖Σ−1 = (KTΣ−1K)−1KTΣ−1c̃

is the best linear unbiased estimator of x, and

cov{xLS − x} = (KTΣ−1K)−1.

But if xk is the k-th iterate of CG applied to the normal equations of the above least-
squares problem, what is the covariance of xk−x, and how does it compare to that of
xLS − x? This is sometimes called the partial least-squares problem in the statistics
literature; see for example [3] and the references therein. If we know the Jacobian of
xk, we have to first order

cov{xk − x} ≈ JkΣJ
T
k .

See e.g. [5, 21] and the references therein for some data assimilation applications in
which knowledge of cov{xk − x} would be useful.

Another potential application is to solving linear systems with multiple right-
hand sides Ax = bi, i = 1, 2, . . . . Suppose that after k steps of CG applied to Ax = bi
we have computed xk(bi) and Jk(bi). To first order

xk(bi+1) ≈ xk(bi) + Jk(bi) · (bi+1 − bi),

which is an ideal starting vector for CG applied to Ax = bi+1. If Jk ≈ A−1, the
Jacobian can be used as a preconditioner for subsequent solves with A and to estimate
the energy norm of the error,

‖ǫk‖2A = ǫTkAǫk = rTk A
−1rk ≈ rTk Jkrk,
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where ǫk = A−1b − xk is the error and rk = b − Axk the residual. In each of the
above applications, in practise we would more likely use an approximation to Jk with
which matrix-vector multiplications can be performed cheaply, rather than Jk itself.
We discuss a few such approximations.

The rest of this paper is organized as follows. In Section 2 we introduce the
Lanczos [17] and CG algorithms. In Section 3 we obtain an expression for Jk, the
Jacobian of xk with respect to b. We also give bounds on the normwise relative error
between Jk and A−1 and on ‖Jk‖2. We discuss methods to compute or estimate
Jkv and JT

k v for a given vector v in Section 4. In Section 5 we present numerical
experiments to illustrate the theory, and we conclude with a discussion in Section 6.

2. The Lanczos and Conjugate Gradients algorithms. We start by re-
viewing some known facts about the Lanczos algorithm and its relation to CG. We
assume exact arithmetic. The effects of rounding errors in floating point arithmetic
are discussed briefly in Section 6. For a more thorough treatment of these topics,
including implementation details, see for example [2], [4], [9], [19].

The Lanczos algorithm computes an orthogonal tridiagonalization of the symmet-
ric matrix A ∈ ℜn×n column by column, starting from an arbitrary normalized vector
v1. After k steps the algorithm produces Vk =

[
v1, . . . vk

]
∈ ℜn×k with orthonormal

columns and

Tk =




α1 β2

β2 α2
. . .

. . .
. . . βk

βk αk



, T̃k =

[
Tk

βk+1e
T
k

]
, (2.1)

such that

AVk = VkTk + βk+1vk+1e
T
k = Vk+1T̃k. (2.2)

(Here ek is the k–th standard basis vector, not to be confused with the error ǫk below.)
The columns of Vk form an orthonormal basis for the Krylov subspace

Kk(A, v1) = span{v1, Av1, . . . , Ak−1v1}.

Starting from an initial guess x0 with residual r0 = b − Ax0, CG produces a
sequence of iterates satisfying

xk ∈ x0 +Kk(A, r0),

rk = b−Axk ∈ AKk(A, r0), rk ⊥ Kk(A, r0).

Define β1 = ‖r0‖2 and start the Lanczos algorithm with v1 = r0/β1. Then the iterate
xk and residual rk from CG can be written as

xk = x0 + VkT
−1
k β1e1 (2.3)

rk = r0 −AVkT
−1
k β1e1 = −β1βk+1e

T
k T

−1
k e1vk+1.

We will also use the fact that Kk(A, r0) = Range(Vk) = Range(Kk), where

Kk =
[
r0, . . . , A

k−1r0
]
=
[
Aǫ0, . . . , A

kǫ0
]

(2.4)

and ǫ0 = A−1b− x0 is the initial error.
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It can also be useful to think of CG in terms of polynomials:

xk = x0 + ζk−1(A)r0, (2.5)

where ζk−1(A) is a polynomial of degree at most k−1. Then the error ǫk = A−1b−xk

and the residual rk = b−Axk satisfy

ǫk = ρk(A)ǫ0, rk = ρk(A)r0, ρk(A) = I −Aζk−1(A). (2.6)

Below we outline some properties of the polynomial ρk to be used in later sections.
Let Πk denote the set of polynomials of degree at most k. It is well known that

‖ǫk‖A = ‖ρk(A)ǫ0‖A = min
ρ∈Πk

ρ(0)=1

‖ρ(A)ǫ0‖A. (2.7)

Let µ
(j)
k , j = 1, . . . , k, denote the eigenvalues of Tk, known as Ritz values. These

are the roots of ρk (see e.g. [4, §2.4], [25, §2]) which can therefore be written in the
form

ρk(λ) =

k∏

j=1

(
1− λ

µ
(j)
k

)
. (2.8)

In the following lemma we give another characterization of ρk. Similar ideas are
used in [7, §1] and [18, §6].

Lemma 2.1. Let the spectral decomposition of A be

A = QΛQT , Q−1 = QT , Λ = diag(λi), 0 < λ1 ≤ · · · ≤ λn,

and define

Lk =



λ1 . . . λk

1
...

...

λn . . . λk
n


 , w = Λ1/2QT ǫ0, W = diag(wi), e =



1
...

1


 . (2.9)

Write the polynomial ρk in (2.6) as

ρk(λ) = 1 +

k∑

i=1

τiλ
i, tk = [τ1, . . . , τk]

T . (2.10)

Then provided CG has not converged to the exact solution A−1b before step k, the

matrix LT
kW

2Lk is non-singular and the vector of coefficients tk satisfies

tk = −(LT
kW

2Lk)
−1LT

kW
2e. (2.11)

Proof. If the matrix LT
kW

2Lk is singular there exists a nonzero vector v ∈ ℜk

such that WLkv = 0. This implies, for all indices i ∈ [1, k], either wi = 0 or

v1λi + v2λ
2
i + · · ·+ vkλ

k
i = 0.



LINEARIZING CG 5

Let j denote the smallest index such that vj 6= 0, and without loss of generality scale
v such that vj = 1. Then either wi = 0 or

1 + vj+1λi + · · ·+ vkλ
k−j
i = 0.

In other words, there is a polynomial ρ̃k−j of degree at most k−j such that ρ̃k−j(0) = 1
and ρ̃k−j(λi) = 0 for all i satisfying wi 6= 0. Note from the definition of w in (2.9)
that wi = 0 implies eTi Qǫ0 = 0. Thus, we have

ρ̃k−j(A)ǫ0 = Qρ̃k−j(Λ)Q
T ǫ0 = 0.

The above and (2.7) implies that ǫk−j = 0, i.e., xk−j = A−1b. Therefore, so long as
CG has not converged to the exact solution, the matrix LT

kW
2Lk cannot be singular.

Now from (2.7),

‖ρk(A)ǫ0‖A = min
ρ∈Πk

ρ(0)=1

‖ρ(Λ)w‖22 = min
ρ∈Πk

ρ(0)=1

‖Wρ(Λ)e‖22 = min
t

‖W (e+ Lkt)‖22.

In other words, the vector of coefficients tk in (2.10) is the solution of a weighted
linear least-squares problem:

tk = argmin
t

‖W (e+ Lkt)‖22 = −(LT
kW

2Lk)
−1LT

kW
2e.

Lemma 2.1 gives a convenient expression for the coefficients of the polynomial ρk
in (2.6) in terms of the eigenvalues and eigenvectors of A and the initial error ǫ0. We
use this expression to obtain our main result in the next section.

3. The Jacobian of xk. Let xk denote the k–th iterate of CG. The following
theorem gives an expression for Jk, the Jacobian of xk with respect to the right-hand
side vector b, in terms of the matrices Vk and Tk and the polynomial ρk defined in
Section 2. Throughout we assume that CG has not converged to the exact solution
A−1b at step k, otherwise trivially Jk = A−1.

Theorem 3.1. Let xk be the k–th iterate of CG applied to Ax = b starting

from x0. In the notation of Section 2,

Jk = A−1
[
I − ρk(A)

]
+ 2VkT

−1
k V T

k ρk(A). (3.1)

Proof. Because xk = A−1b− ǫk, we have ∂xk = A−1∂b− ∂ǫk, where

ǫk = ρk(A)ǫ0 =

(
I +

k∑

i=1

τiA
i

)
ǫ0,

∂ǫk =

(
k∑

i=1

∂τiA
i

)
ǫ0 + ρk(A)∂ǫ0 = Kk∂tk + ρk(A)A

−1∂b,

and Kk is defined in (2.4). Thus

∂xk = A−1
[
I − ρk(A)

]
∂b−Kk∂tk. (3.2)

We now obtain an expression for the differential ∂tk. Recall from Lemma 2.1 that

tk = −(LT
kW

2Lk)
−1LT

kW
2e, (3.3)
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where only W in the right-hand side depends on b. Therefore, the differential of tk is

∂tk = (LT
kW

2Lk)
−1LT

k 2W (∂W )Lk(L
T
kW

2Lk)
−1LT

kW
2e− (LT

kW
2Lk)

−1LT
k 2W (∂W )e

= −2(LT
kW

2Lk)
−1LT

kW (∂W )(Lktk + e)

= −2(LT
kW

2Lk)
−1LT

kWdiag([Lktk + e]i)∂w

= −2(WLk)
†ρk(Λ)Λ

−1/2QT∂b,

where we have used the facts that ∂(M−1) = −M−1(∂M)M−1 for any nonsingular
matrix M and

∂w = Λ1/2QT∂ǫ0 = Λ−1/2QT∂b,

which follows from the definition (2.9). Now because

Kk =
[
Aǫ0, . . . , A

kǫ0
]
= QΛ−1/2

[
Λw,Λ2w, . . .Λkw

]
= QΛ−1/2WLk (3.4)

we have

Kk∂tk = −2QΛ−1/2(WLk)(WLk)
†ρk(Λ)Λ

−1/2QT∂b. (3.5)

Using (3.4), Range(Vk) = Range(Kk), and V T
k AVk = Tk, we obtain

(WLk)(WLk)
† = Λ1/2QTKk(K

T
k AKk)

−1KT
k QΛ1/2 = Λ1/2QTVkT

−1
k V T

k QΛ1/2.

Equation (3.1) then follows by combining the above and (3.5) into (3.2).

The formula for Jk given in Theorem (3.1) involves the CG polynomial ρk(A).
Using (2.6) and (2.2) we can easily obtain equivalent expressions involving the poly-
nomial ζk−1(A):

Jk = ζk−1(A) + 2VkT
−1
k V T

k ρk(A) (3.6a)

= 2VkT
−1
k V T

k + (I − 2VkT
−1
k V T

k A)ζk−1(A) (3.6b)

= 2VkT
−1
k V T

k + (I − 2VkV
T
k − 2βk+1VkT

−1
k ekv

T
k+1)ζk−1(A). (3.6c)

Another interesting remark is that Jk is generally not symmetric, since the product of
the two symmetric matrices VkT

−1
k V T

k and ρk(A) in (3.1) is generally not symmetric.
If CG has converged to the exact solution at step k, i.e., if xk = A−1b, then

Jk = A−1. The following corollary gives an upper bound on the normwise relative
error between Jk and A−1.

Corollary 3.2. In the notation of Theorem 3.1,

‖Jk −A−1‖2
‖A−1‖2

≤ 3‖ρk(A)‖2. (3.7)

Furthermore, if ‖ρk(A)‖2 < 1,

|rTk Jkrk|
1 + ‖ρk(A)‖2

≤ ‖ǫk‖2A ≤ |rTk Jkrk|
1− ‖ρk(A)‖2

. (3.8)

Proof. From (3.1) we have

Jk −A−1 =
(
−A−1 + 2VkT

−1
k V T

k

)
ρk(A).
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The relationship (3.7) follows by takings norms and using the fact that ‖VkT
−1
k V T

k ‖2 =
‖T−1

k ‖2 ≤ ‖A−1‖2. Recall from Section 2 that rTk Vk = 0. Therefore,

‖ǫk‖2A = rTk A
−1rk = rTk

(
Jk +A−1ρk(A)

)
rk = rTk Jkrk + rTk A

−1/2ρk(A)A
−1/2rk,

from which the inequalities in (3.8) follow.

We can interpret Corollary 3.2 as follows. If ‖ρk(A)‖2 ≪ 1 then the Jacobian Jk
is close to A−1 and the energy norm of the error is close to (rTk Jkrk)

1/2. From the
characterization of ρk in (2.7),

‖ρk(A)‖2 ≥ ‖ρk(A)ǫ0‖
‖ǫ0‖

=
‖ǫk‖
‖ǫ0‖

,

where ‖·‖ can denote either the A-norm, the 2-norm, or the A2-norm, i.e., the residual
2-norm. If ǫ0 has a significant component along the eigenvector of A corresponding to
the largest in magnitude eigenvalue of ρk(A), the above lower bound is a reasonable
approximation. If this is the case, and if ‖ǫk‖/‖ǫ0‖ ≪ 1, then ‖ρk(A)‖2 ≪ 1. However,
it is certainly possible to construct examples in which ‖ρk(A)‖2 ≫ 1. One such
example is given in Section 5.

We can also use Theorem 3.1 to obtain bounds on ‖Jk‖2, the spectral norm
condition number of xk with respect to perturbations in b.

Corollary 3.3. In the notation of Theorem 3.1, with the polynomial ζk−1

defined in (2.5),

‖T−1
k e1‖2 ≤ ‖Jk‖2 ≤ 2‖T−1

k ‖2 +
(
1 + 2‖A‖2‖T−1

k ‖2
)
‖ζk−1(A)‖2. (3.9)

Proof. For the lower bound, from (3.6a) we have

‖Jk‖2 ≥ ‖Jkr0‖2
‖r0‖2

=

∥∥ζk−1(A)r0 + 2VkT
−1
k V T

k ρk(A)r0
∥∥
2

‖r0‖2
.

Recall that V T
k ρk(A)r0 = V T

k rk = 0. Furthermore, using (2.5), (2.3), and the fact
that β1 = ‖r0‖2 we have

‖ζk−1(A)‖2 ≥ ‖ζk−1(A)r0‖2
‖r0‖2

= ‖T−1
k e1‖2. (3.10)

The upper bound is an immediate consequence of (3.6b).

If r0 has a significant component along the eigenvector of A corresponding to
the largest eigenvalue of ζk−1(A), then the lower bound in (3.10) is a reasonable
approximation and ‖ζk−1(A)‖2 ≈ ‖T−1

k e1‖2. If this is the case, (3.9) shows that both
the lower bound and upper bound on the spectral norm of the Jacobian depend only on
terms involving T−1

k (as opposed to A−1). In such cases, the spectral norm condition
number of xk is essentially determined by the reciprocal of the smallest Ritz value.
Of course, this reasoning does not hold in the worst case, and it may happen that
‖Jk‖2 ≫ ‖T−1

k ‖2. Nevertheless, in typical problems, the 2-norm condition number of
CG iterates is often determined by the smallest Ritz value. Numerical examples are
given in Section 5.
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4. Computing Matrix-Vector Products. In most practical applications, due
to memory limitations it is not possible to explicitly compute and store the entire
matrix Jk ∈ ℜn×n. In this section we show how matrix-vector products (matvecs)
Jkv and JT

k v can be computed or estimated. This can be used to estimate the spectral
norm and Frobenius norm condition numbers of xk, as follows: for any v of unit length
we have a lower bound ‖Jk‖2 ≥ ‖Jkv‖2, while if v ∼ (0, I) then ‖Jkv‖22 is an unbiased
estimator of ‖Jk‖2F .

4.1. Formulas involving polynomials. We can use the expressions in (3.6)
to compute the matvecs Jkv and/or JT

k v. There are several mathematically (but
not numerically) equivalent methods of doing this. The computation of a degree-k
polynomial in A times a vector using Horner’s method involves k − 1 matvecs with
A. This is essentially as expensive as performing k − 1 extra iterations of CG. Other
algorithms for computing ρk(A)v involve as few as

√
k matvecs with A, but require

at least n2 storage; see, e.g., [13, §5]. This is much likely too expensive to be practical
in large sparse applications. Even if we are willing to perform k extra matvecs with
A, the accurate computation of ρk(A)v and/or ζk−1(A)v in floating point arithmetic
is very challenging, particularly for larger values of k. (See below.)

Nevertheless, the formulas in (3.6) can be used as a starting point to obtain
cheap estimates of Jkv and JT

k v. In the following estimates the matrices Vk and Tk

are explicitly used. Therefore, these estimates really apply to the Lanczos algorithm
for solving symmetric positive definite Ax = b (which is mathematically equivalent to
CG but in which one explicitly computes and stores Vk and Tk).

A natural idea is to estimate Jk by replacing A with an estimate of A in (3.6).
Using A ≈ VkTkV

T
k we obtain

Jk = ζk−1(A) + 2VkT
−1
k V T

k ρk(A)

≈ ζk−1(VkTkV
T
k ) + 2VkT

−1
k V T

k ρk(VkTkV
T
k )

= Vkζk−1(Tk)V
T
k + 2VkT

−1
k ρk(Tk)V

T
k

= VkT
−1
k

[
I − ρk(Tk)

]
V T
k + 2VkT

−1
k ρk(Tk)V

T
k = VkT

−1
k V T

k .

The last equality follows from the fact that ρk(Tk) = 0, since the eigenvalues of Tk

are the zeros of ρk. If A ≈ VkTkV
T
k is a good approximation then hopefully so is

Jk ≈ VkT
−1
k V T

k , but this depends on the sensitivity of the polynomials ζk−1(A) and
ρk(A) to perturbations in A. See for example [15, §6.1] for one such perturbation
result. Also note that if v ⊥ Range(Vk), clearly VkT

−1
k V T

k v = 0 may be very far from
Jkv.

Another simple idea is to replace ρk(A) and/or ζk−1(A) in (3.6) with lower-degree
polynomials. For example, from (3.6c) we can approximate

Jkv ≈ fk,d∗ = 2VkT
−1
k V T

k v + (I − 2VkV
T
k − 2βk+1VkT

−1
k ekv

T
k+1)ζd−1(A)v, (4.1)

where d = min{k, d∗} for some small index d∗. At step k = d∗, we compute the
vector ζd∗−1(A)v, store it, and reuse it for the following iterations. Computing the
resulting approximation to Jkv for all k > d∗ no longer requires any matvecs with A.
Unfortunately, we have not found a way to exploit this idea to compute JT

k v, since in
this case the vector

(I − 2VkV
T
k − 2βk+1vk+1e

T
k T

−1
k V T

k )v

to be multiplied by ζd−1(A) changes at every iteration.
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It is known that the polynomial ζk−1 follows a three-term recurrence relation
(see [19, Lemma 2.2.5]). For completeness we state it here in our notation. Recall
that the scalars αk and βk are the entries of Tk in (2.1). Denote

ηk =
αk

βk+1

‖rk‖2
‖rk−1‖2

.

Then

ζ0(λ) = α−1
1 ,

ζ1(λ) = η2(α
−1
1 + α−1

2 − α−1
1 α−1

2 λ),

ζk−1(λ) = α−1
k ηk + ηk(1− α−1

k λ)ζk−2(λ) + (1− ηk)ζk−3(λ), k = 3, 4, . . . .

One can also derive an equivalent relation that uses the CG coefficients µk and νk (in
Algorithm 1 below) instead of the Lanczos coefficients αk and βk (see [19, §2.6]) but
because (3.6c) and (4.1) require Vk and Tk from the Lanczos algorithm we consider
the recurrence as stated above. This immediately gives a three-term recurrence for
computing the vectors ζk−1(A)v. Each step in the recurrence requires one matvec
with A. This can be done on the fly.

It is also possible to compute ζk−1(A)v from its coefficients in the monomial basis.
We first compute the Ritz values, which are the roots of ρk. We can then interpolate

at the points
{
(0, 1), (µ

(1)
k , 0), . . . , (µ

(k)
k , 0)

}
to obtain the coefficients of ρk. From this

and (2.6) we immediately obtain the coefficients of ζk−1, from which we can compute
ζk−1(A)v using Horner’s method.

4.2. Automatic differentiation. For a given vector v, the matvecs Jkv and
JT
k v can also be computed directly using automatic differentiation techniques. (See for

example [22, §7.2] for an introduction to automatic differentiation.) In the following
we outline how to do this.

Algorithm 1 The standard CG iterations

1: Given A, b, and x0

2: r0 = b−Ax0

3: p0 = r0
4: k = 1
5: while stopping criterion not satisfied do

6: µk = rTk−1rk−1 / p
T
k−1Apk−1

7: xk = xk−1 + µkpk−1

8: rk = rk−1 − µkApk−1

9: νk = rTk rk / r
T
k−1rk−1

10: pk = rk + νkpk−1

11: k = k + 1
12: end while

13: end

Algorithm 1 defines the standard CG iterations, presented essentially as in [19].
We can recast one full iteration of CG in terms of the action of operators. First we
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replace the scalars µk and νk by their corresponding expressions

µk =
rTk−1rk−1

pTk−1Apk−1
,

νk =
rTk rk

rTk−1rk−1
=

(rk−1 + µk−1Apk−1)
T (rk−1 + µk−1Apk−1)

rTk−1rk−1

= 1 + 2
pTk−1Ark−1

pTk−1Apk−1
+

rTk−1rk−1)(p
T
k−1AApk−1)

(pTk−1Apk−1)2
.

Define the vector zk = [xT
k , r

T
k , p

T
k ]

T ∈ ℜ3n. For the initial step (lines 2–4) we have

z0 = F0(b) =




x0

b−Ax0

b−Ax0


 ,

∂z0
∂b

=



0
In
In


 .

At step k of CG (lines 6–8) we have

zk = F (zk−1) =




x+ rT r
pTAp

p

r + rT r
pTAp

Ap

−r − rT r
pTAp

Ap+
(
1 + 2 pTAr

pTAp
+ (rT r)(pTAAp)

(pTAp)2

)
p




k−1

.

Differentiating the above, we obtain

∂zk
∂zk−1

=




In
2
θpr

T µIn − 2µ
θ pq

T

0n In + 2
θ qr

T µA− 2µ
θ qq

T

0n −In − 2
θ qr

T + 2
θpq

T + 2τ
θ2 pr

T G




k−1

.

with q = Ap, µ = rT r
pT q

, θ = pT q, τ = qT q, and

G = −µA+
2µ

θ
qqT +

(
1 +

2qT r

θ
+

µτ

θ

)
In

+
2

θ
prTA− 4qT r

θ2
pqT +

2µ

θ
pqTA− 4µτ

θ2
pqT .

Applying the chain rule to successive iterations we have

Jk =
∂xk

∂b
= [In, 0, 0]

∂zk
∂b

= [In, 0, 0]

(
∂zk

∂zk−1

)
. . .

(
∂z1
∂z0

)(
∂z0
∂b

)
. (4.2)

For any vector v, one can compute

Jkv = [In, 0, 0]

(
∂zk

∂zk−1

)
. . .

(
∂z1
∂z0

)(
∂z0
∂b

)
v (4.3)

on the fly by updating v =
(

∂zk
∂zk−1

)
v at step k of CG. The main cost of this operation

is one matvec with A for each update step. This is known as the “forward” or “direct”
mode in automatic differentiation.

Computing

JT
k v =

(
∂z0
∂b

)T (
∂z1
∂z0

)T

. . .

(
∂zk

∂zk−1

)T

[In, 0, 0]
T
v,
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cannot be done on the fly, since

(
∂zi

∂zi−1

)T

. . .

(
∂zk

∂zk−1

)T

[In, 0, 0]
T
v,

is not know at step i of CG. One has to store (or recompute) all the quantities involved
at every step in CG and loop through the algorithm in reverse order a posteriori. This
is known as the “reverse” or “adjoint” mode.

In our experience, if one is willing to perform k extra matvecs with A, the most
accurate method of computing matvecs with Jk is using automatic differentiation.
Numerical examples are given in the next section.

5. Numerical Experiments. We provide some numerical experiments to illus-
trate the theory developed in the previous section.

5.1. Convergence of ‖Jk‖2. First we illustrate the bounds on ‖Jk‖2 from Sec-
tion 3 by showing how the convergence of ‖Jk‖2 is related to that of ‖T−1

k ‖2.
Example 5.1(a) is meant to illustrate worst-case, but highly unlikely, behaviour of

‖Jk‖2. In this example A is a diagonal 128× 128 matrix with 64 eigenvalues equally
spaced in [10−3, 10−2] and 64 eigenvalues equally spaced in [102, 103]. The right-hand

side vector is b =
[
1, . . . 1, 0, . . . , 0

]T
and the iteration is started with x0 = 0. Because

r0 is orthogonal to all eigenvectors corresponding to the eigenvalues in [102, 103], the
Lanczos algorithm fails to compute any Ritz value in this interval. Consequently, for
all k,

‖ρk(Λ)‖2 ≥ |ρk(λn)| =
k∏

j=1

∣∣∣∣1−
λn

µj

∣∣∣∣ ≥
k∏

j=1

(
103

10−2
− 1

)
≈ 105k,

‖ζk−1(Λ)‖2 ≥ |ζk−1(λn)| =
1

λn
|1− ρk(λn)| ≈ 105k−3.

(5.1)

In other words, the condition number of xk grows very quickly as k increases, and
the iterates are soon highly sensitive to perturbations in b. This is illustrated in
Figures 5.1 and 5.2.

10
−2

10
0

10
2

10
−10

10
0

10
10

10
20

10
30

Iteration k = 5

0 5 10 15 20 25 30 35
10

−4

10
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10
0

10
2

10
4

Iteration k

Fig. 5.1. Left: Polynomials ζ4(λ) (light) and ρ5(λ) (dark) plotted vs λ and in particular
evaluated at the eigenvalues of A (stars). The vertical lines show the zeros of ρ5, i.e., the Ritz

values µ
(j)
5 , j = 1, . . . , 5. The horizontal lines denote ‖ζ4(Λ)‖2 and ‖ρ5(Λ)‖2. Right: Convergence

of the Ritz values as k increases. The eigenvalues of A are shown at the right. No Ritz value
converges to an eigenvalue in [102, 103].
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Fig. 5.2. Convergence of ‖Jk‖2 vs k in CG for example 5.1(a). As predicted by (5.1), ‖Jk‖2
increases with a slope close to 5 on the semilog plot. The plotted tolerance is tolk = ǫ(‖A‖2‖xk‖2 +
‖b‖2), where ǫ is the machine unit roundoff.

In the previous example the Ritz values corresponding to large eigenvalues failed
to converge entirely. It is well established that this is highly atypical behaviour in
CG. The next examples illustrate more typical behaviour. In each case the matrix A
is formed via its spectral decomposition. The matrix of eigenvectors is the Q factor
in the QR decomposition of a random matrix, b = e, and x0 = 0. In example 5.1(b)
the eigenvalues of A are logarithmically equally spaced between 10−4 and 1, while in
example 5.1(c) there are n− 1 eigenvalues of A linearly equally spaced between 1 and
10 with one extra eigenvalue 10−7.

In these small examples we explicitly compute and store Jk using the automatic
differentiation techniques described in Section 4. For the sake of comparison we
implement CG with and without reorthogonalization (of the residual vectors). When
we reorthogonalize in CG we also differentiate the reorthogonalization steps of the
algorithm. To compute ‖T−1

k ‖2 we separately run the Lanczos algorithm. When we
reorthogonalize in CG we also reorthogonalize in Lanczos, so that Tk is actually upper
Hessenberg.

As shown in Figure 5.3, in these examples with and without reorthogonalization
the spectral norm condition number essentially converges at the same rate as ‖T−1

k ‖2,
which can be much smaller than ‖A−1‖2 in the early iterations. When no reorthog-
onalization is used, the spectral norm of the Jacobian (as computed using automatic
differentiation techniques) sometimes oscillates in the later iterations. We believe that
this is a numerical artefact from the computation of Jk. The convergence of ‖Jk‖2 is
typically smoother when reorthogonalization is used.

5.2. Computation of Matrix-Vector Products. We implement (3.6c) to
compute ‖Jkv‖2 for a random vector v ∼ N (0, I). We compute ζk−1(A)v both via
the three-term recurrence and via interpolation of ρk at its roots, as described in
Section 4. We also implement the related estimate ‖fk,d∗‖2 in (4.1) with d∗ = 5 and
d∗ = 10. Results are plotted in Figure 5.4.

Neither approach for computing ζk−1(A)v is reliable for large values of k. The
accuracy of this computation seems to be problem-dependent. Formula (3.6c) gave
very accurate results for test problem 5.1(c), However, for problem 5.1(b), there were
severe oscillations in the computed ‖Jkv‖2, especially when no reorthogonalization
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Fig. 5.3. Convergence of ‖Jk‖2 vs k in CG for examples 5.1(b) and 5.1(c). Top: example
5.1(b). Bottom: example 5.1(c). Left: with reorthogonalization. Right: without reorthogonalization.
The plotted tolerance is tolk = ǫ(‖A‖2‖xk‖2 + ‖b‖2), where ǫ is the machine unit roundoff.

was used. Even with reorthogonalization, in problem 5.1(b) the quantity ‖Jkv‖2 with
ζk−1(A)v computed using the three-term recurrence diverged.

In (4.1), however, the quantity ζd−1(A)v is computed only for small values of
d ≤ d∗. In these examples, each method for computing ζd−1(A)v gave similar results,
so we only plot the estimate with ζd−1(A)v computed using the three-term recurrence.
The estimate ‖fk,d∗‖2 in (4.1) is a reasonable approximation to ‖Jkv‖2, even for large
values of k > d∗. It tends to under-estimate ‖Jkv‖2 in the early iterations (but less
so than ‖VkT

−1
k V T

k v‖2) and slightly over-estimate ‖Jkv‖2 in the later iterations.

6. Discussion. We have performed a first order perturbation analysis for CG
iterates. Our results quantify how sensitive the iterates are to perturbations in the
right-hand side vector, which is of interest in many applications. In Theorem 3.1 we
obtained an expression for the Jacobian of xk in CG in terms of the matrices Vk and
Tk from the Lanczos algorithm and the polynomials ρk in (2.6). We used this result
to bound the spectral norm condition number of xk. We showed that the condition
number in the spectral norm typically converges as ‖T−1

k ‖2, the reciprocal of the
smallest Ritz value, and this quantity can be much smaller in the early iterations than
‖A−1‖2. This quantifies the regularization property of CG that has been observed in
practise.

We have also discussed methods to compute or estimate the matvecs Jkv and
JT
k v. In our experience, automatic differentiation seems to be the most reliable way

to compute Jkv and JT
k v, at the cost of k extra matvecs with A (as well as extra

storage if JT
k v is required). So far we have not found a way to compute Jkv or JT

k v
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Fig. 5.4. Convergence of ‖Jkv‖2 and its estimates vs k for examples 5.1(b) and 5.1(c). Top:
example 5.1(b). Bottom: example 5.1(c). Left: with reorthogonalization. Right: without reorthogo-
nalization. In the legend, AD stands for automatic differentiation, 3TR for three-term recurrence,
and INT for interpolation.

very accurately without performing k extra matvecs with A. We have shown that a
cheap and easy way to estimate Jk is Jk ≈ VkT

−1
k V T

k . We have also proposed schemes
that can improve the accuracy of this estimate using fewer than k matvecs with A.
Whether or not this can be improved upon is an open question.

In deriving Theorem 3.1 we have analyzed the Lanczos and CG algorithms as-
suming exact arithmetic. In finite precision the relationship (2.2) holds to machine
precision; however, the columns of Vk can quickly lose their orthogonality and even
their linear independence. Paige [23, 24] has recently showed that there exists a ma-
trix Hk with ‖Hk‖2 ≤ ǫ‖A‖2, ǫ the unit roundoff, such that the matrix Tk obtained
in finite precision satisfies

([
A

Tk

]
+Hk

)
Qk = QkTk + βk+1qk+1e

T
k ,

where the columns of Qk are exactly orthogonal and q1 = [vT1 , 0]
T . In other words,

the computed Tk is the tridiagonal matrix produced by the exact Lanczos process
applied to a small perturbation of an augmented matrix diag(A, Tk) started with the
augmented vector [vT1 , 0]

T . Paige called the above the augmented backward stability
of the Lanczos algorithm. In the future we intend to use this result to analyze the
true sensitivity of the Lanczos and CG algorithms implemented in floating point
arithmetic. (By this we do not mean the difference between xk and x̃k, the iterates
computed in exact and floating point arithmetic, respectively, but rather between
x̃k(b) and x̃k(b+ δb).)
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We are working on extending the ideas presented in this manuscript to minimum-
residual and other polynomial-based iterative methods. For CG and other methods

we can also consider other derivatives such as ∂xk

∂x0

, ∂‖rk‖2

∂r0
, etc. It may also be possi-

ble to find sparse approximations of these derivatives. Another interesting and very
challenging problem which we have not considered here is the computation of the
derivative of xk with respect to elements of A.
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