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] Department of Physics, 104 Davey Laboratory,

The Pennsylvania State University, University Park, PA 16802, USA

We study the rectification properties of geometrically asymmetric metal-vacuum-

metal junctions in which a combination of static and oscillating biases is established

between a cathode that is extended by a hemispherical protrusion and a flat an-

ode. The static current-voltage characteristics of this device are established using a

transfer-matrix methodology. The rectification properties of the device are however

analyzed in the framework of a classical model that is based on the Taylor-expansion

of static current-voltage data. This enables the impedance and the classical respon-

sivity of the device to be established. We then investigate how the impedance and

the classical responsivity of this junction are affected by the work function of the

materials, the gap spacing between the cathode and the anode, and the aspect ratio

of the protrusion. We also consider the efficiency with which the energy of incident

radiations can be converted using this device. We finally compare the responsiv-

ity obtained using this classical approach with the quantum responsivity one can

define from the currents actually achieved in an oscillating barrier. This work pro-

vides additional insight for the development of a device that could be used for the

energy-conversion of infrared and optical radiations.

∗ Corresponding author ; Electronic address: alexandre.mayer@fundp.ac.be
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I. INTRODUCTION

Rectification and frequency-mixing of infrared radiations typically involve point-contact

diodes that consist of metal-oxide-metal systems in which one of the metals is essentially flat

while the other is extended by a sharp tip.1–6 This rectification is essentially due to the geo-

metrical asymmetry of these systems, although material and thermal asymmetry as well as

the application of a static external bias can also contribute to this rectification.7–11 Besides

rectification and frequency-mixing, these systems were also used for the accurate measure-

ment of infrared frequencies12–14 and for applications as fundamental as the measurement of

the speed of light15,16 and the determination of tunneling times.7,17,18 Current efforts aim at

reducing their characteristic response times and at improving their responsivity.

The need for high-speed electronics and the challenge posed by the harvesting of solar

energy renew the interest in these devices.19,20 Rectification using these devices is indeed

possible as long as electrons are able to cross the junction before the external field changes

sign. Tunneling times are of the order of femtoseconds18,21 so that the rectification of op-

tical frequencies can in principle be achieved (the RC response time of the device must be

sufficiently low to achieve an efficient biasing of the junction). Nanostructures are hence

developed to collect the energy of electromagnetic radiations (with frequencies ranging from

the near-infrared up to the visible),22–24 while metal-insulator-metal or metal-vacuum-metal

junctions are used for the rectification of these radiations.25–30 Given the static current-

voltage Istat(Vstat) characteristics of these junctions, their ability to rectify oscillating signals

is usually analyzed in terms of their classical responsivity (d2Istat/dV 2
stat)/(dIstat/dVstat). In

conditions where quasi-static approximations apply, the rectified voltage as well as the quan-

tum efficiency of the rectification are indeed proportional to this responsivity.31,32 A record

responsivity of 31 V−1 was reported by Choi et al.30

In previous work, we developed a transfer-matrix methodology for the modeling of metal-

vacuum-metal junctions that are subject to an oscillating potential.10,11,33,34 This quantum-

mechanical scheme accounts for three-dimensional aspects of the problem as well as for the

time-dependence of the barrier. In our first paper,10 we analyzed the rectification properties

of these junctions in the quasi-static approximation in which the angular frequency Ω of the

external potential goes to zero (Ω → 0). Ref.11 is a generalization of this work that accounts

for the time-dependence of the external potential explicitly (Ω 6= 0). Electronic scattering
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in the junction is described within this formalism by the absorption or emission of energy

quanta h̄Ω. In Ref.33, we extended this formalism to enable the consideration of different

models for the dielectric function of the materials present in the junction (this extension was

required in order to study the effects of polarization resonances). These articles were relevant

to the rectification of monochromatic radiations (given values of Ω). In Ref.34, we finally

extended this framework by studying the rectification of a full electromagnetic spectrum

(field amplitudes representative of a focused beam of solar radiation). The results achieved

using this methodology can be analyzed in terms of a classical theory that is based on the

Taylor-expansion of the static Istat(Vstat) characteristics. This enables the derivation of a

”classical responsivity”, which is the quantity addressed by other experimental/theoretical

works for the characterization of similar devices.25–28,30 This presentation of our results is

therefore well suited for comparison. The impedance and the classical responsivity of the

junction actually represent the quantities of interest for practical applications and we will

seek at optimizing these quantities.

The paper is organized according to the following lines. In Sec. II, we present the transfer-

matrix methodology that is used for the quantum-mechanical derivation of current-voltage

data. In Sec. III, we present the classical analysis technique that enables the derivation of

quantities such as the classical responsivity for characterizing the response of the junction to

an oscillating potential. In Sec. IV, we then present the impedance and classical responsivity

of a nanometer-size tungsten junction. We will study how these quantities are affected by (i)

a reduction of the work function, (ii) a modification of the gap spacing between the cathode

and the anode, and (iii) a modification of the aspect ratio of the protrusion. We will also

consider the efficiency with which the energy of an external radiation can be converted by

this device. In Sec. V, we will finally investigate how the responsivities achieved using this

classical approach compare with the effective responsivity one can define from the currents

actually obtained in an oscillating barrier when the time-dependent scattering problem is

solved exactly. This will provide useful insight for the development of a device that could

be used for the energy-conversion of infrared and optical radiations.
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II. MODELING OF THE DIODE CURRENTS USING A TRANSFER-MATRIX

METHODOLOGY

We assume that the junction consists of two perfect metals separated by a vacuum gap of

length D. These metals are described by a Fermi energy EF of 19.1 eV and a work function

W of 4.5 eV (values for tungsten). The cathode in the region z ≤ 0 and the anode in the

region z ≥ D are also referred to as Region I and Region III, respectively. The intermediate

gap region 0 ≤ z ≤ D is finally referred to as Region II. We consider that the cathode

supports a protrusion, which is part of Region II. We assume in this whole work a room

temperature T of 300 K.

We assume that the junction is subject to an external bias V (t) = Vstat + Vosc cos(Ωt)

that consists of a static component with amplitude Vstat and an oscillating component with

amplitude Vosc and angular frequency Ω. By using the finite-difference techniques presented

in Refs10,34,35, on can compute the potential energy V (r, t) = Vstat(r) + Vosc(r) cos(Ωt) in

the different parts of the system. Vstat(r) accounts for the potential wells −(EF + W )

associated with the metallic elements, for the image potentials in the vacuum,36 and for the

potentials induced by the static component of the external bias. Vosc(r) cos(Ωt) describes

the potentials induced by the oscillating component of the external bias (for materials whose

dielectric-function has a non-negligible imaginary component, one must use the more general

expression provided in Ref.34).

The currents that cross the junction are then obtained by solving the time-dependent

Schrödinger equation [− h̄2

2m
∆ + V (r, t)]Ψ(r, t) = ih̄ ∂

∂t
Ψ(r, t) with a Floquet expansion of

the wave function.37,38 The method consists in expanding the electronic wave function as

Ψ(r, t) =
∑N

k=−N Ψk(r)e
−i(E+kh̄Ω)t/h̄, where the different components of this expression ac-

count for the absorption/emission of energy quanta h̄Ω and N is a cut-off parameter.11 We

then expand the Ψk(r, t) in terms of basis states adapted to the use of cylindrical coor-

dinates. We refer by ΨI,±
m,j,k(r, t) and ΨIII,±

m,j,k(r, t) to the boundary states in Regions I and

III (m and j are enumeration parameters, the ± signs refer to the propagation direction

relative to the z-axis).10,11 By using the techniques developed in previous work,10,11,39–42 we

can then establish scattering solutions Ψ+
m,j

z≤0
= ΨI,+

m,j,0 +
∑

m′,j′,k′ S
−+
(m′,j′,k′),(m,j,0)Ψ

I,−
m′,j′,k′

z≥D
=

∑
m′,j′,k′ S

++
(m′,j′,k′),(m,j,0)Ψ

III,+
m′,j′,k′ and Ψ−

m,j
z≤0
=

∑
m′,j′,k′ S

−−
(m′,j′,k′),(m,j,0)Ψ

I,−
m′,j′,k′

z≥D
= ΨIII,−

m,j,0 +
∑

m′,j′,k′ S
+−
(m′,j′,k′),(m,j,0)Ψ

III,+
m′,j′,k′ that correspond to single incident states ΨI,+

m,j,0(r) in Region
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I and ΨIII,−
m,j,0(r) in Region III. The integration of these scattering solutions finally provides

the diode currents.11

III. CLASSICAL ANALYSIS OF STATIC CURRENT-VOLTAGE DATA

Let us assume that the currents Istat actually induced by a static external bias Vstat have

been established. The current I(t) induced by a potential V (t) = Vstat + Vosc cos(Ωt) may

be obtained from the Taylor-expansion of these static data,31,32 thus giving :

I(t) =
∞∑

n=0

1

n!

dnIstat

dV n
stat

[V (t)− Vstat]
n. (1)

This expression actually assumes that the diode currents follow instantaneously the external

potential (limit where Ω → 0). This assumption will not hold when the period T = 2π/Ω

of the external bias is comparable with the time taken by electrons to cross the junction,

which is the case for optical frequencies. A limitation for practical applications is also given

by the RC time-constant of the device, which will reduce the effective biasing of the junction

(very sharp tips are used in this context in order to reduce RC).7 An exact calculation of

the biasing V (t) one would obtain with a complete device exceeds the scope of this article

and we will merely assume that the components of V (t) are given.

Using V 2
osc cos2(Ωt) = V 2

osc

2
[1+cos(2Ωt)] and similar trigonometric relations for the higher-

order terms, one can actually express the diode current as I(t) =
∑∞

n=0 In cos(nΩt), with

I0 = Istat +
V 2
osc

4
d2Istat
dV 2

stat
+ V 4

osc

64
d4Istat
dV 4

stat
+ V 6

osc

2304
d6Istat
dV 6

stat
+ . . ., I1 = Vosc

dIstat
dVstat

+ V 3
osc

8
d3Istat
dV 3

stat
+ V 5

osc

192
d5Istat
dV 5

stat
+ . . .,

I2 = V 2
osc

4
d2Istat
dV 2

stat
+ V 4

osc

48
d4Istat
dV 4

stat
+ V 6

osc

1536
d6Istat
dV 6

stat
+ . . ., etc. The dc component of the diode current is

thus given by

< I >= Istat +
V 2

osc

4

d2Istat

dV 2
stat

(2)

if we keep only the lowest-order term in Vosc.

The energy gained, per unit of time, by the electrons that cross the junction is given by

< P >= Ω
2π

∫ 2π/Ω
0 V (t)I(t)dt = VstatIstat + VoscI1/2. This classical expression only holds in

the limit where the time taken by electrons to cross the junction is again significantly smaller

than the period 2π/Ω of the external potential.11 Keeping only the lowest-order term in Vosc,

we thus have

< P >= VstatIstat +
V 2

osc

2

dIstat

dVstat

. (3)
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The rectified bias Vrect corresponds to the static bias that would provide the same dc

current as Vosc cos(Ωt). One can determine Vrect by the relation Vrect
dIstat
dVstat

=< I > −Istat.

Using Eq. 2, we then obtain

Vrect =
V 2

osc

4

d2Istat/dV 2
stat

dIstat/dVstat

. (4)

The quantum efficiency of the rectification process is defined in this context by ηquant =

[(< I > −Istat)/(< P > −VstatIstat)]/[e/h̄Ω] in which the ratio between the dc current

induced by the oscillating potential (< I > −Istat) and the energy absorbed per unit of

time by the electrons that cross the junction because of this oscillating potential (< P >

−VstatIstat) is compared with the quantum limit of e/h̄Ω. Using Eqs 2 and 3, we obtain :

ηquant =
1

2

h̄Ω

e

d2Istat/dV 2
stat

dIstat/dVstat

. (5)

The impedance R = 1/(dIstat/dVstat) and the classical responsivity S =
d2Istat/dV 2

stat

dIstat/dVstat

thus represent the quantities of interest for characterizing the junction. Eq. 2

is actually the classical limit of the quantum-mechanical result < I >= Istat +

V 2
osc

4
Istat(Vstat+h̄Ω/e)−2Istat(Vstat)+Istat(Vstat−h̄Ω/e)

(h̄Ω/e)2
one obtains as special case of < I >=

∑∞
n=−∞ J2

n(α)Istat(Vstat + nh̄Ω/e) when α = Vosc

h̄Ω/e
→ 0.31,32 The Jn in this last expression

are the Bessel functions. Eq. 5 on the other hand only makes sense if ηquant < 1. The

relations established in this section therefore require that Vosc < h̄Ω
e

< 2
(

d2Istat/dV 2
stat

dIstat/dVstat

)−1
.

This analysis is hence useful for infrared frequencies. We will show in Sec. V that deviations

appear when considering frequencies in the visible domain.

IV. CHARACTERIZATION OF A TUNGSTEN METAL-VACUUM-METAL

JUNCTION

Experimental support for the rectification of optical radiations by geometrically asym-

metric metal-vacuum-metal junctions is provided by the work of Nguyen et al.18 In this

experiment a 1.06-µm Yttrium-Aluminium-Garnet (YAG) laser was focused upon a Scan-

ning Tunneling Microscope (STM) junction consisting of a W-sharp tip and a polished flat

Si(111) anode. The laser-induced dc current was measured as function of the tip-to-base

spacing (starting from a tip-to-base spacing of 1 nm and considering higher values until the

laser-induced current vanishes). The experiment revealed a cutoff distance of 2.5 nm. As-

suming that the electrons cross the junction at the Fermi velocity, the analysis reveals that
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the transit time for a 1-nm gap is around 10−15 s, which corresponds to a radiation wave-

length in the ultraviolet. The use of point-contact devices for the measurements of absolute

frequencies up to the green part of the visible spectrum provides another experimental sup-

port to the rectification of optical frequencies.43 Dagenais et al. experimentally verified that

a geometrically asymmetric tunneling diode can be used for the rectification of radiations

through the radio frequency region.27 Bragas et al. used a 670 nm laser to irradiate a STM

junction in order to determine the field enhancement as measured by optical rectification.

Analysis of their data indicated optical rectification due to junction geometry as well as

thermal asymmetry.45 Ward et al. demonstrated both experimentally and theoretically that

nonlinear tunneling conduction between gold electrodes separated by a subnanometer gap

leads to optical rectification, producing a dc photocurrent when the gap is irradiated by a

785 nm laser source.28 Although mechanical stability of earlier devices placed a limitation

on the actual contact area, modern fabrication techniques have overcome the mechanical

fragility of previous point-contact diodes and issues related to reproducible fabrication of

nanoscale devices. The technological difficulty of producing arrays of nanometer gap junc-

tions over areas of square-centimeters has recently been overcome by Gupta and Willis using

atomic layer deposition (ALD).44 Planar arrays of Cu-vacuum-Cu tunnel junctions were pro-

duced on silicon wafers using conventional lithography techniques, followed by ALD to yield

tunnel junctions of the order of 1 nm. These experiments reveal robustness against thermal

expansion of the materials28 and high vacuum does not appear to be a strict necessity.

We consider here an ideal metal-vacuum-metal junction made of tungsten. The system

considered for the application of our transfer-matrix technique is actually restricted to a

cylindrical region, whose radius R is 3 nm (this can be considered as the radius of two

cylindrical plates that represent the cathode and the anode in our simulations).10,11 The gap

spacing D between the cathode and the anode is 2 nm. We finally consider that the cathode

supports a hemispherical protrusion whose radius r is 1 nm (this protrusion is placed on the

central z-axis of the system). This junction is represented in Fig. 1.

Using the transfer-matrix technique presented in Sec. II, we can establish the static

current-voltage data of the diode. We hence considered a static potential Vstat ranging

between -1 V and +1 V and computed the corresponding diode currents Istat. We take the

convention that Vstat represents the electric potential of the anode minus the electric potential

of the cathode. For Vstat > 0, it is the cathode that emits electrons. The corresponding
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diode current Istat is defined for convenience as positive. For Vstat < 0, it is the anode that

emits electrons and Istat is negative by the same convention. The results achieved for the

Istat(Vstat) data are represented in Fig. 2.

Fig. 2 clearly shows that the Istat(Vstat) data is asymmetric with respect to the sign of

Vstat. This asymmetry in the currents is of course related to the geometrical asymmetry of

the junction. As explained in Sec. III, having an Istat(Vstat) characteristics with d2Istat
dV 2

stat
6= 0 is

essential for achieving the rectification of oscillating signals. Even without the geometrical

asymmetry, the condition d2Istat
dV 2

stat
6= 0 can in general be reached by the application of a

static bias Vstat. As shown later in this article, the external bias Vstat increases the classical

responsivity S. On the other hand, it requires the user to provide an input power VstatIstat.

For applications related to the energy conversion of incident radiations, this constitutes a

loss that can only be tolerated in conditions where the power gained from the source of the

oscillating barrier is larger (i.e., V 2
osc

2
dIstat
dVstat

> VstatIstat). Fig. 2 also includes the Istat(Vstat)

data achieved when the work function of both the cathode and the anode are reduced to 3

eV and 1.5 eV. A reduction of the work function can be achieved for example by coating the

materials with caesium.20,46 This reduction of the work function increases the asymmetry

of the Istat(Vstat) characteristics. It also increases the diode currents (maximal Istat value of

8.0 × 10−12 A for W=4.5 eV, 8.2 × 10−10 A for W=3 eV and 1.2 × 10−6 A for W=1.5 eV

when considering a bias Vstat of 1 V).

We can then use the static Istat(Vstat) data of Fig. 2 to compute the impedance R =

1/(dIstat/dVstat) and the classical responsivity S =
d2Istat/dV 2

stat

dIstat/dVstat
of the junction. This was

done by (i) adjusting the three sets of data in Fig. 2 by ninth-order polynomial expressions,

and (ii) calculating analytically the derivatives of these expressions. The results achieved for

the impedance and classical responsivity are represented in Fig. 3. The results correspond

to a work function W of 4.5 eV, 3 eV and 1.5 eV. The impedance R at zero bias is 2.0×1011

Ω for untreated tungsten (W=4.5 eV), 2.4× 109 Ω for W=3 eV, and 5.1× 106 Ω for W=1.5

eV. These impedances decrease for both signs of Vstat. The width of the tunneling barrier

decreases indeed as soon as a voltage Vstat (either positive or negative) is applied through

the junction. The decrease is however more significant for positive biases. Because of

the hemispherical protrusion, the cathode is indeed a better field-emitter than the anode.

Reducing the work function W finally reduces the impedance of the junction (this reduction

indeed increases the field-emission currents). The value of R = 2.0 × 1011 Ω for untreated
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tungsten is fully consistent with the value one can extract from the experimental data

published by Dagenais et al. for a similar device (see Fig. 5 of their article).27 In order to

couple efficiently the diode to a nanoantenna, this diode impedance should however be as

small as a few hundreds Ohms.47 Reducing the work function appears to be a possibility to

reach that objective. It will be shown that reducing the gap spacing D also reduces R.

The classical responsivity S =
d2Istat/dV 2

stat

dIstat/dVstat
of the diode varies smoothly between -1.0

V−1 and 1.5 V−1 for untreated tungsten (W=4.5 eV), between -1.5 V−1 and 2.1 V−1 for

W= 3 eV, and between -3.6 V−1 and 4.3 V−1 for W=1.5 eV. It appears therefore that

reducing the work function of the materials has the combined advantage of (i) reducing the

impedance R of the junction, and (ii) increasing the classical responsivity S. This may

be contrary to general expectation since the classical responsivity S is proportional to the

impedance R (S = Rd2Istat
dV 2

stat
, with R = 1/( dIstat

dVstat
)). The variations of S result in reality from

a trade-off between the variations of dIstat
dVstat

and those of d2Istat
dV 2

stat
. For the conditions of this

article (nanometer gap spacing D), both dIstat
dVstat

and d2Istat
dV 2

stat
present significant variations when

reducing the work function W and the net effect is an increase of the classical responsivity

S despite a reduction of the impedance R. The classical responsivity at zero bias is 0.32

V−1 for untreated tungsten (W=4.5 eV), 0.42 V−1 for W=3 eV, and 0.72 V−1 for W=1.5

eV. Having a dc bias Vstat applied to the junction increases this responsivity. These values

turn out to be of the same order as those obtained experimentally.26,27 Higher classical

responsivities can be achieved by increasing the gap spacing D. This however also increases

the impedance R of the junction, which makes the coupling to a nanoantenna less efficient.

To illustrate the effects of a modification of the gap spacing D, we represented in Fig. 4

the diode impedance R achieved when considering a gap spacing D of 1.5 nm and 2.5 nm.

The protrusion has the same radius r of 1 nm, so that the distance between the apex of the

protrusion and the anode is 0.5 nm in the first case and 1.5 nm in the second. The classical

responsivities achieved in these two situations are represented in Fig. 5. Reducing the gap

spacing D from 2 nm to 1.5 nm decreases the impedance R of the junction to a value at zero

bias of 3.3× 104 Ω for W=1.5 eV. It however reduces the classical responsivities (maximal

value of 1.5 V−1 for W=1.5 eV with Vstat=1 V). Increasing the gap spacing from 2 nm to

2.5 nm enhances the classical responsivities (maximal value of 6.6 V−1 achieved for W=1.5

eV). It however increases the diode impedance R (value at zero bias of 1.4 × 109 V−1 for

W=1.5 eV).
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The rectified bias Vrect and the quantum efficiency ηquant = [(< I > −Istat)/(< P >

−VstatIstat)]/[e/h̄Ω] of the rectification process are both proportional to the classical respon-

sivity S. This responsivity appears in our results to increase with the gap spacing D. For

applications related to the energy-conversion of incident radiations, the gap spacing D is in

reality adjusted based on the matching condition between the coupled antenna and the tun-

neling junction and it is the energy converted per unit of time by the device that represents

the quantity of interest. We established that < P >= VstatIstat +
V 2
osc

2
dIstat
dVstat

, with VstatIstat the

power dissipated because of the application of Vstat and V 2
osc

2
dIstat
dVstat

= V 2
osc

2R
the energy gained

per unit of time from the source of the oscillating barrier. This last quantity is inversely

proportional to the impedance R. Although the conversion process is less efficient for smaller

gap spacings D, the impedance R will be smaller and the total energy converted from the

source of the oscillating barrier will actually be more significant.

Considering that the dc power VstatIstat is provided by the user and that V 2
osc

2R
is the power

gained from the external radiation that provides Vosc, one can define a conversion efficiency

η = (V 2
osc

2R
)/[VstatIstat + V 2

osc

2R
] that is given by the ratio between the power V 2

osc

2R
gained from the

source of the oscillating barrier and the total energy that circulates through the junction

per unit of time (energy provided by the user plus energy gained from the source of the

oscillating barrier). The results achieved for the three values of the gap spacing D (1.5

nm, 2 nm and 2.5 nm) and the three values of the work function W (1.5 eV, 3 eV and 4.5

eV), when considering an oscillating bias Vosc of 0.1 V, are represented in Fig. 6. These

results are surprisingly similar. They indicate a value of η=100% when Vstat=0 V (there

is in this case no input power from the user). The different curves turn out to decrease

at the same rate. This can be understood by the fact that Istat ' Vstat/R(0), where R(0)

refers the the impedance at zero bias. At small bias Vstat and considering the fact that R is

maximum for Vstat = 0 (vanishing first derivative), we actually have R(Vstat) ' R(0). The

conversion efficiency therefore turns out to be well approximated by η ' V 2
osc

2
/[V 2

stat + V 2
osc

2
],

which is independent of any specific parameter but the amplitudes Vstat and Vosc of the

voltage applied through the junction. We see that a conversion efficiency of η=50% is then

achieved for Vstat = Vosc/
√

2, which determines the width of curves represented in Fig. 6.

For energy-conversion applications in which the power VstatIstat is provided by the user, this

would represent the maximal bias Vstat to consider since the power gained from the radiation

would be less than the energy supplied by the user if higher biases Vstat were considered.
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We finally checked the influence of the aspect ratio of the protrusion on the impedance

and classical responsivity of the junction. We thus increased the height of the protrusion

from 1 nm to respectively 2 and 3 nm. We also increased the gap spacing D from 2 nm to

respectively 3 and 4 nm in order to keep the distance between the apex of the protrusion

and the anode to a value of 1 nm as in Fig. 1. We finally assumed that these protrusions

have the same hemispherical termination as in Fig. 1 (radius of curvature r of 1 nm). These

structures are represented in Fig. 7. It turns out that the impedance R and the classical

responsivity S we obtain with these extended structures are essentially the same as those

achieved when considering the structure in Fig. 1. This is illustrated in Fig. 8 where we

represented the impedance R and the classical responsivity S achieved when considering a

protrusion with a height of 1, 2 and 3 nm (with the same distance of 1 nm between the apex

of these protrusions and the anode) and a work function W of 1.5 eV. This is essentially due

to the fact the last 2 nm of Region II are identical in the three cases. It shows that for the

fundamental study of these metal-vacuum-metal junctions, it is appropriate to restrict these

systems to the nanometer-size region in which the electronic tunneling processes actually

take place. These simulations show that the work function of the materials and the distance

between the apex of the protrusion and the anode are the important parameters to consider

when studying these junctions.

V. DISCUSSION

The analysis presented in Sec. IV was based on the Taylor-expansion of static Istat(Vstat)

data and it was assumed that quantities of interest like < I > or < P > are represented

with a sufficient degree of accuracy by an expansion limited to V 2
osc. It is interesting to

consider at this point the results one would obtain by considering higher-order expansions

of these quantities. It is also interesting to compare the results of this analysis with those

one can obtain when the diode currents actually achieved with an oscillating barrier V =

Vstat + Vosc cos(Ωt) are computed exactly using the transfer-matrix technique.

The discussion will essentially focus on the classical responsivity. The classical respon-

sivity S was introduced as a mean of calculating the rectified bias Vrect. This quantity was

defined from Vrect
dIstat
dVstat

=< I > −Istat and we established that Vrect = <I>−Istat
dIstat/dVstat

= V 2
osc

4
S,

with S =
d2Istat/dV 2

stat

dIstat/dVstat
the classical responsivity. One can define an effective responsivity Seff
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from the relation

Seff =
(< I > −Istat)/(V

2
osc/4)

dIstat/dVstat

(6)

and compare the values achieved when using different approximations for the mean diode

current < I >. This effective responsivity still provides the rectified bias through Vrect =

V 2
osc

4
Seff . It will however incorporate any correction factor that may improve the classical

analysis presented in Sec. III.

We can thus compute the effective responsivity Seff that corresponds to a mean diode

current < I > given respectively by (i) < I >= Istat+
V 2
osc

4
d2Istat
dV 2

stat
, (ii) < I >= Istat+

V 2
osc

4
d2Istat
dV 2

stat
+

V 4
osc

64
d4Istat
dV 4

stat
, (iii) < I >= Istat + V 2

osc

4
d2Istat
dV 2

stat
+ V 4

osc

64
d4Istat
dV 4

stat
+ V 6

osc

2304
d6Istat
dV 6

stat
, and (iv) a transfer-matrix

calculation in which the time-dependence of the external bias V = Vstat + Vosc cos(Ωt) is

treated exactly. The system considered is that depicted in Fig. 1 (gap spacing D of 2

nm, height of the protrusion r of 1 nm and work function W of 1.5 eV). We used as

previously Vosc=0.1 V for the voltage induced by an external radiation. For comparison,

Ward et al. inferred Vosc values around 30 mV from their measurements of laser-induced dc

currents (radiation wavelength of 785 nm and power-flux density of 22.6 kW.cm−2).28 From

the work of Sullivan et al.,48 we can expect in our case a junction biasing of 2 mV when

considering solar radiation (this value is associated with an enhancement of the incident

field amplitudes by a factor of 103 due to a receiving antenna). A beam focussing with an

additional enhancement of the fields by a factor of 50 would therefore provide a biasing of

0.1 V. For the transfer-matrix calculations, we finally used h̄Ω= 0.1 eV and 0.2 eV. These

results are presented in Fig. 9. They show that the different Taylor expansions of < I >

provide nearly identical results. An expansion of < I > to order V 2
osc is thus sufficient for the

system considered. The results provided by the transfer-matrix technique are comparable

with the classical analysis in the limit when Ω → 0. Deviations however appear for finite

frequencies. The mean diode current < I > actually achieved when the scattering problem

is solved exactly is indeed higher than that predicted from the Taylor-expansion of static

Istat(Vstat) data. These deviations actually increase with Ω. This is essentially due to the fact

electrons are promoted to higher energy levels because of the absorption of energy quanta

h̄Ω. This process, which is not accounted for by the classical analysis of Sec. III, increases

the tunneling probabilities and therefore the diode currents.11 The effective responsivity Seff

achieved for Vstat=0 V turns out to be 0.72 V−1 in the quasi-static limit where Ω → 0, 0.82
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V−1 for h̄Ω=0.1 eV, 0.97 V−1 for h̄Ω=0.2 eV, 2.83 V−1 for h̄Ω=0.5 eV, 22.0 V−1 for h̄Ω=1

eV, and 35.8 V−1 for h̄Ω=2 eV.

A final point of discussion relates to the robustness of these calculations regarding possible

variations in the electronic properties of the materials. The classical analysis technique

presented in Sec. III relies on current-voltage data achieved in an idealistic static case (Ω=0)

in which the dielectric constant of the materials ε = −∞. This classical approach provides

estimations for the current < I > and the power < P > achieved in the dynamic case

(Ω 6= 0) without however taking account of the frequency-dependence of ε. With tungsten,

the effects of a variation of ε can be neglected for the range of frequencies considered (the

plasma energy h̄Ωp for tungsten is indeed as high as 22.8 eV).33 For silver, there is a surface

plasmon energy at 3.6 eV.49 The variations in the dielectric constant must then be taken

into account and the quantum-mechanical treatment presented in Sec. II will be more

appropriate. As shown in Ref.33, the occurrence of polarization resonances in the tip can

increase dramatically the emission current < I > and thus the effective responsivity Seff . In

the case of a reduced screening of the external field (behavior expected for Ω → ∞), the

effective biasing of the junction will decrease thus reducing the emission current < I > and

the effective responsivity Seff .

VI. CONCLUSIONS

We proposed a more detailed analysis of the rectification properties of geometrically

asymmetric metal-vacuum-metal junctions. In order to establish results that can conve-

niently be compared with other experimental/theoretical work, we used a classical approach

that is based on the Taylor-expansion of static current-voltage data. These static data were

obtained using a transfer-matrix methodology for the consideration of quantum-mechanical

effects and we compared in a final discussion the results of this classical approach with

those obtained when solving the time-dependent scattering problem exactly. This work fo-

cussed essentially on the impedance and classical responsivity of the junction. We showed

that reducing the work function of the materials both reduces the junction impedance and

enhances the diode responsivity, which constitutes the objective to achieve for the devel-

opment of a device. Reducing the spacing between the cathode and the anode reduces the

junction impedance. Increasing this spacing enhances the diode responsivity. It appears
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that a nanometer-size spacing between the apex of the emitter and the anode is a good

compromise. It was shown that the main body of the protrusion has a smaller influence on

the rectification process (the apex region in which the tunneling processes take place has a

more significant impact). In conditions where the static bias Vstat is provided by the user

and the oscillating bias Vosc cos(Ωt) is provided by an external radiation, one must respect

Vstat < Vosc/
√

2 in order for the energy converted from this external radiation to be at least

as important as the energy provided by the user (this conclusion turned out to apply to the

different situations considered in this work). The classical responsivities defined in this work

are in good agreement with those achieved when considering higher-order expressions for the

diode currents. Deviations however appear when the diode currents obtained with an oscil-

lating barrier are computed using an exact quantum-mechanical scheme. Photon-absorption

processes actually enhance the diode currents, which results in effective responsivities that

are higher than those predicted from a classical analysis. The responsivities achieved at

zero static bias for a work function of 1.5 eV and a distance of 1 nm between the apex

of the emitter and the anode range from 0.72 V−1 in the infrared (classical result) up to

35.8 V−1 for a photon energy h̄Ω of 2 eV in the visible. This comparison between classical

and quantum-mechanical concepts will be explored with more details in future work. In its

current form, this work already provides useful insight for the realization of a rectification

device that may be used for the energy-conversion of infrared and optical radiations.
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FIGURE CAPTIONS

FIG. 1. Potential energy V (r, t) in a metal-vacuum-metal junction. The representation

corresponds to an external potential of 0 V. It includes the potential wells that characterize

the metallic elements and the image potential in the vacuum. The height of the protrusion

is 1 nm. The gap spacing D is 2 nm.

FIG. 2. Static current-voltage data corresponding to a work function W of 4.5 eV (solid),

3 eV (dashed) and 1.5 eV (dot-dashed). The currents are normalized to a value of 8.0×10−12

A for W=4.5 eV, 8.2 × 10−10 A for W=3 eV and 1.2 × 10−6 A for W=1.5 eV. The height

of the protrusion is 1 nm. The gap spacing D is 2 nm.

FIG. 3. Impedance R = 1/(dIstat/dVstat) (a) and classical responsivity S =
d2Istat/dV 2

stat

dIstat/dVstat
(b)

corresponding to a work function W of 4.5 eV (solid), 3 eV (dashed) and 1.5 eV (dot-dashed).

The height of the protrusion is 1 nm. The gap spacing D is 2 nm.

FIG. 4. Impedance R = 1/(dIstat/dVstat) of a diode with a gap spacing D of 1.5 nm

(a) and 2.5 nm (b). The work function W is 4.5 eV (solid), 3 eV (dashed) and 1.5 eV

(dot-dashed). The height of the protrusion is 1 nm.

FIG. 5. Classical responsivity S =
d2Istat/dV 2

stat

dIstat/dVstat
of a diode with a gap spacing D of 1.5

nm (a) and 2.5 nm (b). The work function W is 4.5 eV (solid), 3 eV (dashed) and 1.5 eV

(dot-dashed). The height of the protrusion is 1 nm.

FIG. 6. Conversion efficiency η = (V 2
osc

2R
)/[VstatIstat + V 2

osc

2R
] for a work function W of 4.5

eV (solid), 3 eV (dashed) and 1.5 eV (dot-dashed). The three series of data correspond to

a gap spacing D of 1.5 nm (cross), 2 nm (square) and 2.5 nm (triangle). The height of the

protrusion is 1 nm.

FIG. 7. Potential energy V (r, t) in a metal-vacuum-metal junction. The representation

corresponds to an external potential of 0 V. It includes the potential wells that characterize

the metallic elements and the image potential in the vacuum. The height of the protrusion
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is respectively 2 nm (a) and 3 nm (b). The gap spacing D is 3 nm (left) and 4 nm (right).

FIG. 8. Impedance R = 1/(dIstat/dVstat) (a) and classical responsivity S =
d2Istat/dV 2

stat

dIstat/dVstat

(b) of a diode whose protrusion has a height of 1 nm (solid), 2 nm (dashed) and 3 nm

(dot-dashed). The anode is always at a distance of 1 nm from the apex. The work function

is 1.5 eV.

FIG. 9. Effective responsivity Seff = (<I>−Istat)/(V 2
osc/4)

dIstat/dVstat
achieved when computing < I >

from < I >= Istat + V 2
osc

4
d2Istat
dV 2

stat
(solid), < I >= Istat + V 2

osc

4
d2Istat
dV 2

stat
+ V 4

osc

64
d4Istat
dV 4

stat
(dashed), < I >=

Istat + V 2
osc

4
d2Istat
dV 2

stat
+ V 4

osc

64
d4Istat
dV 4

stat
+ V 6

osc

2304
d6Istat
dV 6

stat
(dot-dashed), and the transfer-matrix technique for

h̄Ω = 0.1 eV (cross) and 0.2 eV (square). The gap spacing D is 2 nm. The height r of the

protrusion is 1 nm. The work function W is 1.5 eV. The amplitude Vosc of the oscillating

barrier is 0.1 V.


