
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

A requirements Based Model for Effort Estimation in Service-oriented Systems

Verlaine, Bertrand; Jureta, Ivan; Faulkner, Stéphane

Published in:
Proceedings of the 9th International Workshop on Engineering Service-Oriented Applications

DOI:
10.1007/978-3-319-06859-6_8

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Verlaine, B, Jureta, I & Faulkner, S 2014, A requirements Based Model for Effort Estimation in Service-oriented
Systems. in Proceedings of the 9th International Workshop on Engineering Service-Oriented Applications:
Service-Oriented Computing – ICSOC 2013 Workshops. vol. LNCS 8377, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8377 LNCS,
Springer Verlag, pp. 82-94, 2013 International Conference on Service-Oriented Computing,ICSOC 2013, Berlin,
Germany, 2/12/13. https://doi.org/10.1007/978-3-319-06859-6_8

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198265501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-06859-6_8
https://researchportal.unamur.be/en/publications/a-requirements-based-model-for-effort-estimation-in-serviceoriented-systems(17935bb1-d1a1-4343-8f5c-44bc39665f25).html

A Requirements-based Model for Effort Estimation in
Service-oriented Systems

Bertrand Verlaine, Ivan J. Jureta, and Stéphane Faulkner

PReCISE Research Center
University of Namur, Belgium

{bertrand.verlaine, ivan.jureta, stephane.faulkner}@unamur.be

Abstract. Assessing the development costs of an application remains an arduous
task for many project managers, and above all when they use new technologies
or when they apply new methodologies. In this work, we propose a model for
estimating the effort required to develop a service-oriented system. It is based on
the system’s specifications. Its output is expressed in staff per period. It takes into
account the three types of software complexity, i.e., the structural, the conceptual
and the computational complexity.

1 Introduction

“How much will it cost to develop a given Information System (IS)?” remains one of the
main issues for project managers. At the same time, more and more Service-oriented
Systems (SoS) –i.e., ISs based on the Service-oriented Computing (SoC) paradigm– are
implemented. Its main component, the service, is a black box: only messages sent and
received are known. Consequently, some software features are no longer programmed
while the exchanges of messages must be organized. These differences are not integrated
in most of the existing models used for estimating development costs. In response, we
propose a model for estimating a priori the effort needed to develop a SoS partially or
totally built with services. To do so, we adapt and extend an existing model to best suit
to the service-oriented paradigm.

This paper proceeds by first analyzing the related literature based on which we
conclude that an adapted model for SoS is needed (§2). Then, the methodology followed
is detailed (§3) and the model is developed accordingly (§4-5). In §6, an example case
illustrates the use of the model. Conclusion and future work are presented in §7.

2 Related work

Existing methods used for estimating a priori the software development costs are either
experts-based methods or model-based methods. Model-based methods use algorithms,
heuristics computations and/or old projects data. Experts-based methods rely on human
expertise and depend on experts’ intuition, knowledge and unconscious processes. Seeing
that we focus on a new paradigm, a model-based approach seems to be an attractive
solution: SoS are often complex, large and brittle.

2

Model-based estimation techniques are principally grounded on analogies, empirical
studies and/or system-to-be analysis. To be effective, the first kind of techniques needs
lots of data collected during previous projects. The objective is to find the similarities
with the current project. This technique is close to experts-based methods but it is applied
with much more formalism and, often, the use of probabilistic principles. Analogy-based
techniques, e.g., [1, 2], face a recurring issue: they need highly skilled workers and they
cannot be applied in young organizations because of a lack of historical data. That could
be a problem in SoC seeing that it is a young paradigm which evolves quickly.

The second kind of techniques is based on empirical research, whereby situation-
based models are proposed. In some sense, they generalize analogy techniques. One
well-known initiative is COCOMO [3]. The core idea is that the development costs grow
exponentially when the system-to-be grows in size. The problem is that the development
of a SoS often combines several development strategies and processes: the underlying
services can communicate without any restrictions on their own development technolo-
gies. As a result, COCOMO models and similar techniques are often over calibrated as
underlined by Tansey & Stroulia [4]. These authors attempted unsuccessfully to propose
an empirical model based on COCOMO to estimate SoS development costs. They were
constrained to conclude that SoS development also involves developing and adapting
declarative composition specifications, which leads to fundamentally different process.

The third kind of techniques consists of an analysis of the system-to-be structure in
order to measure its characteristics impacting the development costs. One well-known
technique is the use of function points based on which the software size is estimated. It is
a measurement unit which captures the amount of functionalities of a system-to-be [5, 6].
In this way, Santillo uses the COSMIC measurement method and, in fact, mainly focuses
on the determination of the boundary of an SoS [7]. He also identifies one critical issue:
from a functional point of view, SoC is different from traditional software architectures.
New measurement methods are therefore essential for sizing SoS: we need new rules
and new attributes appropriate to the SoC paradigm [7]. Nevertheless, his primary idea
–using the function points– is relevant and deserves further research, which is what we
aim in this paper.

2.1 Software Development Costs Estimation in Service-oriented Computing

In [8], the authors use the Work Breakdown Structure (WBS) for costing SoS. This
is a decomposition technique that tries to make a granular list of planned tasks often
represented as a tree. It helps to reduce the mean relative error and possible slippages in
project deliverables. After the SoS decomposition in atomic tasks, the authors propose
an algorithm to estimate the development costs of the system-to-be.
A second related work tackles the defect prediction issue in SoS [9]. To do so, the authors
use COCOMO to estimate the size of the future SoS. The paper does not solve the main
issue explained above, i.e., many different strategies and processes can be used during
a SoC development project, and one variable used in their model –the infrastructure
factor– is not clearly defined. It seems they use a COCOMO coefficient estimated based
on common software.

In [10], the authors propose an estimation framework for SoS by reducing the total
software complexity. They propose to decompose the SoS into smaller parts. Then, each

3

Structural complexity Computational complexity Conceptual complexity

Step 1

Step 2

Step 3

Analysis of the system-to-be
specifications

Analysis of the environment
of the system-to-be

Analysis of the development
staff productivity

Fig. 1. Illustration of the proposed model structure and its components

of them is separately estimated. However, it is not clear how all the values resulting from
the individual estimation are aggregated to provide a single figure.

3 Methodology

Instead of measuring the SoS development costs –which depend on many unrelated
variables such as the wage level– we propose to measure the effort needed, i.e., the
number of staff per period needed to carry out the development tasks. To do this, we
first evaluate the SoS complexity from which we can deduce the total effort needed.
We take into account the three main sources of software complexity [11, Chap. 5]. The
structural complexity refers to the software design and structure such as the quantity of
data stored, the operations achieved, the user interfaces required and so on. As show in
Fig. 1, the structural complexity is captured in our model through the analysis of the SoS
specifications. This step is the starting point. Specifying the SoS could be achieved thanks
to a modelling language, e.g., UML, or with a framework such as IEEE SRS1. In the scope
of this work, that choice is not important as long as one is able to identify the significant
factors –defined below– impacting the software complexity in the specifications. The
computational complexity refers to the way that the computation is being performed.
This kind of complexity is captured via an analysis of the system-to-be environment
(the second step in Fig. 1). The conceptual complexity is related to the difficulty to
understand the system-to-be objectives and its requirements. It refers to the cognitive
processes and the capacity of the programmers. In our model, the effort estimation is
adjusted to the development staff productivity (the third step in Fig. 1).

4 Software Complexity Estimation in Service-oriented Systems

The model proposed should first help to estimate the structural complexity of the SoS.
To do so, we adapt and improve an existing model [12]. The latter allows to compute the
software intrinsic complexity before its coding. It analyses stakeholders’ requirements
expressed in natural language and categorizes them into three groups –critical, optional
and normal requirements– according to eleven axioms. The “normal category” is assimi-
lated as a default category when the classification algorithm does not succeed to select
one of the two other categories. Then the complexity of the system-to-be is estimated.
From our point of view, this method faces two problems. First of all, the requirements

1 The IEEE SRS framework was consulted the last time in February 2013 at
http://standards.ieee.org/findstds/standard/829-2008.html.

4

Table 1. Characteristics of the SoS Complexity Model along with their acronyms

Acronym Definition
IC (Input Complexity) Complexity due to data inputs received by the system-to-be.
OC (Output Complexity) Complexity due to the data outputs that the system-to-be has to send to its environment.
DSC (Data Storage Complexity) Complexity due to persistent data that the SoS has to store (and possibly reuse later).
WS (Weight Source) Weight allocated to an input or output source type (see Table 2 for the weight details).
WT (Weight Type) Weight allocated to a specific type of input or output (see Table 2 for the weight details).
WST (Weight Storage Type) Weight allocated to a type of storage destination (see Table 2 for the weight details).
IOC (Input Output Complexity) Sum of the IC, OC and DSC.
FRC (Functional Requirements
Complexity)

Complexity due to the implementation of functional stakeholder’s needs.

NFRC (Non-Functional Require-
ments Complexity)

Complexity due to the implementation of non-functional stakeholder’s needs.

FI (Functions to Implement) Features that have to be entirely developed and coded in the system-to-be.
FS (Functions as a Service) Features that will not be coded because services will be used instead.
QA (Quality Attribute) Primary characteristics coming from the non-functional requirements which state how

the functional requirements will be delivered.
QSA (Quality Sub-Attribute) Secondary characteristics refining each QA.
RC (Requirements Complexity) Sum of the FRC and NFRC.
PC (Product Complexity) Complexity of the SoS to the tasks that it will perform; it sums the IOC and RC.
DCI (Design Constraints Imposed) Complexity due to constraints and rules to follow during the system-to-be development.
C (Constraint) Any environment characteristic of the development work or of the system-to-be that

limits and/or control what the development team can do.
IFC (Interface Complexity) Complexity due to the interfaces to implement in the system-to-be.
I (Interface) Integration with another IS or creation of a user interface.
SDLC (Software Deployment Lo-
cation Complexity)

Complexity due to the type of users who will access to the SoS as well as their location.

UC (User Class weight) Weight associated with a user class.
L (Location) Number of the different access locations for a specific user class.
SFC (System Feature Complexity) Complexity due to specific features to be added to the system-to-be.
FE (Feature) Distinguishing characteristic of a software item aiming at enhancing its look or its feel.

Table 2. Sources and type weights for the input, output and data storage complexity

Parameter Description Weight

Input/Output
Sources

External Input/Output through Devices 1
Input/Output from files, databases and other pieces of software 2
Input/Output from outside systems 3

Input/Output Types
Text, string, integer and float 1
Image, picture, graphic and animation 2
Audio and video 3

Data Storage Types Local data storage 1
Remote data storage 2

categorization is complex and imprecise (cf. the default category used when no decision
is made). Secondly, the complexity estimation does not take into account some specific
features of the SoC such as the use of external services to provide system features
without requiring their implementation. In [12], once a requirement is specified, all of
its underlying features increase the software complexity. Despite these two flaws, this
model performs well during the tests and comparisons with similar initiatives [12–14].
This is why it is a sound basis on which a specific model for the SoC could be built.

4.1 The SoS Complexity Model

In this section, we identify the characteristics of SoS and how they increase structural
complexity based on the model proposed in [12]. To ease the understanding of the paper,
these characteristics along with their acronyms are defined in Table 1.

5

Input Output Complexity. The Input Output Complexity (IOC) gathers the complexity
of the input (IC), output (OC) and data storage complexity (DSC) together. Table 2 lists
the different weights, picked up from [12], for the types and sources of IC, OC and DSC
which are respectively stated in Equations 1, 2 and 3.

IC =

3∑
i=1

3∑
j=1

Iij ×WSi ×WTj (1)

where Iij is the number of inputs of the source i and being of the type j identified in
the system-to-be specifications; WSi and WTj are respectively the weight of the input
source i and the input weight of the type j as listed in Table 2.

OC =

3∑
i=1

3∑
j=1

Oij ×WSi ×WTj (2)

where Oij is the number of outputs of the source i and being of the type j. WSi and
WTj have a similar meaning than in Equation 1, but they concern the outputs.

The use of services to perform some functionalities involves data exchanges between
the providers and the consumers of services. The WSDL technology is commonly used
for describing services capabilities and communication processes [15]. Two versions
of the WSDL protocol currently exit (WSDL 1.1 and 2.0), but their relevant parts for
our model are identical. <operation/> tags define service functions. Each operation
consists of one or several input and output tag(s), i.e., messages exchanges, which must
be considered as an input/output source from outside systems. Most of the time, the type
to apply is “text” seeing that messages exchanged are XML documents.

Equation 3 states how to compute the DSC.

DSC =

2∑
i=1

Si ×WSTi (3)

where Si is the number of data storage of type i and WSTi is the weight of the type i.
The IOC is the addition of the complexity due to data exchanges and storage.

IOC = IC +OC +DSC (4)

Requirement Complexity. The Functional Requirements Complexity (FRC) value cap-
tures the complexity of a given functionality, i.e., a function which defines how several
computational actions are performed on the inputs to generate the outputs.
As some functions can be fulfilled thanks to the use of (composite) services, they should
not all be taken into account for the computation of the FRC complexity value.
Let F be the set which includes all the SoS’ functions. F contains two sub-sets: FI and
FS for, respectively, the Functions to Implement set and the Functions as Services set
which will not be fully developed because (composite) services will be used instead.
They do not increase the RFC value as stated in Equation 5.

FRC =

n∑
i=1

m∑
j=1

FIi × SFij +

k∑
k=1

FSk (5)

6

where FIi is the ith function of FI and SFij is the jth sub-function obtained after
the decomposition of the function FIi. FSk is the kth function of FS outsourced as
services. In this case, only the main function –i.e., the (composite) service being used–
increases the FRC value. Although its computational complexity is hidden, developers
have to implement the exchanges of messages between the service used and the SoS.

Non-functional requirements are criteria related to the way the functional require-
ments will be performed; its complexity value can be computed as stated in Equation 6.

NFRC =

6∑
i=1

n∑
i=1

QAi ×QSAj (6)

where QAi is the main quality attribute i and QSAj is the quality sub-attributes j related
to QAi. The quality attributes proposed are those of the ISO/IEC-9126 standard2 [16].

The Requirement Complexity (RC) is the addition of the FRC and the NFRC.

RC = FRC +NFRC (7)

Product Complexity. The Product Complexity (PC) captures the SoS complexity based
on its overall computations. It is obtained by multiplying the IOC and the RC values [12].

PC = IOC ×RC (8)

Design Constraints Imposed. The Design Constraints Imposed (DCI) refers to the
number of constraints to consider during the development of the system-to-be such as
regulations, hardware to reuse, database structures, imposed development languages, etc.

DCI =

n∑
i=1

Ci (9)

where Ci is the ith constraint type imposed; its value is to number of constraints i.
Interface Complexity. The Interface Complexity (IFC) is computed based on the number
of external integrations and user interfaces needed in the future software.

IFC =

n∑
i=1

Ii (10)

where Ii is the ith external interface to develop. Ii has a value ranging from one to x
depending of the number of integrations to carry out: a user interface has a value of one
while the value of an interface used to integrate multiple systems corresponds to the
number of ISs to interconnect. Each service used counts for one interface.
Software Deployment Location Complexity. The Software Deployment Location
Complexity (SDLC) is the software complexity due to the types of users accessing

2 The main quality attributes of the ISO/IEC-9126 standard are Functionality, Reliability, Usability,
Efficiency, Maintainability and Portability. See [16] for more information.

7

the system-to-be combined with the different locations from where they will access it.

SDLC =

4∑
i=1

UCi × Li (11)

where UCi is the user class weight and Li is the number of locations from which the
user belonging to the user class i will access the software. User classes are [12]: casual
end users occasionally accessing the SoS (weight of 1), naive or parametric users dealing
with the database in preconfigured processes (weight of 2), sophisticated users using
applications aligned with complex requirements and/or infrequent business processes
(weight of 3), and standalone users working with specific software by using ready made
program packages (weight of 4).
System Feature Complexity. The System Feature Complexity (SFC) refers to specific
features to be added to enhance the look and the feel of the system-to-be.

SFC =

n∑
i=1

FEi (12)

where FEi is the feature i with a weight of 1.
Computation of the SOS RBC value. The Service-Oriented System Requirements-based
Complexity (SOS RBC) value can be computed as follows:

SOS RBC = (PC +DCI + IFC + SFC)× SDLC (13)

Note Sharma & Kushwaha also include the “personal complexity attribute” (PCA)
in their complexity measurement model [12, 17]. However, the structural complexity
measure should only take into account the software structure and not the capabilities of
the development staff. The latter should only impact the development effort needed.

4.2 Validation of the Complexity Model

Here is a theoretical validation of the model we proposed in §4.1 based on the validation
framework for the software complexity measurement process of Kitchenham et al. [18].
Property 1: For an attribute to be measurable, it must allow different entities [i.e.,
different specifications of systems-to-be] to be distinguished from one other.
All attributes used in the Equations 1 to 13 are clearly defined and distinguishable from
each other (see Table 1). They cover the specifications of a SoS. Therefore, the SOS RBC
model should give different values for different SoS specifications.
Property 2: A valid measure must obey the representation condition, i.e., it must preserve
our intuitive notions about the attribute and the way in which it distinguishes entities.
This property refers to the psychological complexity, also called conceptual complexity,
–i.e., the complexity due to the efforts needed for a given human being to understand
and to perform a specific software development task– which cannot interfere with the
structural complexity . The latter is the kind of complexity that the SOS RBC model
has to capture. All the attributes used are only related to countable and distinguishable
intrinsic characteristics of the system-to-be without any relations with the development

8

staff capabilities. We conclude that this property is respected by the SOS RBC model.
Property 3: Each unit of an attribute contributing to a valid measure is equivalent.
Each identical attribute in the system-to-be will have the same weight and importance in
the estimation regardless its position in the specifications.

These three properties are necessary to validate a complexity measurement process,
but not sufficient [18]. Indirect measurements must also respect properties 4 and 5.
Property 4: For indirect measurements processes, the measure computed must be based
on a dimensionally consistent model, with consistent measurement units while avoiding
any unexpected discontinuities.
Our model aims at measuring the complexity of software specifications. All the attributes
evaluated to compute the model are intrinsic features of the SoS impacting its complexity.
Property 5: To validate a measurement instrument, we need to confirm that the mea-
surement instrument accurately measures attribute values in a given unit.
This property asks for a definition of the measured attributes and their unit. In this paper,
we propose a semi-formal definition of the measurement instrument –the best solution is
to propose a formal one– based on both mathematical tools and literal definitions.

5 Development Effort Estimation in Services-oriented Systems

5.1 Estimation of the Total Intrinsic Size of the System-to-be

In order to estimate the total development effort needed, the model is adjusted with the
Technical Complexity Factors (TCF) [5, 6]. The TCFs are significant characteristics of
the software development project which influence the amount of work needed. Each TCF
is associated to a Degree of Influence (DI) ranging from 0 (no influence) to 5 (strong
influence). They must be estimated by the development team based on the requirements
and on the system-to-be environment3.

Equation 14 expresses TCF value (TCFV) in a mathematical form [6].

TCFV = 0.65 + 0.01×
16∑
i=1

DIi (14)

where DIi is the degree of influence of the ith TCF.
The adjusted SOS RBC (A-SOS RBC) is the SOS RBC value times the TCFV [6].

A-SOS RBC = SOS RBC × TCFV (15)

5.2 Estimation of the Total Development Work Needed

The estimation of the SoS Requirements-based Effort (SOS RBE) value is based on the
A-SOS RBC. The SOS RBE is significantly related to the productivity of the development

3 The sixteen TFCs are Complex processing, Data communication, Distributed functions, End user
efficiency, Facilitate change, Heavily used configuration, Installation ease, Multiple sites, On-
line data entry, On-line update, Operational ease, Performance, Reusability, Security concerns,
Third parties IS and Transaction rate. See [5, 6] in order to have more details about the TCF’s
and the process to follow in order to estimate the appropriate DI for a TCF.

9

staff –it captures the conceptual complexity. The staff productivity is the ratio between
the number of code lines written and the time required. It depends on the language used
since the latter can be more or less complex, expressive, flexible, etc. The Quantita-
tive Software Management firm (QSM), specialized in quantitative aspects of software
creation, makes available the productivity of development staff for 65 programming
languages. These values result from empirical research achieved on more than 2190
software implementation projects. For all the studied languages, QSM proposes the
average value, the median as well as the lowest and the highest value of the number of
lines of code needed4. For instance, the values of the J2EE language are, respectively,
46, 49, 15 and 67.

Equation 16 states how to compute the SOS RBE.

SOS RBE =
(A-SOS RBC × L)

P
(16)

where L is the number of code lines needed per function point as stated by the QSM com-
pany. P is the productivity of the development staff express in lines of code per period.
The SOS RBE value estimates the number of periods needed for the implementation of
the system-to-be developed within the service-oriented paradigm. The unit of the SOS
RBE is the same than the period unit of P .
The development productivity variables P and L may lack of precision. There are two
kinds of approach more sophisticated. The first one lies in calculating the ratio between
the number of code lines and development time needed for previous internal projects
(see, e.g., [19]). A second approach is to use a parametric estimation model built upon
empirical data (see, e.g., [20]). A complete discussion of the development productivity
computation is out of the scope of this paper.

6 Example Case of the Proposed Effort Estimation Model

A company active in the food industry would like a new IS in order to improve the
purchase management. With the new IS, a significant part of the orders should be au-
tomatically sent. Currently, workers have to manually carry out all the orders. It exists
a legacy IS which manages the outgoing orders. Only its main function will be kept
exposed as a service: it estimates the stock level needed.
First, stakeholders’ requirements were elicited based on which the system-to-be specifi-
cations were modelled in UML. Briefly, it has to satisfy the following main Use Cases.
View stock level: The system-to-be should enable the purchase department to consult
the stock levels for all existing products. Carry out analysis of purchases: The stock
manager would like to have a specific interface to analyze the purchases made (mainly
with descriptive statistics and underlying graphic illustrations). Manage order error:
The purchase manager is in charge of the errors management detected when outgoing
orders are delivered and encoded by a warehouse worker. Send automatic order: One
of the main requirements of the company is to enable automatic sending of orders when

4 All the results of this research are available at http://www.qsm.com/resources/function-point-
languages-table. Last consultation in July 2013, the 3rd.

10

Fig. 2. Activity diagram of the Use Case View stock level

a given threshold is reached. The Use Cases were refined with other UML diagrams. As
an example, Fig. 2 represents the Activity diagram refining the Use Case: View stock
level.

The IOC identified in the studied Activity diagram is 13: the IC is 5, the OC is 13 and
the DSC is 0. E.g., for the activity “Select stock item(s)”, the OC is 2× 1 because of the
request in the database (source weight is 2) allowing to display all the possible stock
item(s) stored as string (type weigh is 1). The IC is 1× 1 because of the selection made
by the user through a device, e.g., the mouse or the keyboard.
Concerning the FRC, the Use Cases compose the functions set; their sub-functions are
the steps of their respective Activity diagrams. The FRC value for the studied Activity
diagram is 10 (1 × 9 + 1); 1 because we study here the sub-functions of only one
main function, i.e., one Use Case, 9 because there are nine sub-functions –send normal
order(s) and carry out urgent order(s) are extends Use Cases and thus refined in other
Activity diagrams; the activity Estimate the production level (for the period) will be
achieved through the use of a Web Service (WS) (+1).
Based on the stakeholders’ non-functional requirements, the NFRC value is 10. The total
RC value identified in this Activity Diagram is 20 (10 + 10).

The stakeholders explain they want to use the J2EE development platform (one
constraint) and the WS technologies –WSDL, SOAP and HTTP (three constraints)– in
order to reuse the legacy application. Last but not least, the SoS will be hosted on the
existing application server (one constraint). The total DCI value is 5 (1 + 3 + 1).

The IFC value identified in the studied Activity Diagram is 16. There is one interface
with the Warehouse Management IS, one with the 13 provider ISs, one user interface for
the workers at the purchase department and one interface for the WS used.
In this example, two user classes were identified: the workers at the Purchase Department
and their manager. Both of these two classes are parametric users (weight of 2). They
should access the system-to-be from their company offices. The SDLC value is 2 (2× 1).
No additional system features were required for this Activity. The SFC value is thus 0.

11

Once this work done for all the SoS specifications, the SOS RBC value can be
computed. The result of this analysis based on Equations 1 to 13 is5: SOS RBC = 5170.

The SOS RBC value is then adjusted with the TCF’s applicable to this system-to-
be such as, e.g., Distributed functions, Facilitate change and Third parties IS, with
a DI value of, respectively, 2, 1 and 5 evaluated as described in [5, 6]. The TCFV is:
0.65 + 0.01× 27 = 0.96. The A-SOS RBC value is: 5170× 0.92 = 4756.4.

The last step is the computation of the total work needed for the implementation
of the system-to-be. The reference language used is J2EE: L = 46 (cf. §5.2). The
productivity of the staff development has been estimated to 37 lines per hour thanks
to an analysis of previous projects. So, the total development effort needed is: SOS
RBE = 4756.4×46

37
∼= 5790 hours. Once the average cost per hour known, the financial

forecasting of the total development costs of the system-to-be can be drawn up.

7 Conclusions and Future Work

The model proposed, based on the specifications of a SoS, enables to compute the
estimated development effort needed for its development. Eliciting, modelling and
specifying correctly the requirements remain a significant success factor in the use of
our model.

As underlined in §3, the three sources of software complexity –i.e., the structural,
the conceptual and the computational complexity– are covered by the estimation model
proposed. The analysis of the system-to-be specifications identifies the different software
attributes of the structural complexity and put values behind each one (cf. Equations 1
to 13 from which the SOS RBC value can be computed). The TCFs used to adjust the SOS
RBC value (cf. Equation 15) aim at adding the computational complexity to the1 model
proposed. Indeed, they refer to how will be processed the stakeholders’ requirements in
the system-to-be according to its environment. Lastly, the conceptual complexity is taken
into account in the last part of the model, i.e., in Equation 16, in which the productivity
of the development staff is added comparatively to the development language chosen for
the project.

However, we put aside some difficulties. First, the system-to-be can be coded with
more than one language while allowing the use of other programming languages for
implementing the services used. Secondly, the productivity of the development staff
deserves more attention. Although this problem is out of the scope of this work, one
significant question remains unsolved: Is the productivity of development staff the same
for SoC projects than for projects in line with other computing paradigms? To the best of
our knowledge, there is no clear answer to this question.

References

1. Bielak, J.: Improving Size Estimates Using Historical Data. IEEE Software 17(6) (2000)
27–35

5 The detailed calculation is: ((IC + OC + DSC) × (FRC + NFRC) + DCI + IFC +
SFC)× SDLC = ((21 + 33 + 5)× (33 + 10) + 8 + 39 + 1)× 2 = 5170.

12

2. Pendharkar, P.C.: Probabilistic estimation of software size and effort. Expert Systems with
Applications 37(6) (2010) 4435–4440

3. Boehm, B.: Software Engineering Economics. Prentice-Hall (1981)
4. Tansey, B., Stroulia, E.: Valuating Software Service Development: Integrating COCOMO II

and Real Options Theory. In: Proceedings of the First International Workshop on Economics
of Software and Computation, IEEE Computer Society (2007) 8–10

5. Albrecht, A.J.: Function points as a measure of productivity. In: GUIDE 53 Meeting. (1981)
6. Symons, C.R.: Function Point Analysis: Difficulties and Improvements. IEEE Transactions

on Software Engineering 14(1) (1988) 2–11
7. Santillo, L.: Seizing and sizing SOA applications with COSMIC Function Points. In:

Proceedings of the 4th Software Measurement European Forum (SMEF 2007). (2007) 155–
166

8. Oladimeji, Y.L., Folorunso, O., Taofeek, A.A., Adejumobi, A.I.: A Framework for Costing
Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure (WBS)
Approach. Global Journal of Computer Science and Technology 11(15) (2011) 35–47

9. Liu, J., Xu, Z., Qiao, J., Lin, S.: A defect prediction model for software based on service
oriented architecture using EXPERT COCOMO. In: Proceedings of the 21st annual interna-
tional conference on Chinese Control and Decision Conference (CCDC’09), IEEE Computer
Society (2009) 2639–2642

10. Li, Z., Keung, J.: Software Cost Estimation Framework for Service-Oriented Architecture
Systems Using Divide-and-Conquer Approach. In: The Fifth IEEE International Symposium
on Service-Oriented System Engineering (SOSE 2010), IEEE Computer Society (2010) 47–54

11. Laird, L.M., Brennan, M.C.: Software Measurement and Estimation: A Practical Approach.
Quantitative Software Engineering Series. Wiley - IEEE Computer Society (2007)

12. Sharma, A., Kushwaha, D.S.: Natural language based component extraction from requirement
engineering document and its complexity analysis. ACM SIGSOFT Software Engineering
Notes 36(1) (2011) 1–14

13. Sharma, A., Kushwaha, D.S.: Complexity measure based on requirement engineering doc-
ument and its validation. In: International Conference on Computer and Communication
Technology (ICCCT 2010), IEEE Computer Society (2010) 608–615

14. Sharma, A., Kushwaha, D.S.: A complexity measure based on requirement engineering
document. Journal of Computer Science and Engineering 1(1) (2010) 112–117

15. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented Computing. Communications of the
ACM 46(10) (2003) 24–28

16. ISO/IEC: 25010 - Systems and software engineering - Systems and software Quality Require-
ments and Evaluation (SQuaRE) - System and software quality models. Technical report, The
International Organization for Standardization (2010)

17. Sharma, A., Kushwaha, D.S.: An Improved SRS Document Based Software Complexity
Estimation and Its Robustness Analysis. In: Computer Networks and Information Technolo-
gies. Volume 142 of Communications in Computer and Information Science. Springer Berlin
Heidelberg (2011) 111–117

18. Kitchenham, B., Pfleeger, S.L., Fenton, N.E.: Towards a Framework for Software Measure-
ment Validation. IEEE Transactions on Software Engineering 21(12) (1995) 929–943

19. Nguyen, V., Deeds-Rubin, S., Tan, T., Boehm, B.: A SLOC counting standard. In: The 22nd
International Annual Forum on COCOMO and Systems/Software Cost Modeling. (2007)

20. Cataldo, M., Herbsleb, J.D., Carley, K.M.: Socio-technical Congruence: A Framework for
Assessing the Impact of Technical and Work Dependencies on Software Development Pro-
ductivity. In: Proceedings of the Second ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), ACM Press (2008) 2–11

