
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

A relational symbolic execution algorithm for constraint-based testing of database
programs
Marcozzi, Michaël; Vanhoof, Wim; Hainaut, Jean-Luc

Published in:
IEEE 13th International Working Conference on Source Code Analysis and Manipulation, SCAM 2013

DOI:
10.1109/SCAM.2013.6648200

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link to publication
Citation for pulished version (HARVARD):
Marcozzi, M, Vanhoof, W & Hainaut, J-L 2013, A relational symbolic execution algorithm for constraint-based
testing of database programs. in IEEE 13th International Working Conference on Source Code Analysis and
Manipulation, SCAM 2013., 6648200, IEEE Computer society, pp. 179-188, 2013 IEEE 13th International
Working Conference on Source Code Analysis and Manipulation, SCAM 2013, Eindhoven, Netherlands,
22/09/13. https://doi.org/10.1109/SCAM.2013.6648200

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

https://doi.org/10.1109/SCAM.2013.6648200
https://researchportal.unamur.be/en/publications/a-relational-symbolic-execution-algorithm-for-constraintbased-testing-of-database-programs(84bfd828-d39e-442a-9eec-8ed0c8f5a493).html

A Relational Symbolic Execution Algorithm

for Constraint-Based Testing

of Database Programs

Michaël Marcozzi∗

Faculty of Computer Science
University of Namur

Rue Grandgagnage, 21
Namur, Belgium

Email: michael.marcozzi@unamur.be

Wim Vanhoof
Faculty of Computer Science

University of Namur
Rue Grandgagnage, 21

Namur, Belgium
Email: wim.vanhoof@unamur.be

Jean-Luc Hainaut
Faculty of Computer Science

University of Namur
Rue Grandgagnage, 21

Namur, Belgium
Email: jean-luc.hainaut@unamur.be

Abstract—In constraint-based program testing, sym-
bolic execution is a technique which allows to generate
test data exercising a given execution path, selected
within the program to be tested. Applied to a set
of paths covering a sufficient part of the code under
test, this technique permits to generate automatically
adequate test sets for units of code. As databases are
ubiquitous in software, generalizing such a technique
for efficient testing of programs manipulating databases
is an interesting approach to enhance the reliability of
software. In this work, we propose a relational symbolic
execution algorithm to be used for testing of simple Java
methods, reading and writing with transactional SQL in
a relational database, subject to integrity constraints.
This algorithm considers the Java method under test
as a sequence of operations over a set of constrained
relational variables, modeling both the database tables
and the method variables. By integrating this relational
model of the method and database with the classical
symbolic execution process, the algorithm can generate
a set of Alloy constraints for any finite path to test
in the control-flow graph of the method. Solutions of
these constraints are data which constitute a test case,
including valid content for the database, which exercises
the selected path in the method. A tool implementing
the proposed algorithm is demonstrated over a number
of examples.

I. Introduction

Testing [1], [2] constitutes the primary approach to im-
prove the reliability of software. This motivates [3] much
research to develop relevant automated techniques to test
efficiently all aspects of software. In particular, two suc-
cessful white-box approaches have emerged [4] to generate
automatically adequate test data for testing units of code,
with regard to their expected functions. In search-based
testing (e.g. [5]), optimization heuristics are used to search
the input space of the program for adequate test data. In
constraint-based testing (e.g. [6], [7], [8], [9], [10], [11]), the
program is transformed into constraints whose solutions
are adequate test data.

∗F.R.S.-FNRS Research Fellow

Among constraint-based test data generation strategies,
classical symbolic execution [12] works in three successive
steps. First, a finite set of finite paths in the control flow
graph [13] of the program are selected for testing. Several
selection algorithms have been proposed (see e.g. [14]) to
select a set of paths in the program which satisfies a given
code coverage criterion [13]. Secondly, each selected path
is symbolically executed [15], [16], [17], [12] to build a
set of path constraints over the program inputs. These
constraints are such that when the program is executed
with respect to input values satisfying them, the execu-
tion is guaranteed to follow the path from which they
were generated. In order to build these constraints, the
symbolic execution algorithm considers the static single
assignment form of the program and expresses the control
dependencies imposed by the path to be tested. Thirdly,
the constraints generated for each of the selected paths
are solved, producing each time a new test case, which
will exercise a different path among those initially selected
in the program.

Databases are nowadays ubiquitous in software and many
units of code interact intensively with a large, persistent
and highly-structured relational database [18]. But barely
few works (see [19], [20], [21]) have studied how to au-
tomate the generation of test inputs for such database
programs, to test the correct interaction between the code
and the database.

In this work, we propose to generalize the classical sym-
bolic execution technique to the case of programs interact-
ing with a relational database through SQL statements.
We intend to generate a set of test cases for the pro-
gram, including, for each test case, an input database
content and values for the program inputs, to satisfy a
given code coverage criterion. The path selection step of
classical symbolic execution does not require any particular
modification to handle database programs, as the presence
of SQL statements in a program typically does not modify
the way its control flow graph can be explored. The existing
path selection algorithms can thus be used as well for
database programs. However, the symbolic execution and
constraints solving steps need to be adapted. First, because
the generated constraints must now describe the content978-1-4673-5739-5/13/$31.00 c© 2013 IEEE

2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation (SCAM)

170

of the relational tables of the database, subject to complex
integrity constraints, as well as the content of the variables
of the program. Secondly, because the symbolic execution
process must be able to generate constraints modeling the
complex behavior of the SQL statements used in the pro-
gram, able to fail when violating the integrity constraints
of the database.

The core strategy of our technique is, as we suggested in
[21], to model every variable of the program and every
table (which is, mathematically, a relation) in the database
as a relational variable containing a mathematical relation
over simple domains, like integers. Each statement in the
program, including both imperative and SQL statements,
can then be modeled as a simple relational operation
over these relational variables. By applying the classical
symbolic execution mechanism over this relational version
of the program, we can derive a set of path constraints over
the program input variables. The generated constraints are
here relational constraints and the input variables refer
both to the classical inputs of the program and to the
content of each of the database tables at the program start.
As some of the relational variables manipulated by the re-
lational version of the program model tables in a database,
they must obey the integrity constraints described by the
relational schema of this database, such as, for example,
the primary key or foreign key constraints. These schema
constraints are modeled as relational constraints as well,
and the path and schema constraints can then be combined
into an unique input constraints system. Each solution to
this relational constraints system represents a test input,
including an initial state for each table in the database,
with respect to which the program can be executed and is
guaranteed to follow the execution path to be tested.

The main contribution of this work is a relational symbolic
execution algorithm for database programs. This algorithm
generates test data for a language composed of simple
static Java methods, interacting with a relational database
using SQL statements, through JDBC. Given the SQL
DDL code describing the database schema, the Java code
of the method and a finite path in the control flow graph
of this method, the algorithm generates the corresponding
relational input constraints in the Alloy language [22].
These constraints can then be solved using the Alloy
analyzer [22]. The algorithm has been coded in Java and
used to generate sets of test cases for a number of sample
Java methods. The generated test sets satisfy classical code
coverage criteria [13].

The remainder of this paper is organized as follows. Section
II details the part of the Java/SQL syntax which is sup-
ported by our algorithm. In section III, we describe and
illustrate our symbolic execution algorithm. We provide
three examples of the whole test data generation process
in section IV. Finally, some conclusions, related and future
work are provided in section V.

II. Syntax of the tested Java/SQL programs

In this section, we define precisely which subset of the
Java/SQL syntax our algorithm can execute symbolically.
This subset has been chosen to offer a good compromise

between simplicity and expressiveness. It includes com-
mon imperative statements, expressions and conditions,
typical methods for List objects manipulation, SQL base
primitives used in online transaction processing (OLTP)
programs, base transaction management statements and
typical database schema constraints constructs.

A sample database program in the language handled by
our symbolic execution algorithm is provided in figure 1.
This sample describes a database with two tables: one for
shop departments and one for the articles stored in each
of these departments. The total number of articles stored
in a department is saved for each department. The sample
also describes the method manipulating this database: it
adds a set of new articles to the database and updates
the departments’ article counts. If the department of an
added article was not in the database, it is added to the
database as well. The articles are inserted one by one in
isolated transactions. If a transaction was successful, the
index of the added article is saved in a list.

In the next paragraphs, the chosen notation for the BNF
grammar of the syntax includes some additional meta-
symbols: {...} (grouping), ? (zero or one times), * (zero
or more times) and + (one or more times). When a single
nonterminal appears several times in a single production,
subscript notation allows to distinguish between the oc-
currences.

A. Database program

A database program is composed of the SQL DDL code of
the database schema and of the code of the Java method
under test.

〈database-program〉 ::= 〈sql-ddl〉 〈java-method〉

B. Database schema

The relational database schema is a list of table definitions.
This list can be empty. In such a case, the program works
independently of any database. This allows our symbolic
execution algorithm to be used for test input generation in
the case of classical Java methods, with no interaction with
a database. Each table is identified by its name, contains
at least one attribute and endorses exactly one primary
key. Foreign keys and additional check constraints can be
declared for a table. A row in a table cannot be deleted or
see its primary key value updated as long as there exists at
least another row in the database that references it (ON
DELETE/UPDATE NO ACTION). Semantics of all the
schema creation primitives conforms to the classical SQL
DDL specification provided by ISO.

〈sql-ddl〉 ::= 〈table〉*
〈table〉 ::= CREATE TABLE〈id〉(〈att〉+〈p-key〉〈f-key〉*〈chk〉*);
〈att〉 ::= 〈id〉 INTEGER NOT NULL ,
〈p-key〉 ::= CONSTRAINT 〈id〉cst PRIMARY KEY (〈id〉att)
〈f-key〉 ::= ,CONSTRAINT 〈id〉cst FOREIGN KEY (〈id〉att)

REFERENCES 〈id〉tab (〈id〉refid)
〈chk〉 ::= ,CHECK(〈id〉 {< | = | >} 〈integer〉)
〈id〉 ::= {a |...| z | A |...| Z}{a |...| z | A |...| Z | 0 |...| 9}*
〈integer〉 ::= -? {1 | ... | 9}{0 | ... | 9}∗ | 0}

2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation (SCAM)

171

Fig. 1. SQL DDL and Java code of a database program inserting articles and updating departments’ articles count in a shop database.
CREATE TABLE department (
id INTEGER NOT NULL,
numberOfArticles INTEGER NOT NULL,
CONSTRAINT dPK PRIMARY KEY (id),
CHECK(numberOfArticles > 0))

CREATE TABLE article (
barcode INTEGER NOT NULL,
theDep INTEGER NOT NULL,
CONSTRAINT aPK PRIMARY KEY (barcode),
CONSTRAINT aFK FOREIGN KEY(theDep)REFERENCES department(id))

1 static void sample (Connection con,Scanner in,List<Integer> newArticles) throws SQLException {
2 int i = 0;
3 List<Integer> addedArticles = new ArrayList<Integer>();
4 while (!(newArticles==null) & i<newArticles.size()) {
5 int error = 0;
6 int departmentId = in.nextInt();
7 ResultSet departments = con.createStatement().executeQuery(”SELECT id FROM department WHERE id=”+departmentId);
8 if (!departments.next())
9 con.createStatement().execute(”INSERT INTO department VALUES (”+departmentId+”,1)”);

10 else
11 con.createStatement().execute(”UPDATE department SET numberOfArticles=numberOfArticles+1 WHERE id =”+departmentId);
12 try {
13 con.createStatement().execute(”INSERT INTO article VALUES (”+newArticles.get(i)+”,”+departmentId+”)”);
14 } catch (SQLException e) {
15 error = 1;
16 };
17 i = i + 1;
18 if (error==0) {
19 con.commit();
20 addedArticles.add(i−1);
21 } else
22 con.rollback ();
23 }; }

C. Method parameters and body

We consider simple static Java methods manipulating only
internal variables and parameters. Variables can only be
typed as ‘int’, ‘java.util.List<java.lang.Integer>’
or ‘java.sql.ResultSet’. The method re-
ceives a connexion to the database (typed as
‘java.sql.Connection’), an input scanner (typed
as ‘java.util.Scanner’) and some lists of integers
(typed as ‘java.util.List<java.lang.Integer>’) as
input parameters. The connection with the database
is supposed to stay reliable and every SQL statement
to be processed without any technical problem during
the whole method execution. Semantics of all the Java
constructs conforms to the classical Java specification and
documentation. Semantics of all SQL statements conforms
to the classical SQL specification provided by ISO.

〈java-method〉 ::= static void 〈id〉 (〈db-con〉,〈inp〉
〈parameters〉) throws SQLException { 〈stmt〉* }

〈db-con〉 ::= Connection con
〈inp〉 ::= Scanner in
〈parameters〉 ::= {, List<Integer> 〈id〉 }*

1) Common statements and lists management: common
condition, loop and assignment statements, as well as
common integer expressions and boolean conditions can be
used. Lists can be manipulated using the ‘add(Integer)’,
‘remove(int)’, ‘get(int)’ and ‘size(int)’ methods.
The ‘java.util.ArrayList<Integer>’ implementation of
these methods is supposed to be used. A list variable can
be ‘null’.

〈stmt〉 ::= if (〈cond〉) {〈stmt〉*then} {else {〈stmt〉*else}}
?;

| while (〈cond〉) { 〈stmt〉* };
| {int | List<Integer>}? 〈id〉 = 〈expr〉;

| 〈id〉.add(〈int-expr〉);
| 〈id〉.remove(〈int-expr〉);

〈cond〉 ::= true
| false
| (〈cond〉1 {& | |} 〈cond〉2)
| (! 〈cond〉)
| (〈int-expr〉1 {< | == | >} 〈int-expr〉2)
| (〈id〉 == null)

〈expr〉 ::= 〈int-expr〉 | 〈list-expr〉
〈int-expr〉 ::= 〈id〉
| 〈integer〉
| (〈int-expr〉1 {+ | - | * | /} 〈int-expr〉2)
| (- 〈int-expr〉)
| (〈id〉.get(〈int-expr〉))
| (〈id〉.size())

〈list-expr〉 ::= 〈id〉
| null

| new ArrayList<Integer>()

2) Interacting with the outside world: the input scanner
parameter of the method can be used to get integer data
from the ”outside world” (user prompt, network access,
reading from a file, etc.). This interaction is supposed to
always succeed, without any technical problem.

〈stmt〉 ::= {int}? 〈id〉 = in.nextInt();

3) Reading data from the database: Data can be read
from the database using simple SQL queries. The ob-
tained ResultSet can be accessed using the ‘next()’ and
‘getInt(String)’ methods.

〈stmt〉 ::= 〈select〉
| 〈id〉.next();

〈select〉 ::= {ResultSet}?〈id〉=
con.createStatement().executeQuery
("SELECT{〈id〉i,}*〈id〉nFROM〈id〉tab{WHERE〈db-cond〉}

?");

2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation (SCAM)

172

〈db-cond〉 ::= (〈db-cond〉1 {AND | OR} 〈db-cond〉2)
| (NOT 〈db-cond〉)
| (〈id〉 {< | = | >} 〈db-int-expr〉)

〈db-int-expr〉 ::= 〈id〉
| 〈integer〉
| (〈db-int-expr〉1 {+ | - | * | /} 〈db-int-expr〉2)
| (- 〈db-int-expr〉)
| "+(〈int-expr〉)+"

〈int-expr〉 ::= 〈id〉tab.getInt("〈id〉att")
〈cond〉 ::= (〈id〉.next(〈int-expr〉))

4)Writing data into the database: data can be written
into the database using simple SQL INSERT, UPDATE
or DELETE statements. If the execution of a such a state-
ment provokes a violation of one of the database schema
integrity constraints, the database remains unmodified by
the statement, an exception is thrown within the program
and the method execution is stopped. Such exceptions can
be caught using a try/catch structure.

〈stmt〉 ::= 〈db-write〉
| try { 〈db-write〉 } catch (SQLException e) { 〈stmt〉* };

〈db-write〉 ::=con.createStatement().execute("INSERT

INTO 〈id〉 VALUES ({〈db-int-expr〉i,}*〈db-int-expr〉n)");
| con.createStatement().execute("UPDATE 〈id〉tab SET

〈id〉att=〈db-int-expr〉 {WHERE 〈db-cond〉}?");
| con.createStatement().execute("DELETE FROM 〈id〉

{WHERE 〈db-cond〉}?");

5) Transactions management: SQL transactions are man-
aged through the classical commit and rollback statements.
A commit statement makes permanent all the changes
made to the database by the program during the current
transaction, closes this transaction and opens a new one. A
rollback statement restores the database to its state at the
start of the current transaction, closes this transaction and
opens a new one. All pending transactions are supposed
committed at the beginning of the tested method.

〈stmt〉 ::= con.commit() ; | con.rollback() ;

III. A relational symbolic execution algorithm
for database programs

A. Inputs and outputs

The symbolic execution algorithm proposed here receives
as inputs the SQL DLL code describing the schema of the
tested database, the Java code of the tested method and
an execution path in this method. It produces as output
a relational constraints system, whose solutions are such
that when the method is executed with respect to any of
these solutions, its execution will follow the given path.

The execution path received as input by our algorithm is
supposed to be a finite path in the method’s control flow
graph [13]. It defines which branch of each encountered If
statement was taken, how many times the body of each
encountered While loop was executed (this number must
be finite), if the Catch clause of each of the encountered
Try/Catch statements was executed, and if the method
execution was brutally stopped by an uncaught exception
thrown by a 〈db-write〉 statement violating database in-
tegrity.

The relational constraints generated as output by our
algorithm are expressed using a widely used and well-
documented language, offering good analysis tools, called
Alloy [22]. Solving this constraints system allows to find
values for each of the inputs of the analyzed Java method.
These inputs include the content of each database table
at method start, the content of every list received as a
parameter by the method and the value returned by each
‘in.nextInt()’ call made by the method. If the constraint
system produced for a given path has no solution, this
means that the path is infeasible.

B. Algorithm principle

The principle of the algorithm is to perform a relational
symbolic execution of the program path received as input.
Each of the different values taken by the method variables
and by the database tables during the execution of the
path is represented by a corresponding symbolic relational
variable. First, symbolic execution generates constraints
stating that the variables corresponding to the initial con-
tent of each table in the database conform to the database
schema. Then, symbolic execution analyzes one by one the
method statements executed by the path, in the order in
which the path specifies that they are executed. Every time
a statement sets or changes the value of a method variable
or database table, symbolic execution generates a new
constraint stating how the symbolic variable representing
this new value can be computed from the other symbolic
variables. Every time an If, While, Try/Catch or DB-Write
statement is encountered, symbolic execution generates
a constraint over the symbolic variables such that when
the program is executed with respect to values satisfying
this constraint, the execution is guaranteed to take the
considered path.

C. Relational constraints generation rules

In this section, we illustrate the execution of the algorithm
over the sample database program detailed in figure 1. We
detail each step of the symbolic execution process over
the path where the While loop is executed once, the Then
branch of both the If statements are taken, the Catch
clause of the Try/Catch is not executed and no uncaught
exception is thrown (lines 1-9, 12-13, 17-20, 4 and 23).
At each step, we present the rules used by our algorithm
to generate Alloy symbolic variables and constraints.
This step by step rules description process allows us to
introduce the whole symbolic execution mechanism.

The algorithm always starts by generating symbolic vari-
ables and relational constraints for the database tables
defined in the database schema. For each table, an Alloy
type is first (1) defined so that every symbolic variable
representing a set of rows of the table will be a subset of
this type. Then, a symbolic variable is created to represent
the initial content of the table (2). Finally, constraints are
generated to enforce on this content the primary key (3)
as well as all the foreign keys (4) and check constraints (5)
defined in the table. For the database described in figure
1, the generated Alloy code is as follows:

2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation (SCAM)

173

module testCase // Name of the Alloy constraints model
// Type for TABLE department
(1) sig department{id : Int,numberOfArticles : Int}
pred equaldepartment[a:department,b: department] {
a· id = b·id && a·numberOfArticles = b·numberOfArticles}
fact{all disj a,b: department | !equaldepartment[a,b]}
(2) sig departmentINPDB2 in department {}
(3) fact{all disj a,b: departmentINPDB2 | !((a·id = b·id))}
(5) fact{all a: department | a·numberOfArticles > 0}
// Type for TABLE article
(1) sig article {barcode : Int,theDep : Int}
pred equalarticle[a:article , b: article]
{a·barcode = b·barcode && a·theDep = b·theDep}
fact{all disj a,b: article | ! equalarticle [a,b]}
(2) sig articleINPDB1 in article {}
(3) fact{all disj a,b: articleINPDB1 |
!((a·barcode = b·barcode))}
(4) fact{all a: articleINPDB1 |
one b:departmentINPDB2 |a·theDep = b·id}

The second step executed by our algorithm is to generate
a relational Alloy type for Java ‘List<Integer>’ objects
(1), and generic Alloy predicates and functions for their ad-
d/remove/get/size methods (2). Lists are modeled in Alloy
as an interval of indexes from 0 to a natural number, where
each index i is mapped to an integer value representing the
ith element of the list. The ‘null’ value is represented by
the Null singleton type (3).

(1) // List type definition
(3) one sig Null {}
sig List { index: set Int,elems: index →one Int }
fun head[l: set Int] : Int
{ { e: l | (all p: l | (!(e=p)) ⇔ (e< p)) } }
fun tail [l : set Int] : set Int
{ l − { e:l | (all p: l | (!(e=p)) ⇔ (e< p)) } }
pred isSuccessive[l : set Int]
{ all i : tail [l] | (one j:l | i = 1·add[j]) }
fact { all l : List |
(#l·index=0 | head[l· index]=0 && isSuccessive[l·index])}
pred isNull[l : List + Null] { l =Null }
pred isEmpty[l: List] { #l·index=0 }
(2) // Methods add − remove − get − size
pred add[l: List , e: Int,newList: List]
{ newList·index = l·index + #l·index &&
(all i : l · index | newList·elems[i] = l·elems[i])
&& newList·elems[#l·index] = e }
pred remove[l: List, e: Int,newList: List]
{ size [l]≥ e &&
newList·index = l·index − (#l·index)·sub[1]
&& (all i:newList·index | (i< e ⇔
newList·elems[i] = l·elems[i])
&& (i≥ e ⇔ newList·elems[i] = l·elems[i · add[1]])) }
fun get[l : List , i : Int] : Int { l · elems[i] }
fun size[l : List] : Int { #l·index }

The third step executed by our algorithm is to define
relational variables for the initial content of each list
parameter of the method. For the method considered in
this section, the following code is generated:

one sig newarticlesIN1 in List + Null {}

The algorithm can then proceed with symbolic execution
of the tested method. It follows the path received as input
and considers all statements one by one. In the case of
the method and path considered in this section, the two

first statements to be executed are Assignment statements.
Symbolic execution for Assignment creates a new symbolic
variable of the correct type to represent the new value
of the assigned variable (1) and generates a constraint to
specify that this new symbolic variable contains the value
computed by evaluating the expression on the right of the
‘=’ symbol (2).

(1) one sig iREL1 in Int {}
(2) fact { iREL1 = 0 }

(1) one sig addedarticlesREL2 in List {}
(2) fact { isEmpty[addedarticlesREL2] }

The second statement in the path is a While statement.
As the path specifies that the loop body must be executed
this time, a relational constraint is generated to specify
that the loop condition should be true:

fact{(! isNull [newarticlesIN1]&&(iREL1< size[newarticlesIN1]))}

Then the algorithm proceeds with symbolic execution of
the statements in the loop body, as specified within the
input path. The first statement is an Assignment state-
ment:

one sig errorREL2 in Int {} fact { errorREL2 = 0 }

Symbolic execution for use of the input scanner simply
creates a new symbolic variable to represent the scanned
value:

one sig departmentidIN2 in Int {}

Symbolic execution for Select statements creates a new
symbolic variable of the type of the table on which the
Select query is executed (1), to represent the content
of the ResultSet variable. A relational constraint is then
generated (2) to specify that a row is part of the ResultSet
if and only if it is part of the current content of the table
on which the Select query is executed and that it enforces
the WHERE condition of the Select query if it exists:

(1) sig departmentsREL3 in department {}
(2) fact { all e: department | (e in departmentINPDB2 &&
(e· id = departmentidIN2)) ⇔ e in departmentsREL3}

Symbolic execution for Select also creates a symbolic
variable to represent the specific order in which the rows
were returned by the Select query. This relational variable
(1) represents an interval of indexes from 0 to the number
of rows returned by the select statement (2), where each
index is mapped to one of the returned rows (3):

(1) sig departmentsREL3indexes in Int {
mapdepartmentsREL3: one departmentsREL3 }
(2) fact { (#departmentsREL3indexes=0 ||
(head[departmentsREL3indexes] = 0 &&
isSuccessive [departmentsREL3indexes]))
&& #departmentsREL3indexes = #departmentsREL3 }
(3) fact { all disj a,b: departmentsREL3indexes |
!(a·mapdepartmentsREL3=b·mapdepartmentsREL3) }

As the path specifies that the Then branch of the If state-
ment must be executed this time, a relational constraint
is generated to specify that the If condition should be

2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation (SCAM)

174

true. For each ResultSet object, the algorithm records the
number of times the ‘next()’ method has been called on
this object. This value represents the index of the row
pointed by the cursor of the ResultSet at the current
execution state of the path. When the boolean value
returned by the ‘next()’ method is used in an If or While
condition, this value states if the number of rows in the
ResultSet is greater or equal to the number of times the
‘next()’ method has been called so far on this ResultSet:

fact{!(#departmentsINTERNALPROG3indexes≥ 1)}

Symbolic execution for Insert creates a new symbolic
variable (1) for the new content of the table on which the
Insert statement is executed. Then a relational constraint
is generated stating that this new variable can be obtained
by adding one row with the correct attribute values to
the old one (2). Finally, relational constraints are added
to specify that, in the considered path, no constraint was
violated during insert. In this case, a relational constraint
is added to state that there should not be any row in the
previous content of the table whose primary key value is
the same as in the row inserted by the statement (3):

(1) sig departmentRELDB1 in department {}
(2) fact { one e:department | departmentRELDB1 =
departmentINPDB2 + e && e·numberOfArticles = 1
&& e·id = departmentidIN2 }
(3) fact { no e:departmentINPDB2 | e·id=departmentidIN2 }

The same process is applied for the second insert state-
ment. A relational constraint (1) is added to state that
the inserted article should reference an existing row in the
department table:

sig articleRELDB2 in article {}
fact { one e:article | articleRELDB2 = articleINPDB1 + e
&& e·theDep = departmentidIN2 &&
e· barcode = get[newarticlesIN1,iREL1] }
fact{no e:articleINPDB1|e·barcode=get[newarticlesIN1,iREL1]}
(1) fact{one e:departmentRELDB1|e·id=departmentidIN2}

The assignment statement is then symbolically executed:

one sig iREL4 in Int {}
fact { iREL4 = (iREL1)·add[1] }

As the path specifies that the Then branch of the If state-
ment must be executed this time, a relational constraint is
generated to specify that the If condition should be true:

fact { (errorREL2 = 0) }

Symbolic execution for Commit statements simply does
nothing. Symbolic execution for Rollback statements tells
the algorithm to use the symbolic variable representing the
content of each database table before the last executed
Commit statement (saved by the algorithm) to represent
the current content of the table.

Symbolic execution for Add and Remove statements cre-
ates a new relational variable to represent the new content
of each variable which is currently referencing the List
object modified by the statement. A constraint is added to
relate the old and new object rerferenced by these variables
using the add/remove Alloy predicates defined earlier:

one sig addedarticlesREL6 in List {}
fact { add[addedarticlesREL2,
(iREL4)·sub[1],addedarticlesREL6] }

As the path specifies that the loop body must not be
executed any more, a relational constraint is generated to
specify that the loop condition should be false:

fact{!((! isNull [newarticlesIN1]&&(iREL4< size[newarticlesIN1])))}

As all the statements in the path have been symbolically
executed, the algorithm stops and returns the generated
Alloy constraints model. The Alloy analyzer [22] can be
asked to find a valuation for the defined relational vari-
ables which satisfies the constraints, using the commands
detailed below. It should be observed that this valuation
provides an assignment for the method inputs that will
exercise the symbolically executed path, as well as the
value of each method variable and database table at the
end of the method execution over these inputs. This is
particularly useful, as to produce unit tests, one needs both
adequate inputs and the corresponding outputs produced
by the method.

assert inputsExist{!(newarticlesIN1 in List + Null &&
departmentidIN2 in Int && articleINPDB1 in article
&& departmentINPDB2 in department) }
check inputsExist

Table I describes the full set of rules used by the algorithm
to translate between Java/SQL and Alloy expressions and
conditions. Table II details the relational constraints gen-
erated by the algorithm for every possible behavior of an
Insert, Update or Delete statement. Table III explains the
abbreviations used in tables I and II.

IV. Examples of test set generation

The algorithm proposed in this work has been coded in
Java and exercised over a set of sample database programs.
For each program, a set of execution paths have been
selected to satisfy a classical coverage criterion [13]. Each
path was symbolically executed and we asked the Alloy
analyzer [22] to find solutions for the constraints generated
by the algorithm. Each of these computed solutions was
checked to be actually input data with respect to which
the experimented program was guaranteed to follow the
selected path.

The Alloy analyzer is a program which allows to solve Alloy
constraints in order to find structures that satisfy them.
Basically, it transforms the set of relational constraints into
a set of boolean constraints, and solves them using a SAT
solver. The process requires to define the maximal scope
of the structures the Alloy analyzer should search in [22].
The set of possible structures within this scope is then
explored, and the found solutions are returned one by one
on demand. In case no solutions to the constraints can be
found within a given maximal scope, the solving process
is repeated with an increased value for the scope, until it
eventually reaches a threshold value.

Three sample database programs were selected to offer a
clear illustration of how our algorithm can symbolically

2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation (SCAM)

175

TABLE I. Translation of Java/SQL expressions and conditions into Alloy

Parameters alloyOf(Paramaters)
〈id〉 alloyName
z ∈ Z z
(〈int-expr〉1 {+|-|*|/} 〈int-expr〉2) (alloyOf(〈int-expr〉1)).{add | sub | mul | div}[alloyOf(〈int-expr〉2)]
(- 〈int-expr〉) (- (alloyOf(〈int-expr〉)))
〈id〉.get(〈int-expr〉) get[alloyName,alloyOf(〈int-expr〉)]
〈id〉.size() size[alloyName]
〈id〉tab.getInt("〈id〉att") numberOfCallsToNexttab.mapalloyNametab[〈id〉att]

fact{#alloyNametabindexes >= numberOfCallsToNexttab}
〈id〉=null; fact{ isNull[alloyName] }
〈id〉=new ArrayList<Integer>(); fact{ isEmpty[alloyName] }
true false (0=0) (0=1)
(〈cond〉1 {&||} 〈cond〉2) (alloyOf(〈cond〉1) {&&|||} alloyOf(〈cond〉2))
(! 〈cond〉) (!(alloyOf(〈cond〉))
(〈int-expr〉1 {<|==|>} 〈int-expr〉2) ((alloyOf(〈int-expr〉1)) {<|=|>} (alloyOf(〈int-expr〉2)))
(〈id〉==null) isNull[alloyName]
〈id〉.next() (#alloyNameindexes >= numberOfCallsToNext)
(〈db-cond〉1 {AND|OR} 〈db-cond〉2), row (alloyOf(〈db-cond〉1,row) {&&|||} alloyOf(〈db-cond〉2,row))
(NOT 〈db-cond〉), row (!(alloyOf(〈db-cond〉,row)))
(〈id〉{<|=|>} 〈db-int-expr〉), row (row.〈id〉 {<|=|>} (alloyOf(〈db-int-expr〉,row)))
z ∈ Z, row z
〈id〉, row row.〈id〉
(〈db-int-expr〉1 {+|-|*|/} 〈db-int-expr〉2), row (alloyOf(〈db-int-expr〉1,row)).{add | sub | mul | div}[alloyOf(〈db-int-expr〉2,row)]
(- 〈db-int-expr〉), row (- (alloyOf(〈db-int-expr〉,row)))
"+〈int-expr〉+", row alloyOf(〈int-expr〉)

TABLE II. Relational constraints generation for 〈db-write〉 statements

INSERT INTO 〈id〉
VALUES
(〈db-int-expr〉1,...,
〈db-int-expr〉i,...,
〈db-int-expr〉n)

if (no exception thrown in path by this INSERT) {
sig freshAlloyVar in 〈id〉 {}
fact { one e:〈id〉 | freshAlloyVar=alloyName+e && e·att∗ = alloyOf(〈db-int-expr〉∗) }
fact { no e:alloyName | e· pk =alloyOf(〈db-int-expr〉pkpos) } Primary key is not violated

fact { one e:fktab
∗ | e· fkpk∗ = alloyOf(〈db-int-expr〉fkpos∗

) } Every foreign key is not violated

}else{Logical disjunction between every possible constraint violation given the database schema and this insert:
The inserted primary key value already exists in the table:

fact { one e:alloyName | e· pk =alloyOf(〈db-int-expr〉pkpos) }
An inserted foreign key value references no row:

fact { no e:fktab
i | e· fkpk

i
= alloyOf(〈db-int-expr〉fkpos

i
) }

An inserted attribute can violate a check constraint:

fact {!(〈db-int-expr〉copos coright)} }

UPDATE 〈id〉
SET 〈id〉att=〈db-int-expr〉
WHERE 〈db-cond〉

if (no exception thrown in path for this UPDATE) {
sig freshAlloyVar in 〈id〉 {}
fact { all e:alloyName | (alloyOf(〈db-cond〉,〈id〉 , e) && (one y:freshAlloyVar |

y·att
∗−{〈id〉

att
}
= e·att

∗−{〈id〉
att

}
&& y·〈id〉att = alloyOf(〈db-int-expr〉,〈id〉,e)))

|| (!(alloyOf(〈db-cond〉,〈id〉 , e)) && (one y:freshAlloyVar | equal〈id〉[y,e])) }
fact { all y:freshAlloyVar | one e:alloyName | (alloyOf(〈db-cond〉,〈id〉 , e) &&

y·att
∗−{〈id〉

att
}
= e·att

∗−{〈id〉
att

}
&& y·〈id〉att = alloyOf(〈db-int-expr〉,〈id〉,e)))

|| (!(alloyOf(〈db-cond〉,〈id〉 , e)) && (one y:freshAlloyVar | equal〈id〉[y,e])) }
fact { all disj a,b:freshAlloyVar | !(a·pk = b·pk) } Primary key is not violated
If 〈id〉att = fki, updated rows should still reference a row

fact { all a:freshAlloyVar | one b:fktab
i | a·〈id〉att = b·fkpk

i
}

If 〈id〉att = pk, none of the updated rows should have been referenced by another row

fact { all e:alloyName | no f:ifk tab
∗ | (alloyOf(〈db-cond〉,〈id〉 , e) && e·〈id〉att = f·ifkatt

∗) }
} else { Logical disjunction between every possible constraint violation given the database schema and this update:

Update on primary key leads to duplicate primary keys:
fact { some disj a,b:alloyName | ((alloyOf(〈db-cond〉,〈id〉tab , a)

&& alloyOf(〈db-cond〉,〈id〉tab,b) && (alloyOf(〈db-int-expr〉,〈id〉,a)
= alloyOf(〈db-int-expr〉,〈id〉, b))) || (!(alloyOf(〈db-cond〉,〈id〉tab , a))
&& alloyOf(〈db-cond〉,〈id〉tab,b) && (a·〈id〉att = alloyOf(〈db-int-expr〉,〈id〉,b)))) }

Trying to update the primary key of a referenced row:
fact { some a:alloyName | alloyOf(〈db-cond〉,〈id〉tab , a)

&& (some ifktab
j | (b·ifkatt

j =a·〈id〉att)) }

Update on foreign key let row without row to reference:
fact { some a:alloyName | alloyOf(〈db-cond〉,〈id〉tab , a)

&& (no b:fktab
i | b·fkpk

i
=alloyOf(〈db-int-expr〉,〈id〉,a)) }

An inserted attribute violates an arithmetic constraint:
fact { some a:alloyName | alloyOf(〈db-cond〉,〈id〉tab , a)

&& !(alloyOf(〈db-int-expr〉,〈id〉, a))coright

i
)}} }

DELETE FROM 〈id〉
WHERE 〈db-cond〉

if (no exception thrown in path for this DELETE) {
sig freshAlloyVar in 〈id〉 {}
fact {freshAlloyVar = alloyName − {e:alloyName | alloyOf(〈db-cond〉,〈id〉tab , e)}}
Not trying to delete a referenced row

fact {all e:alloyName | no f:ifktab
j | (alloyOf(〈db-cond〉,〈id〉tab , e) && e·pk = f·ifkatt

j)}

} else { Logical disjunction between every possible constraint violation given the database schema and this update:
Trying to delete a referenced row:

fact {some e:alloyName | alloyOf(〈db-cond〉,〈id〉tab , e) && (some f:ifktab
j | e·pk = f·ifkatt

j) } } }

2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation (SCAM)

176

TABLE III. Abbreviations list

Abbreviation Meaning
freshAlloyVar A new Alloy variable name that has still not been used in the Alloy code generated so far.

alloyNamesuperscript

subscript
if (〈id〉superscript

subscript
refers to a database table name) then The symbolic variable that represents the current content of

table 〈id〉superscript

subscript
) else The symbolic variable that represents the current content of the Java variable 〈id〉superscript

subscript

numberOfCallsToNextsub Number of call made to the next() method of the ResultSet object in variable 〈id〉sub

atti Name of the ith attribute in the list of attributes of table 〈id〉

pksuperscript

subscript
Name of the primary key attribute of table 〈id〉superscript

subscript
.

pkpos Position of primary key in the list of attributes of table 〈id〉

fktab
i Name of the table referenced by the ith foreign key in the list of foreign keys of table 〈id〉

fkpk
i

Name of the primary key attribute of the table referenced by the ith foreign key in the list of foreign keys of table 〈id〉
fkpos

i
Position of the foreign key attribute, declared by the ith foreign key in the list of table 〈id〉, in the list of attributes of
table 〈id〉

fki Name of the foreign key attribute declared by the ith foreign key in the list of table 〈id〉

ifktab
i Name of the table where is declared the ith foreign key referencing table 〈id〉 in the whole schema

ifkatt
i Name of the foreign key attribute declared by the ith foreign key referencing table 〈id〉 in the schema

copos
i

Position of the attribute constrained by the ith check constraint declared in table 〈id〉

coright

i
Right part of the ith check constraint declared in table 〈id〉 (i.e. right part of ”a>0” is ”>0”)

xx∗ means ”for each xxi” and xx∗−{y} means ”for each xxi except from y”

TABLE IV. Statistics for the selected samples

SLOC SQL statements Criterion Maximal scope value Variables Constraints Solving time
1 45 1 Branch coverage 3 67 113 9245 ms
2 56 18 Statement coverage 20 47 120 499685 ms
3 72 4 Branch coverage 3 120 180 16437 ms

execute list management primitives, SQL statements and
transactions.

The first sample is a Java method which performs repeated
manipulations of integers and lists using assignment, If
and While statements. First, two lists are received as
parameters. If they are both not null and have the same
size, the method reads as many integers from the outside
world as the number of elements in the lists. A third list is
created using these integers in the order in which they were
read. The elements of the three lists are then compared.
If the second list is an inverted version of the first one
and if the third list is a copy of the first list where the
value of each element was doubled, then the three lists are
inserted into a database table. The database schema and
the way the lists are inserted in this database constrain the
elements in the first list to be different from each other and
their value to range between one and five.

The second sample is a Java method which performs
repeated reads and writes in a database containing four
tables that represent customers making purchases of prod-
ucts. Customers with few purchases are prospect cus-
tomers. First, the program inserts a new customer and
new purchases into the database. Then it computes the
total number and cost of the purchases made by each
customer, as well as the total number of purchases for each
product, and then updates the corresponding customer
and product attributes. All unpurchased products are
deleted, and the name of the customers having made no
purchase is changed. Customers whose total count and cost
of purchase is lower than two are registered as prospect
customers. Finally, a product is replaced by another one
in every purchase details, and this product is deleted.

The third sample is a Java method which mixes SQL
statements with traditional Java code and uses SQL trans-
actions. The database contains two tables that represent
authors writing theater plays. The code contains two
transactions. During a first transaction, some authors are

added and some removed from the database. During a
second transaction, plays are added for the previously
added authors, and some statistics are computed for each
author. If a database schema constraint is violated by a
SQL statement in one of the two transactions, this whole
transaction is cancelled and the database is rolled back to
the state it was when the transaction was launched.

The source code of these three samples, the Alloy con-
straints generated by our algorithm and the resulting gen-
erated test cases, as well as all the detailed performance-
related information can be found on the web1. The main
information are synthesized in table IV, including the
SLOC and the number of SQL statements in the sample,
the coverage criterion satisfied by the generated test set,
the maximal scope value used in the Alloy analyzer to
solve the constraints produced for the sample, the total
number of relational variables and constraints solved to
find a test set for the sample, and the time for solving
them. These measures were realized on a dual core Intel
Core i5 processor at 1.8GHz (256 KB L2 cache per core
and 3 MB L3 cache) with 8GB of dual channel DDR3
memory at 1600 MHz using the MiniSat solver. The oder-
of-magnitude difference in constraints solving time for the
second sample is due to the use of a larger maximal scope
value in the Alloy analyzer.

The subset of Java/SQL supported by our algorithm allows
integers as only primary type in Java code and database
tables. This choice was adopted to make the modeling
and use of the constraint generation rules conceptually
simpler. This does not limit the power of the proposed
technique since all other usual primitive types such as
booleans, strings, and floating point numbers, but also
data structures such as sets, arrays and matrices, and
Java objects can be mapped to integers, simulated using
lists of integers, or directly modeled into Alloy (see e.g.
[23]). These reasons explain why the previously described

1See http://info.fundp.ac.be/ mmr/scam13

2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation (SCAM)

177

samples manipulate integer values, like author or play
names, which are not usually typed as integers.

V. Conclusion and related work

In this work, we have proposed and demonstrated a com-
plete algorithm to execute symbolically simple static Java
methods using SQL CRUD statements and transactions
to interact with a relational database, subject to integrity
constraints. Given the schema of the database, the code
of the method and an execution path in this method, the
algorithm generates a relational symbolic variable for each
potential value taken by a method variable or database
table before and during the path execution. It generates
as well an Alloy relational constraints model constraining
these relational symbolic variables to guarantee the execu-
tion of the considered path. Any solution to the produced
relational constraints describes input data for the method
(as well as the corresponding output), with respect to
which the program can be executed and is guaranteed
to follow the considered execution path. Given a set of
execution paths to test in the database program chosen
using an existing algorithm [12] to satisfy a given code
coverage criterion [13], the proposed algorithm can be used
to generate test data, including database initial and final
states, for each path in the set.

An early approach that has considered test data generation
for imperative programs interacting with a relational SQL
database is [19]. The paper proposes to transform the
program, thereby inserting new variables representing the
database structure, and translating all SQL statements
(and thus integrity checks) into imperative program code.
Classical white-box testing approaches can then be applied
to the modified program. In [20], the authors propose an
algorithm for testing an imperative program performing
SELECT queries on a relational SQL database, based on
concolic execution [11]. Concolic execution is an extension
[12] of the classical symbolic execution used in this work.
It mixes symbolic execution with a simultaneous concrete
dynamic execution of the considered execution paths. In
[20], the program is first run on random input data and
on a randomly populated input database. Given such a
dynamic exploration of an execution path of the program,
the authors model and solve the problem of finding other
inputs, allowing to explore dynamically another execution
path, as a set of integer and string constraints over the
quantity and field contents of the records in the database
and over the input variables of the tested program. In
[24], authors adopt a similar concolic approach where the
program is executed on a parameterized mock database.
In [25] and [26], authors adapt this approach to testing of
programs running on an existing database, so that input
test data can be selected in this database instead of being
generated from scratch. In [27], the same concolic approach
is applied considering advanced code coverage criteria.
Finally, translation between database schemas/program-
s/queries and Alloy has been considered in other contexts
[28], [29], [30].

Compared to [20], our approach does not need to transform
the original program by adding potentially complex pieces
of imperative code, to simulate the execution of SQL

statements by a DBMS. Compared to [20], [24], [25],
[26], [27], our approach handles Insert, Update and Delete
statements, as well as transactions management primitives
(Commit and Rollback) and database integrity constraints
(like primary keys or foreign keys) which are crucial com-
ponents of database applications. On the other hand, our
approach only considers SQL statements whose structure
is completely defined statically, where the concolic process
used in [20], [24], [25], [26], [27] can allow to account,
at least at some extent, for dynamically crafted SQL
statements. This point should be tempered by the fact that
our approach evaluates a particular path in the program at
a time, which makes easier to reassemble statically the SQL
statements supposed to be dynamically assembled during
the execution of the path.

In future work, it would be relevant to evaluate how and
up to which extent the symbolic execution mechanism
proposed can be practically generalized to a larger part
of the Java and SQL languages. Similarly, it should be
investigated how and up to which extent fully-dynamic
SQL can be integrated with our approach, possibly relying
on static analysis [31], [32], [33] or on concolic execution.
These tasks notably pave the way towards an extensive
evaluation of the method on large scale industrial systems.
Secondly, it happens frequently that SQL statements have
a non-deterministic behavior, either because the state-
ment has a non-deterministic semantics, or because the
database is modified concurrently by several programs.
How the approach proposed here can handle at best such
non-deterministic behaviors remains a topic for further
research. Thirdly, our approach allows to be used with
respect to any classical code coverage criterion based on
the notion of an execution path. Nevertheless, several
works [34], [35], [36], [37], [38] propose test adequacy crite-
ria particularly adapted to the testing of database-driven
programs. Integrating such particular coverage criteria
into our constraint-based approach is a topic of ongoing
research. Finally, [39] and [40] propose new approaches to
solve and evaluate the satisfiability of sets of relational
constraints. It would be relevant to study how the tech-
nique proposed here could benefit from these approaches,
notably to detect unfeasible paths more efficiently or to
offer improved constraints solving time performance.

Acknowledgment

This work has been funded by the Belgian Fund for
Scientific Research (F.R.S.-FNRS). The authors would like
to thank Vincent Englebert for useful discussions and the
anonymous reviewers for their valuable comments.

References

[1] P. C. Jorgensen, Software Testing: A Craftsman’s Approach,
Third Edition, 3rd ed. AUERBACH, 2008.

[2] C. Kaner, H. Q. Nguyen, and J. L. Falk, Testing Computer
Software, 2nd ed. New York, NY, USA: Wiley & Sons, 1993.

[3] R. Ramler and K. Wolfmaier, “Economic perspectives in test
automation: balancing automated and manual testing with
opportunity cost,” in Proceedings of the 2006 international
workshop on Automation of software test, ser. AST ’06. New
York, NY, USA: ACM, 2006, pp. 85–91.

2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation (SCAM)

178

[4] J. Malburg and G. Fraser, “Combining search-based and
constraint-based testing,” in Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 436–439.

[5] P. McMinn, “Search-based software test data generation: a
survey: Research articles,” Softw. Test. Verif. Reliab., vol. 14,
no. 2, pp. 105–156, Jun. 2004.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler, “Exe: Automatically generating inputs of death,” in In
Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS, 2006.

[7] F. Degrave, T. Schrijvers, and W. Vanhoof, “Towards a frame-
work for constraint-based test case generation,” in Proceedings
of the 19th international conference on Logic-Based Program
Synthesis and Transformation, ser. LOPSTR’09. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 128–142.

[8] A. Gotlieb, B. Botella, and M. Rueher, “Automatic test data
generation using constraint solving techniques,” SIGSOFT
Softw. Eng. Notes, vol. 23, no. 2, pp. 53–62, Mar. 1998.

[9] C. Meudec, “ATGen: automatic test data generation using con-
straint logic programming and symbolic execution,” Software
Testing Verification and Reliability, vol. 11, no. 2, 2001.

[10] A. J. Offutt, Z. Jin, and J. Pan, “The dynamic domain reduc-
tion procedure for test data generation,” Softw. Pract. Exper.,
vol. 29, no. 2, pp. 167–193, Feb. 1999.

[11] K. Sen, D. Marinov, and G. Agha,“Cute: a concolic unit testing
engine for c,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, pp.
263–272, Sep. 2005.

[12] C. Cadar and K. Sen, “Symbolic execution for software testing:
three decades later,”Communication of the ACM, vol. 56, no. 2,
pp. 82–90, Feb. 2013.

[13] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test
coverage and adequacy,” ACM Comput. Surv., vol. 29, no. 4,
pp. 366–427, Dec. 1997.

[14] S. Bardin and P. Herrmann, “Pruning the search space in path-
based test generation,” in Proceedings of the 2009 International
Conference on Software Testing Verification and Validation,
ser. ICST ’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 240–249.

[15] J. C. King, “Symbolic execution and program testing,” Com-
mun. ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976.

[16] L. A. Clarke, “A system to generate test data and symbolically
execute programs,” IEEE Trans. Softw. Eng., vol. 2, no. 3, pp.
215–222, May 1976.

[17] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic
test data generation,” IEEE Trans. Softw. Eng., vol. 17, no. 9,
pp. 900–910, Sep. 1991.

[18] C. Date, An Introduction to Database Systems, 8th ed. Boston,
MA, USA: Addison-Wesley Longman Pub. Co., Inc., 2003.

[19] M. Y. Chan and S. C. Cheung, “Testing database applications
with sql semantics,” in In Proceedings of the 2nd International
Symposium on Cooperative Database Systems for Advanced
Applications. Springer, 1999, pp. 363–374.

[20] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input
generation for database applications,” in Proceedings of the
2007 international symposium on Software testing and analysis,
ser. ISSTA ’07. New York, NY, USA: ACM, 2007, pp. 151–162.

[21] M. Marcozzi, W. Vanhoof, and J.-L. Hainaut, “Test input
generation for database programs using relational constraints,”
in Proceedings of the Fifth International Workshop on Testing
Database Systems, ser. DBTest ’12. New York, NY, USA:
ACM, 2012, pp. 6:1–6:6.

[22] D. Jackson, Software Abstractions: Logic, Language, and Anal-
ysis. The MIT Press, 2006.

[23] M. L. Crane and J. Dingel, “Runtime conformance checking of
objects using alloy,” Electronic Notes in Theoretical Computer
Science, vol. 89, no. 2, pp. 2 – 21, 2003.

[24] K. Taneja, Y. Zhang, and T. Xie, “Moda: Automated test gen-
eration for database applications via mock objects,” in In Proc.

IEEE/ACM International Conference on Automated Software
Engineering (ASE 2010), short paper, 2010.

[25] C. Li and C. Csallner, “Dynamic symbolic database application
testing,” in Proceedings of the Third International Workshop on
Testing Database Systems, ser. DBTest ’10. New York, NY,
USA: ACM, 2010, pp. 7:1–7:6.

[26] K. Pan, X. Wu, and T. Xie, “Generating program inputs
for database application testing,” in Proc. 26th IEEE/ACM
International Conference on Automated Software Engineering
(ASE 2011), November 2011.

[27] ——, “Database state generation via dynamic symbolic ex-
ecution for coverage criteria,” in Proceedings of the Fourth
International Workshop on Testing Database Systems. New
York, NY, USA: ACM, 2011.

[28] A. Cunha and H. Pacheco, “Mapping between alloy specifi-
cations and database implementations,” in Proceedings of the
2009 Seventh IEEE International Conference on Software En-
gineering and Formal Methods, ser. SEFM ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 285–294.

[29] D. Jackson and M. Vaziri, “Finding bugs with a constraint
solver,” SIGSOFT Softw. Eng. Notes, vol. 25, no. 5, pp. 14–
25, Aug. 2000.

[30] S. A. Khalek and S. Khurshid, “Systematic testing of database
engines using a relational constraint solver,” in Proceedings of
the 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation, ser. ICST ’11. Washing-
ton, DC, USA: IEEE Computer Society, 2011, pp. 50–59.

[31] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Static
checking of dynamically generated queries in database appli-
cations,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 4,
Sep. 2007.

[32] S. Thomas, L. Williams, and T. Xie, “On automated prepared
statement generation to remove sql injection vulnerabilities,”
Inf. Softw. Technol., vol. 51, no. 3, pp. 589–598, Mar. 2009.

[33] A. Christensen, A. M,àö,àèller, and M. Schwartzbach, “Precise
analysis of string expressions,” in Static Analysis, ser. Lecture
Notes in Computer Science, R. Cousot, Ed. Springer Berlin
Heidelberg, 2003, vol. 2694, pp. 1–18.

[34] W. G. J. Halfond and A. Orso, “Command-form coverage
for testing database applications,” in Proceedings of the 21st
IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 69–80.

[35] G. M. Kapfhammer and M. L. Soffa, “A family of test adequacy
criteria for database-driven applications,” in Proceedings of the
9th European software engineering conference held jointly with
11th ACM SIGSOFT international symposium on Foundations
of software engineering, ser. ESEC/FSE-11. New York, NY,
USA: ACM, 2003, pp. 98–107.

[36] M. J. Suárez-Cabal and J. Tuya, “Using an sql coverage mea-
surement for testing database applications,” in Proceedings of
the 12th ACM SIGSOFT twelfth international symposium on
Foundations of software engineering, ser. SIGSOFT ’04/FSE-
12. New York, NY, USA: ACM, 2004, pp. 253–262.

[37] M. J. Suarez-Cabal and J. Tuya, “Structural coverage criteria
for testing SQL queries,” Journal of Universal Computer Sci-
ence, vol. 15, no. 3, pp. 584–619, 2009.

[38] C. Zhou and P. Frankl, “Mutation testing for java database ap-
plications,” in Proceedings of the 2009 International Conference
on Software Testing Verification and Validation, ser. ICST ’09.
Washington, DC, USA: IEEE Comp. Soc., 2009, pp. 396–405.

[39] A. A. El Ghazi and M. Taghdiri, “Relational reasoning via smt
solving,” in Proceedings of the 17th international conference on
Formal methods, ser. FM’11. Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 133–148.

[40] E. Torlak, F. S.-H. Chang, and D. Jackson, “Finding minimal
unsatisfiable cores of declarative specifications,” in Proc. of the
15th international symposium on Formal Methods, ser. FM ’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 326–341.

2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation (SCAM)

179

	Session 6 — Databases and Ontologies
	A Relational Symbolic Execution Algorithm for Constraint-Based Testing of Database Programs
	Wim Vanhoof
	Jean-Luc Hainaut

