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Method for modeling additive color
effect in photonic polycrystals with form
anisotropic elements: the case of Entimus

imperialis weevil
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Olivier Deparis, and Jean-Pol Vigneron

Department of Physics, University of Namur, rue de Bruxelles, 61, B-5000, Namur, Belgium
∗sebastien.mouchet@unamur.be

Abstract: The calculation of the reflectance of photonic crystals having
form-birefringent anisotropic elements in the crystal unit cell, such as
cylinders, often turns out to be problematic, especially when the reflectance
spectrum has to be computed according to different crystal orientations as in
polycrystals for instance. The method we propose here solves this problem
in the specific case of photonic crystals whose periodicities are such that
there are no diffraction orders except Bragg reflection in the visible range.
For a given crystal orientation, the crystal is sliced into layers and the
periodic spatial variations of the dielectric function ε are homogenized.
Thanks to that homogenization, the calculation can be performed using
standard thin film computation codes. In order to demonstrate the usefulness
of our method, we applied it to the case of a natural photonic polycrystal
found on the cuticle of Entimus imperialis weevil which is a remarkable
example of additive color effect. Although each photonic crystal grain of the
polycrystal produces a single bright iridescent color, a non-iridescent green
matt coloration is perceived by the human eye due to multiscale averaging
effects.

© 2013 Optical Society of America

OCIS codes: (160.5298) Photonic crystals; (160.5293) Photonic bandgap materials;
(330.1690) Color; (200.0200) Optics in computing; (050.1755) Computational electromagnetic
methods; (160.1435) Biomaterials; (300.6170) Spectra.
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1. Introduction

Photonic crystals (PCs) are among the most remarkable ordered optical materials. A PC is a
periodic optical medium, consisting of regular spatial arrangements of materials with different
refractive indices [1–3]. A 2D or 3D PC film has a finite thickness and periodic variations of the
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dielectric permittivity, both in the direction perpendicular to the film surface and in the lateral
directions, generaly giving rise to specular reflection and diffraction. This kind of material can
be classified into the more general family of stratified media with lateral periodicity [4].

Usually, the optical reflectance, transmittance and absorbance of PC films can be calculated
by plane wave methods such as the Rigorous Coupled Wave Analysis (RCWA) method [5, 6].
Details about RCWA can be found in Appendix A. This method relies on the calculation of the
Fourier transform of the laterally periodic dielectric function ε (−→r ) and of the fields

−→
E (−→r )

and
−→
H (−→r ). As far as analytical treatment of the Fourier transform of ε (−→r ) is desired, the use

of simple island shapes (cylinders or parallelepipeds with axes perpendicular to the layer inter-
faces) inserted in the layer host materials is required. Numerical calculations are usually rather
demanding in computation time and convergence must be checked according to the number
of plane waves. However, reflectance, transmittance or absorbance spectrum of periodic mul-
tilayer films (i.e. 1D PCs), which are periodic stacks of laterally homogeneous layers, can be
computed by standard thin film solvers relying on a 1D scattering matrix (1D SM) formal-
ism [7, 8]. In this case, Maxwell’s equations are solved for stratified media only composed of
homogeneous layers. The invariance of dielectric function ε (−→r ) in lateral directions leads to
much shorter calculation times.

The calculation of the reflectance (or transmittance) for different crystal orientations of a PC
film is much more complicated to perform when the crystal unit cell contains elements with
form-birefringent anisotropy such as cylinders [9]. Crystal orientations, defined by Miller in-
dices, are fictitious lines linking the PC nodes. Since some orientations can exhibit a higher
density of nodes than others, the reflectance of the PC is different according to the orientation
under which it is viewed. In order to solve this issue, we developed an approximation method
allowing to calculate the reflectance of PC films with form anisotropic elements viewed under
different orientations. Moreover, multiscale effects of specific structures, such as additive col-
ors, were taken into account by calculating the reflectance of PC films according to different
crystal orientations and incidence angles.

Hereafter, the calculation method is described first. Then the usefulness of our method is
illustrated in the case of 3D PC grains (forming a polycrystal) found on the cuticle of the
Brazilian weevil Entimus imperialis (Forster 1771). It is one nice example of structurally col-
ored nanostructures found in living organisms [10]. In the case of insects, natural PCs consist of
porous biopolymers such as chitin. Like many biological structures, the PC grains of the weevil
were recently replicated by biotemplating [11]. Replicated structures can serve in biological
applications such as gas, temperature or pH sensors [12–17]. The photonic structure of Entimus
imperialis, also called diamond weevil, is formed by one single type of PC with different ori-
entations [9, 18]. This multiscale aspect of the polycrystalline structure alters light propagation
and gives rise to non-iridescent additive photonic coloration [9, 18, 19], which results from the
spatial average of individual bright colors produced by each PC grain. Iridescent materials have
colors which change according to the incident and viewing angles. The approach we used to
model Entimus imperialis polycrystal took into account structural disorder and allowed us to
explain why individual grains displayed bright colors whereas non-iridescent green coloration
was observed in the far-field.

2. Calculation method

In order to model the multiscale optical properties of a photonic polycrystal resulting from
specific orientations of the same crystal, we treat the different crystal orientations separately.
Starting from the simple case of a PC with form isotropic elements (e.g. spheres), we explain
how we treat the more complicated case of a PC with form anisotropic elements (e.g. cylinders).

The case of an opal is described in the Appendix A, as a typical example of the former type
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of PCs. The calculation of reflectance and transmittance for different crystal orientations can
easily be performed in this case since the discretization of form isotropic elements is the same
whatever the crystal orientation is [Fig. 1(a)]. For instance, in the case of an opal, calculation
for different orientations does not pose any particular issue because of the form isotropy of
the single sphere present in the unit cell [6, 20, 21]. Indeed, isotropic elements such as spheres
can be sliced into a set of coaxial cylinders with different radii for every crystal orientation
[Fig. 1(b)].

a) b)

Fig. 1. a) Bravais lattice of an opal (face-centered cubic (FCC) photonic crystal) defined by
primitive vectors −→a 1, −→a 2 and −→a 3. b) In plane wave calculation methods such as RCWA,
spheres are discretized into sets of cylinders with axes parallel to the crystal orientation

−→
l

under study (e.g. here the (111) orientation). Whatever the crystal orientation
−→
l is, the

discretization of spheres (form isotropic elements) is the same.

When the unit cell contains form anisotropic elements such as cylinders [Fig. 2], the dis-
cretization takes different forms according to the crystal orientation

−→
l . Calculation of re-

flectance and transmittance according to different orientations is therefore more complicated
to perform [Fig. 2], see also Appendix A for further details. For crystal orientations in Fig. 2(a-
b), simple shapes can be used to describe elements and no special issue is encountered using
RCWA. For the crystal orientation shown in Fig. 2(c), since Fourier transforms have to be cal-
culated analytically using simple shapes, we are left with no choice but to slice the crystal into a
multilayer medium with laterally homogenized layers. For this purpose, we developed a method
allowing to calculate the reflectance for different crystal orientations with form anisotropic el-
ements in the unit cell.

Our method relies on any standard thin film solver, based on e.g. the 1D SM formalism. The
PC is approximated by an effective multilayer medium with laterally homogenized layers and
whose composition must be defined for each crystal orientation under study [Fig. 3]. When light
illuminates the crystal, the latter can be viewed (under certain assumptions discussed below)
as a periodic stack of homogeneous layers whose refractive indices are calculated by spatial
averaging [6,22]. This homogenization procedure highly simplifies the resolution of Maxwell’s
equations, since the 3D problem is turned into a 1D problem.

Such an approximation is valid as far as the refractive index contrast between island and
host materials is weak. The homogenization of layers results in translational invariance along
any direction parallel to the layer surface, implying that no diffraction peaks except the Bragg
peak occurs in the range of interest and reflection is therefore only specular. In order to neglect
higher-order diffraction effects, islands must have a small-size compared to the wavelength,
which is common in natural PCs [22,23] such as Entimus imperialis studied in section 3. Details
on the Layer Homogenization (LH) method [Fig. 3] can be found in the Appendix B.

By averaging reflectance spectra calculated for different crystal orientations and incidence
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a) b) c)

Fig. 2. In RCWA, elements composing the unit cell are discretized into a set of simple
shapes: cylinders or parallelepipeds. Here is represented the case of a cylindrical element. a)
Crystal orientation

−→
l parallel to the cylinder axis. b) Crystal orientation

−→
l perpendicular

to the cylinder axis. c) Crystal orientation
−→
l neither parallel nor perpendicular to the axis.

In this case, the discretization and the calculation of reflectance (transmittance) are more
complicated to perform than in a or b.

a) b)

Fig. 3. a) The photonic crystal film is originally described for a specific crystal orientation−→
l , as a latteraly periodic stratified medium with n layers which may contain 2D lattices

of cylindrical or parallelepipedic islands. The unit cell of the stratified medium is defined
by −→a x, −→a y and −→a z translation vectors. −→a z is the vector normal to the layer surfaces. The
specific crystal orientation is parallel to −→a z. b) The new photonic crystal is described by
another periodic stratified medium with n′ layers and whose orientation

−→
l ′ is different

from −→a z. The translation vectors −→a ′
x, −→a ′

y and −→a ′
z define the unit cell corresponding to this

stratified medium. −→a ′
z is parallel to

−→
l ′.

angles, the reflectance spectrum resulting from multiscale effects was simulated. Averaging is
commonly used in order to simulate the photonic response of multiscale structures exhibiting
diffusive properties due to, for instance, curved interfaces or large grains with different orien-
tations in polycrystals [21, 22, 24].

3. Additive color effect in Entimus imperialis

Entimus imperialis is a Brazilian weevil displaying matt green spots on its elytra [Fig. 4(a)]. In
spite of the fact that the perceived color is not iridescent, its origin is structural. The diamond
beetle is indeed a nice example of additive photonic coloration due to a complex multi-length-
scale structure, in this case a disordered set of ordered PC grains [9, 18]. The incident light is
independently reflected by each crystal grain, producing single bright colors ranging from blue
to orange [Fig. 4(b)] while the coloration observed at long distance is dull green [Fig. 4(a)].
The interaction of light with PC grains of different orientations alters the individual bright
colorations leading to the loss of iridescence and a matt coloration perceived in the far-field.
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Fig. 4. a) Entimus imperialis displays matt green spots on its cuticle. b) Colorful scales
covering the cuticle are at the origin of that coloration. The average length of scales is
100 µm, their width at half-length is 50 µm and their thickness is 2.20 µm c) SEM image of
3D photonic crystal grains (same photonic crystal with different orientations) found inside
the scales. Translation vectors −→a x and −→a y of the photonic crystal unit cell are highlighted
in red. d) The 3D photonic crystal structure is modeled by a stack of perforated chitin layers
covered by a 2D lattice of cylindrical protrusions and corresponding to a FCC crystal.

3.1. Description of E. imperialis photonic structure

The cuticle of the weevil is covered by flat and elongated scales displaying bright colors and
gathered inside millimeter size cavities on the cuticle surface [Fig. 4(b)]. These scales gen-
erally comprise a few photonic grains of about 2000 µm2 exhibiting different colors. Inside
the scales, a 3D PC nanostructure is found [Fig. 4(c)] and is modeled by thin chitin layers
(nchitin = 1.56 [25]) with a 2D lattice of cylindrical perforations (nair = 1) and a 2D lattice of
cylindrical protrusions made of chitin [Fig. 4(d)] [4, 9]. The unit cell therefore consists of one
protrusion, one empty site (flat surface) and one perforation. Each PC grain gives rise to a bright
color which depends on the crystal orientation and on the incidence angles. Pachyrrynchus
congestus pavonius, a weevil from Philippines, presents a very similar photonic structure in its
scales (producing an orange coloration) [22] but the PC grains are smaller (about 1500 µm2).
The average scale thickness is 2.20 µm (± 0.25 µm). We note that the actual thickness has an
influence on the reflectance spectrum. Following the same morphological analysis for identi-
fying the stacking schemes as in [22], the photonic structure of E. imperialis was determined
to be a FCC crystal with lattice parameter d =

√
2a = 396nm [9]. The (111) crystal orienta-

tion is perpendicular to the chitin layer surfaces. The model described here obviously consists
of a periodic stratified medium with cylindrical islands. We note that the E. imperialis struc-
ture was identified to be a diamond crystal built from air cavities in other independant stud-
ies [11, 18, 26]. The lattice parameter was found to be 410 nm in [11] and 445 nm in [18, 26].
These values are relatively close to the lattice parameter we determined. The lattice model pro-
posed in [11,18,26] has however a different symmetry (i.e. diamond). It contains no anisotropic
elements and is therefore not an appropriate example for the problem discussed. Although our
lattice model is different (FCC), similar additive color effects are found.

Despite the fact that the nanostructure consists of crystal grains from a single PC with dif-
ferent orientations, we first consider a grain with a unique orientation. Then, the disorder in
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grain orientations is taken into account. We note here that a calculation method such as ray-
tracing [27] is useless for studying such multiscale effects because there is no optical coupling
between grains as a result of laying positions of the scales on the cuticle surface and of specular
reflections.

3.2. Assessment of diffraction properties in the visible range

PCs by definition diffract light. However, higher-order diffraction peaks may appear in spectral
range outside (below) the visible range. In this case, when only specular (Bragg) reflection
remains in the visible range, higher-order diffraction has no effect on the perceived color. This
is actually the case that is treated here.

We first assessed the diffraction properties of the photonic structure in the (111) orientation,
considering the periodicity in the planes parallel to the layer interfaces. For this purpose, we
used the dominant reflected wavelength formula [6, 22] which was adapted in order to take
diffraction into account. The dominant reflected wavelength formula is only valid within the
limit of weak refractive index contrasts. When it is applied to 2D and 3D PCs [6,22], it predicts
the position of the specular reflectance peaks:

λ =
2p

√
n2 − sin2θ

m
(1)

where p is the distance between two parallel reticular planes corresponding to a given ori-
entation, n, the effective refractive index, θ the incidence angle and m is an integer. In this
formula, 2D or 3D photonic crystals are approximated by homogenous effective media. For
the (111) orientation, the relation between the distance p and the lattice parameter d is
p = d

√
3/3 = 229nm [9]. p corresponds to the sum of the height of the protrusions and the

thickness of the perforated chitin layer [Fig. 4(d)]. The effective refractive index n was evalu-
ated to be equal to 1.23 [9]. When the incident light interacts with a laterally periodic medium,
a reciprocal lattice vector −→g has to be added to the wavevector component

−→
k ‖ that is parallel

to the medium surface. Taking this into account, the dominant reflected wavelength formula at
normal incidence (θ = 0°) is [24]:

λg =
2pn

√
m2 +

( pg
π
)2
. (2)

The reflectance peaks due to diffraction are positioned at shorter wavelengths than the spec-
ular reflectance peak wavelength. For the six shortest non zero reciprocal −→g -vectors (norm
‖−→g ‖= 4π/

√
3a), diffraction peaks were located at 263 nm (m = 1) and 205 nm (m = 2), out-

side the visible range [9]. Higher diffraction orders, i.e. −→g -vectors with higher norms, gave
rise to reflectance peaks below 200 nm. The same procedure was applied to the (100) orienta-
tion (with p = d/2 = 198nm) and showed that diffraction peaks were at 281 nm (m = 1) and
199 nm (m = 2), for the four shortest non zero −→g -vectors (‖−→g ‖ = 2π/a). From Eq. (2), we
can therefore conclude that higher-order diffraction can be neglected in the visible range for
the E. imperialis crystal in the (111) and (100) orientations, which justifies the use of the LH
method.

Other orientations such as (110), (201), (123), (121) and (233) were considered. Only the
previously discused (111) and (100) orientations exhibit strong specular reflectance peaks in
the visible range and higher-order diffraction out of this range. For the other directions, Bragg
peaks were either present in the spectral range of interest but were relatively weak (less than
20%) and very narrow or were located at shorter wavelengths, out of the visible range.

Another way to assess the diffraction properties is using RCWA calculation which provides
us with reflectance spectrum components corresponding to each recirpocal vector −→g . The sum
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of these components provides the total reflectance spectrum. The diffracted reflectance is de-
fined as the difference between the total and the specular reflectances. The diffracted reflectance
was found to be maximum at 225 nm and 204 nm and vanished to zero above 243 nm [Fig. 5],
i.e. below the visible range [9]. The difference between the former value (225 nm) and the
one calculated by Eq. (2) (263 nm) can be explained by the fact that the dominant reflected
wavelength formula is valid at wavelengths larger than p. This RCWA calculation confirmed
that only the specular order was reflected in the visible range. The LH method could there-
fore be used for predicting the reflectance of E. imperialis. These results agree with the highly
directional reflectance of a single scale measured by scatterometry [18].

Fig. 5. Diffracted reflectance spectrum calculated by RCWA method. Diffraction occurs
only below the visible part of the electromagnetic spectrum (< 243 nm). Diffraction peaks
are found at 225 nm and 204 nm.

3.3. Reflectance spectra in the (111) and (100) orientations

We used the LH method to compute the reflectance spectra in the (111) and (100) orientations
for various incidence angles (Figs. 6 and 7). These orientations were the only ones to lead to
significant spectral reflectance values in the visible range.

In the case of the (111) crystal orientation, the first order Bragg reflectance peak was located
around 577 nm at normal incidence [Fig. 6]. The related coloration was yellow. The dominant
reflected wavelength at normal incidence was estimated to be 563 nm using p = d

√
3/3 =

229nm [9]. Another reflectance peak was found at 297 nm. Eq. (1) showed that this peak
corresponded to the m= 2 harmonics of Bragg reflection, i.e. λ = 2×229×1.23/2= 282nm. A
blue shift of the reflectance spectrum with increasing incidence angle was observed as expected:
the peak shifted from 577 nm (i.e. yellow) to 493 nm (i.e. blue) when the incidence angle θ
varied from 0° to 45°.

For the (100) orientation, the reflectance could be calculated using the LH method only be-
cause the PC film unit cell comprised form anisotropic elements (see section 2). The reflectance
was found to be maximum around 530 nm (green color), at normal incidence [Fig. 7]. A value
of 487 nm was obtained by using Eq. (1) with a distance between two reticular planes equal
to p = d/2 = 198nm. A shift of the peak position to 449 nm (violet) was observed when the
incidence angle was increased to 45°.
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Fig. 6. Reflectance spectra in the (111) orientation calculated using two computational
methods at different incidence angles θ . Curves labelled LH were simulated by the Layer
Homogenization method and curves labelled RCWA were computed by RCWA method.

Fig. 7. Reflectance spectra in the (100) orientation calculated using the LH method at
different incidence angles θ . A blue shift of the spectrum is observed when θ was increased.
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3.4. Reflectance calculated by RCWA

For the sake of comparison, the reflectance spectrum in the (111) orientation was simulated by
RCWA. Indeed, for that specific orientation, the elements of the PC unit cell could be described
by islands with simple shapes, i.e. cylinders in the present case. At normal incidence, the main
peak was positioned around 578 nm and the calculated spectrum was very similar to the one
predicted by our LH method [Fig. 6].

The increasing discrepancy between LH and RCWA at higher θ values is due to the increase
of the parallel component of the incident wave vector k‖ = k sinθ . As θ increases, the apparent
wavelength (i.e. in the plane parallel to the interfaces) decreases and therefore homogenization
of the crystal structure in lateral directions is less and less justified.

The peak positions determined by the dominant reflected wavelength formula, Eq. (1), or
deduced from the simulated reflectance spectra are all in good agreement (Table 1). At shorter
wavelengths, the larger difference between LH method and dominant wavelength formula is
explained by the fact that the calculation of the effective refractive index is only valid at long
wavelengths.

Incidence angle λdom RCWA LH

0° 563 nm [487 nm] 578 nm 590 nm [530 nm]
30° 514 nm [445 nm] 531 nm 544 nm [492 nm]
45° 460 nm [399 nm] 490 nm 494 nm [449 nm]

Table 1. Reflectance peak positions at various incidence angles (0°, 30° and 45°) for
the (111) orientation and (100) orientation (between brackets) calculated using differ-
ent methods are in good agreement. “λdom” and “LH” mean dominant wavelength formula
and Layer Homogenization method, respectively. In the (100) orientation, RCWA method
cannot be used because the unit cell of the PC film comprises form anisotropic elements.

3.5. Multiscale averaging aspects

The different orientations of the grains give rise to a diversity of colorations. The resulting
color was quantified using chromaticity coordinates, which were calculated from the reflectance
spectrum and the source spectrum (assuming D65 illuminant). We used the 2-degree observer
chromaticity diagram defined by the Commission Internationale de l’Eclairage (CIE) in 1931,
following a method presented elsewhere [28]. Chromaticity coordinates corresponding to the
(111) and the (100) orientations were calculated at various incidence angles (from 0° to 75°
by step of 15°). They were found to be distributed in different parts of the chromaticity diagram
(mainly in the yellow, green and blue parts) [Fig. 8]. Changes in the incidence angle and in the
orientation of the grains give rise to yellow, green and blue colors, as observed in individual
scales [Fig. 4]. However, the color perceived by human eye at long distance results from an
additive color effect [9, 18]. The colorations produced by the different grain orientations are
indeed “mixed” when observed in the far-field. When we calculate the chromaticity coordinates
corresponding to the average of the simulated reflectance spectra, the related point is located in
the green region [Fig. 8]. It corresponds to the color observed by the naked eye and measured
experimentally in a previous study [9]. The additive coloration of the cuticle of E. imperialis
is therefore produced by a mix of a variety of colors due to two specific orientations of the
PC present in the polycrystal nanostructure of the weevil. Other examples of additive photonic
colors due to a spatial averaging of colors produced by different orientations of one single FCC
3D crystal are found in nature: on the cuticle of weevils such as Pachyrrhynchus congestus
pavonius [22], Pachyrhynchus argus [23] and Eupholus magnificus [29], on longhorn beetles
such as Prosopocera lactator [20] and Pseudomyagrus waterhousei [21] or on butterfly wings

#187354 - $15.00 USD Received 27 Mar 2013; revised 27 Apr 2013; accepted 15 May 2013; published 23 May 2013
(C) 2013 OSA 3 June 2013 | Vol. 21,  No. 11 | DOI:10.1364/OE.21.013228 | OPTICS EXPRESS  13237



like Cyanophrys remus [30]. The difference between the case of the diamond weevil and the
other ones is that the crystal grains in E. imperialis are very regular and their size is much
greater than in the other cases.

Fig. 8. Chromaticity coordinates calculated for the (100) orientation (�) and for the (111)
orientation (©) at various incidence angles (from 0° to 75° by step of 15°). The colors pro-
duced by the interaction of light with the photonic polycrystal are various. The coordinates
calculated from the average of the reflectance spectra (�) fall into the green area of the
diagram. Chromaticity coordinates from far-field reflectance [9] are represented by a cross
(×).

4. Conclusion

We investigated additive photonic colors arised in polycrystals due to grains of a single pho-
tonic crystal. The computation of the reflectance or transmittance for different crystal orien-
tations turned out to be cumbersome to perform because the crystal unit cell contained form
anisotropic elements. To solve this issue, we developed an original method based on homoge-
nization of layers. Thanks to this homogenization, the reflectance spectra could be calculated
using a standard thin film solver, which reduced considerably the computation time. The method
assumed that there are no diffraction peaks except Bragg peak in the spectral range of interest
(i.e. visible). The additive color effect was taken into account by averaging reflectance spectra
calculated for various crystal orientations and incidence angles. The usefulness of our method
was demonstrated in the case of Entimus imperialis weevil, which satisfied all required condi-
tions to apply the method.

Appendix A: RCWA method and form anisotropic elements

The RCWA method relies on a 3D scattering matrix (3D SM) electromagnetic formalism [5,6].
It exactly solves Maxwell’s equations for inhomogeneous optical media which are stratified and
laterally periodic. In this method, a 3D PC is therefore viewed as (and sometimes approximated
by) a stratified medium. The unit cell, defined by translation vectors −→a x,

−→a y and −→a z, is formed
by an arbitrary pattern of (non overlapping) islands of various materials (e.g. air voids) embed-
ded in a host and is repeated periodically in the lateral directions. Each layer of the stratified
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medium is assumed to be homogeneous along the vertical direction.
A PC is described by its Bravais lattice which is generated by linear combinations of prim-

itive vectors −→a 1, −→a 2 and −→a 3 [Fig. 1(a)]. These three vectors define the so-called crystal unit
cell. In the framework of RCWA, a 3D PC film is treated as a stratified medium between the
incidence medium and the substrate (homogeneous media, characterized by dielectric constants
εi and εs). The PC film is therefore defined by layers perpendicular to the crystal orientation

−→
l

under study. Any element composing the crystal unit cell is approximated by a set of islands
with simple shapes (cylinders or parallelepipeds). For instance, a sphere is discretized into a
stack of coaxial cylinders with different radii [Fig. 1(b)].

In the case of a PC with form anisotropic elements such as cylinders, for instance, three
situations can be distinguished. First, when the crystal orientation

−→
l under which the PC is

viewed is parallel to the cylinder axis [Fig. 2(a)], the cylinder is divided into a set of cylindrical
islands and the reflectance for that orientation is calculated just as in the case of isotropic
elements. Second, when the crystal orientation

−→
l is perpendicular to the cylinder axis, islands

consist of rectangular parallelepipeds [Fig. 2(b)]. Again the reflectance is calculated as for
isotropic elements. Third, when the crystal orientation

−→
l is neither parallel nor perpendicular

to the cylinder axis, islands consist of prisms with ellipse and truncated ellipse basis [Fig. 2(c)].
These islands can hardly be approximated by cylinders or parallelepipeds.

Appendix B: Layer Homogenization method

Let us consider a crystal orientation
−→
l in which the PC film can be assimilated to a latteraly

periodic stratified medium with islands of simple shapes such as cylinders for instance [Fig. 3].
Let us define {xyz}, the cartesian coordinate basis of that original description of the PC film

[Fig. 3(a)], with the z axis perpendicular to the layer planes (
−→
l parallel to z direction). In

this basis, we define the translation vectors (−→a x and −→a y) of the 2D lattice in lateral directions
[Fig. 3(a)]. The translation vector −→a z, normal to the layer planes is therefore aligned with
the specific crystal orientation

−→
l we selected originally. Let us then map the values of the

dielectric constant εi jk in the unit cell of each original layer by defining N3 grid points −→r i jk.
The grid positions are then expressed in a new basis {x′ y′ z′} which will be introduced hereafter:−→r ′

i jk = A−→r i jk, where A is the coordinate transformation matrix. The original description of the
PC film requires n layers of thickness d j such then ∑n

j=1 d j = t, where t is the thickness of the
film.

Let us then consider another crystal orientation
−→
l ′ in which the PC film can no more be as-

similated to a stratified medium with simple shape islands [Fig. 3]. For that specific orientation,
the new description of the film is made using a stratified medium of n′ homogeneous layers with
the identical thickness d′. The {x′ y′ z′} basis is the basis associated with the new homogenized
description of the PC film. A unit cell corresponding to the new description must be defined in
order to perform the spatial averaging of ε which is required for homogenization. Let us define−→a ′

x,
−→a ′

y and −→a ′
z the translation vectors of this new unit cell with −→a ′

z aligned in the new crystal

orientation
−→
l ′ [Fig. 3(b)]. The periodicity along the orientation

−→
l ′ perpendicular to the new

layers is determined by defining −→a ′
z as the linear combination of the primitive vectors −→a 1, −→a 2

and −→a 3 of the PC unit cell having the smallest norm. The new lateral translation vectors −→a ′
x

and −→a ′
y are defined by the linear combinations of −→a 1, −→a 2 and −→a 3 falling the new layer plane

(i.e. perpendicular to
−→
l ′) which give rise to the smallest 2D unit cell. Using the mapping of

the dielectric constant in the new basis, the effective (homogeneous) values of the dielectric
constants εk in each new layer k are calculated by spatial averaging over the new unit cell.

Whereas the original description of the PC film defines the film thickness as t, the total
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thickness t ′ = n′ × d′ of the film in the new description has to be arbitrarily set. It was chosen
as the integer multiple of

∥∥−→a ′
z

∥∥ which was the closest to t. Having determined the periodicity
and effective dielectric constants εk of the new layers, the new description of the PC film as
a homogeneous stratified medium is now completed. Reflectance is eventually calculated by
using a standard thin film solver. Of course, convergence must be checked according to the
number of grid points N3 and the layer thickness d′ (see Appendix C).

Appendix C: Convergence aspects

Convergence studies were performed according to the number of grid points N3 and the thick-
ness of homogenized layers d′. In the case of E. imperialis, N3 = 253 grid points were needed
and d′ had to be equal to 25 nm in order to achieve numerical convergence. The computations
were performed on an High Performance Computing (HPC) cluster consisting of 85 compute
nodes for a peak performance of 9 teraflops, 6 interactive nodes and file servers with about
45 TB of disk space available. CPU computation times for the (100) and the (111) orientations
were shorter than 120 and 100 minutes (more than 99% for grid computation), respectively, and
the maximum used memories were below 800 MB and 3 GB, respectively.

Regarding RCWA calculation, the convergence was checked according to the number of
plane waves. The minimum number of plane waves which was needed for achieving numerical
convergence was found to be equal to 7×7. Computation time was 220 minutes for the (111)
orientation.
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