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Abstract. We introduce the vacillating voter model in which each voter
consults two neighbors to decide its state, and changes opinion if it disagrees
with either neighbor. This irresolution leads to a global bias toward zero
magnetization. In spatial dimension d > 1, anti-coarsening arises in which the
linear dimension L of minority domains grows as t1/(d+1). One consequence is
that the time to reach consensus scales exponentially with the number of voters.
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The voter model [1] gives an appealing, albeit idealized, description for the opinion
dynamics of a socially interacting population. In this model, each node of a graph
is occupied by a voter that has one of two opinions, ↑ or ↓. The population evolves
by: (i) picking a random voter; (ii) the selected voter adopting the state of a randomly
chosen neighbor; (iii) repeating these steps ad infinitum or until a finite system necessarily
reaches consensus. Descriptively, each voter has no self confidence and follows one of its
neighbors. With this dynamics, a voter chooses a state with a probability equal to the
fraction of neighbors in that state, a feature that renders the voter model soluble in all
dimensions [1, 2].

In this work, we investigate a variation that we term the vacillating voter model.
By vacillating, we mean that a voter very much lacks confidence in its state. In an
update, if a voter happens to select a random neighbor of the same persuasion, the voter
is still not convinced that this state is right. Thus the voter selects another random
neighbor and adopts this state. This vacillation causes a voter to change state with a
larger probability than the fraction of disagreeing neighbors, and leads to a bias toward
the zero-magnetization state in which there are equal densities of voters of each type.

Thus vacillation inhibits consensus, but due to a different mechanism than that in the
prototypical Axelrod model [3], the bounded compromise model [4] and its variants [5]. For
these latter models, consensus is hindered because of the absence of interaction whenever
two agents become sufficiently incompatible. For vacillating voters, it is individual
uncertainty that forestalls consensus. The vacillating voter model also differs from models
that incorporate ‘contrarians’ [6] because voters still try to imitate their neighbors.

The update steps in the vacillating voter model are as follows.

(1) Pick a random voter.

(2) The voter picks a random neighbor. If the neighbor disagrees with the voter, the
voter changes state.

(3) If the neighbor and the voter agree, the voter picks another random neighbor and
adopts its state.

(4) Repeat steps 1 and 2 ad infinitum or until consensus is reached.

For example, the probability that a vacillating voter on the square lattice flips is
0, 1

2
, 5

6
, and 1, respectively, when the number of anti-aligned neighbors is 0, 1, 2, and ≥ 3

(figure 1). In contrast, for the classic voter model, the flip probability is k
4
, where k is the

number of neighbors of the opposite opinion. We now explore the consequences of this
vacillation on voter dynamics.

Consider first the mean-field limit. Here the density x of ↑ voters obeys the rate
equation

ẋ = −x[1 − x2] + (1 − x)[1 − (1 − x)2]

= x(1 − x)(1 − 2x). (1)

The first term on the right accounts for the loss of ↑ voters in which a ↑ voter is first
picked (factor x), and then the neighborhood cannot consist of two ↑ voters (factor 1−x2).
Similarly, in the second (gain) term, a ↓ voter is first picked, and then the neighborhood
must contain at least one ↑ voter. The factorized form shows that there are unstable fixed
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Figure 1. Illustration of an update for the vacillating voter on the square lattice
(left and middle). For the configuration on the right, the central voter flips with
probability 5/6 because out of the six ways of selecting two neighbors, only one
choice leads to both neighbors agreeable (dashed).

points at x = 0, 1 and a stable fixed point at x = 1/2. Thus a population is driven to the
zero-magnetization state.

However, because consensus is the only absorbing state of the stochastic dynamics, a
finite population ultimately reaches consensus. To characterize the evolution to this state,
we first study the exit probability En, defined as the probability that a population of N
voters ultimately reaches ↑ consensus when there are initially n ↑ voters. Then En obeys
the backward equation [7]

En = wn→n+1En+1 + wn→n−1En−1 + wn→nEn, (2)

where wn→m is the probability for the transition from the state with n ↑ voters to m ↑ voters
in an update. This equation expresses the probability to exit from n as the probability
to take one step (the factors w) times the probability to exit from the point reached after
one step. In the large-n limit, we write x = n/N , and the transition probabilities become

wn→n+1 = (1 − x)[1 − (1 − x)2]

wn→n−1 = x(1 − x2)

wn→n = x3 + (1 − x)3.

Substituting these in (2), writing En±1 → E(x ± δx), and expanding to second order
in δx, gives

3x(1 − x)

2N

∂2E
∂x2

+ x(1 − x)(1 − 2x)
∂E
∂x

= 0, (3)

with solution

E(x) =

∫ x−1/2

−1/2

e2Ny2/3 dy

/∫ 1/2

−1/2

e2Ny2/3 dy. (4)

Notice that E(x) approaches the constant value 1/2 for increasing N (figure 2), reflecting
the bias towards the zero-magnetization state. Almost all initial states are driven to the
potential well at x = 1/2, so that the exit probability becomes independent of the initial
density of ↑ voters.
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Figure 2. Exit probability E(x) versus the density of ↑ voters x for the case
N = 16, N = 25 and N = 100.

Similarly, we study the time to reach consensus as a function of the initial composition
of voters. Let tn denote the time to reach consensus (either all ↑ or all ↓) when starting
with n ↑ voters in a population of N voters. Similar to (2), tn obeys the backward
equation [7]

tn = δt + wn→n+1tn+1 + wn→n−1tn−1 + wn→ntn, (5)

where δt = 1/N is the time elapsed in an update. In the large-n limit, this equation
becomes

3x(1 − x)

2N

∂2t

∂x2
+ x(1 − x)(1 − 2x)

∂t

∂x
= −1. (6)

The formal solution is again elementary, but the result can no longer be expressed in
closed form. The main result is that the consensus time scales as eaN , with a a constant
of order 1. In contrast to the classical voter model, the global bias drives the system into
a potential well that must be surmounted to reach consensus. Thus the consensus time is
anomalously long.

In one dimension, a voter changes its opinion if at least one of its neighbors is in
disagreement. For example, a ↑ voter flips with rate 1 if the neighborhood configurations
are ↑↑↓, ↓↑↑, and ↓↑↓. As an amusing side-note, this dynamics is equivalent to rule
178 of the one-dimensional cellular automaton [8], except that this rule is implemented
asynchronously in the vacillating voter model. In the framework of the Ising–Glauber
model [9], the flip rate of a voter at site i, whose states are now represented by σi = ±1,
is

w({σ} → {σ′}i) = − [σi(σi+1 + σi−1) + σi−1σi+1 − 3]

4
, (7)

with {σ} denoting the state of all voters and {σ′}i the state where the ith voter flips.
The first two terms correspond to conventional Glauber kinetics, but as mentioned
parenthetically in [9], the presence of the σi−1σi+1 term couples the rate equation for
the mean spin to three-body terms and the model is not exactly soluble.
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The mean spin, sj ≡ 〈σj〉 =
∑

{σ} σjP ({σ}; t), evolves according to

∂sj

∂t
=

∑
{σ}

σj

[∑
i

w({σ′}i → {σ})P ({σ′}i; t) − w({σ} → {σ′}i)P ({σ}; t)
]
, (8)

which reduces to, after straightforward but tedious steps,

∂sj

∂t
=

1

2
(sj+1 + sj−1 + 〈σj−1σjσj+1〉 − 3sj) . (9)

In a similar spirit, the rate equation for the nearest-neighbor correlation function,
〈σjσj+1〉, is

∂〈σjσj+1〉
∂t

=
1

2
[〈σj−1(σj + σj+1)〉 + 〈(σj + σj+1)σj+2〉] + 1 − 3〈σjσj+1〉. (10)

We can simplify equation (10) by considering domain walls—nearest-neighbor anti-
aligned voters—whose density is given by ρ = (1− 〈σiσi+1〉)/2. According to the flip rate
in equation (7), an isolated domain wall diffuses freely, just as in the pure voter model.
However, when two domain walls are adjacent, they annihilate with probability 1/3 or
one hops away from the other with probability 2/3. This process is isomorphic to single-
species annihilation, A + A → 0, but with a reduced reaction rate compared to freely
diffusing reactants because of the nearest-neighbor repulsion. The domain wall density
still asymptotically decays as t−1/2 with an amplitude that depends on the magnitude of
the repulsion.

Because domain walls are widely separated at long times, the second-neighbor
correlation function is

〈σjσj+2〉 = +prob (0 or 2 walls between j and j + 2)

− prob(1 wall between j and j + 2) ≈ 1 − 2ρ.

Using the approximation of widely separated domain walls, 〈σjσj+2〉 ≈ 〈σjσj+1〉 ≡ m2,
and the rate equation for the nearest-neighbor correlation function m2 becomes ∂m2/∂t =
1 − m2, with solution

m2(t) = 1 + [m(0)2 − 1]e−t. (11)

Here we chose the uncorrelated initial condition, so that m2(0) = m(0)2, where m(0) ≡
〈sj(0)〉 is the average magnetization at t = 0.

Let us now return to the rate equation (9) for the mean spin. For a spatially
homogeneous system, the 〈sj〉 are all identical and the magnetization is m ≡ 〈sj〉. Also,
we follow [10] and decouple the three-spin correlation function as 〈σj−1σjσj+1〉 ≈ mm2.
Then by averaging over all sites, the rate equation, equation (9), becomes

∂m

∂t
=

1

2
(mm2 − m) =

m

2
e−t(m(0)2 − 1), (12)

whose solution, for the initial condition m(0), is

m(t) = m(0)e1/2(1−e−t)(m(0)2−1). (13)

Thus we obtain a non-trivial relation between the final magnetization m(∞) and m(0):

m(∞) = m(0)e1/2(m(0)2−1). (14)
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Figure 3. Exit probability E(x) as a function of the initial density of ↑ voters
x for a one-dimensional system composed of 25, 36 and 1000 voters respectively.
The voter model result, E(x) = x, that follows from magnetization conservation
is shown for comparison.

Since the density of ↑ voters is x = (1+m)/2, while m(∞) = 2E(x)−1, the exit probability
E(x) becomes

E(x) = 1
2
[(2x − 1)e2x(x−1) + 1]. (15)

This result is in excellent agreement with our simulation results (figure 3). For small
systems (N = 25 and 36), we directly measure the probability E(n) that the population
ultimately reaches a ↑ consensus when there are initially n ↑ voters by averaging over 5000
realizations of the dynamics. We also verified equation (15) for large systems (N = 1000
nodes) by a different approach that avoids the need to measure E(n) directly by simulating
until ultimate consensus. Instead, we run the dynamics up to 1000 time steps and measure
the magnetization at this time. We then average over 200 realizations of the process to
obtain m(∞) and finally obtain E(x) from E(x) = (1 +m(∞))/2. We again find excellent
agreement with our prediction (15).

The vacillating voter model in greater than one dimension has the new qualitative
feature that small minority domains tend to grow. This anti-coarsening is a manifestation
of the bias toward the zero-magnetization state. To appreciate how this anti-coarsening
arises, consider a circular two-dimensional island domain of ↑ voters of linear dimension L
and area A in a sea of ↓ voters. For large L, each voter at the interface has the same local
environment, so that there is no environmental bias. However, there are slightly more ↓
voters just outside the circle than ↑ voters just inside. In a time of the order of δt ∼ L
each interface voter is updated once, on average, so that the island area increases by an
amount δA that is of the order of the difference in the number of ↑ and ↓ voters at the
interface. Thus δA/δt ∼ 1/L, which gives L ∼ t1/3. In d dimensions, this same reasoning
gives L ∼ t1/(d+1). We probed for this anti-coarsening by simulating the evolution of an
initial small square domain of ↑ voters in a ↓ background in two dimensions (figure 4).
Although such domains do not remain contiguous, the data suggest that the number, or
occupied area, of ↑ voters grows as tα, with α around 0.73, in reasonable agreement with
our expectation α = 2/3.
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Figure 4. Double logarithmic plot of the number of ↑ voters versus time on the
square lattice starting from a 4×4 square of ↑ voters in a background of ↓ voters.

Figure 5. Exit probability E(x) as a function of the initial density of ↑ voters x for
a square lattice of 16, 25, 36 and 49 voters, respectively, with periodic boundary
conditions.

A system with non-zero initial magnetization is therefore again drawn to the attractor
where the density x of ↑ voters equals 1/2 before final consensus is eventually reached.
It is only for x initially very close to 0 or 1 that the system achieves consensus without
first being drawn to this attractor. Thus the exit probability E(x) should be nearly
independent of x for almost all x, just as in the mean-field limit. Simulations of the
vacillating voter model on the square lattice (figure 5) confirm that E(x) approaches
1/2 for a progressively wider range of x as L increases. Simulations also show that the
correlation function C1 ≡ 〈σi,jσi,j+1〉 does not approach 1 in the long-time limit, as in
one dimension or in the pure voter model in two dimensions. Rather, C1 reaches the
stationary value 0.31, so that domains of opposite opinions coexist (figure 6), and only a
rare macroscopic fluctuation allows consensus to be reached.
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Figure 6. Snapshots of the vacillating (left) and pure (right) voter model on a
50 × 50 lattice starting with a random zero-magnetization state after 100 time
steps. The correlation function C1 equals 0.31 (left) and 0.59 (right) respectively.

In summary, when vacillation is incorporated into the voter model, consensus is
inhibited but not prevented. In the mean-field limit, the vacillation drives a population
away from consensus and toward the zero-magnetization state. A finite system ultimately
achieves consensus only via a macroscopic fluctuation that allows the system to escape this
bias-induced potential well. Because of the bias, the probability to reach ↑ consensus is
essentially independent of the initial composition of the population. In one dimension, the
system coarsens, albeit more slowly than in the pure voter model because of the repulsion
of neighboring domain walls, and the probability to reach the final state of ↑ consensus has
a non-trivial initial state dependence. In two and higher dimensions, the domains slowly
anti-coarsen to drive the system to the zero-magnetization state. The overall behavior is
qualitatively similar to that of the mean-field vacillating voter model, and very different
from the pure voter model.

We gratefully acknowledge the support of the European Commission Project CREEN
FP6-2003-NEST-Path-012864 (RL), the ARC ‘Large Graphs and Networks’ (RL) and
NSF grant DMR0535503 (SR), and the hospitality of the Ettore Majorana Center where
this project was initiated.
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