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Black holes with non-minimal derivative coupling

Massimiliano Rinaldi∗

Namur Center for Complex systems (naXys),
University of Namur, Belgium

(Dated: October 15, 2012)

We study the gravitational field equations in the presence of a coupling between the derivative of
a massless scalar field and the Einstein tensor. This configuration is motivated by Galileon gravity
as it preserves shift invariance in the scalar sector. We analytically obtain solutions with static
and spherically symmetric geometry, which also include black holes with a single regular horizon.
We examine the thermodynamical properties of these solutions, and we reveal the non-perturbative
nature of the coupling constant. We also find a phase transition, similar to the one described by
Hawking and Page, which occurs at a critical temperature determined by both the black hole mass
and by the strength of the coupling.

PACS numbers: 04.50.Kd ; 04.70.Dy

I. INTRODUCTION

In recent years, many extensions of general relativity
have been considered in the attempt to explain dark en-
ergy. In particular, a lot of work has been devoted to the
most general tensor-scalar action that generates equa-
tions of motion with second-order derivatives, discovered
many years ago by Horndeski [1]. In fact, this action
shows interesting self-tuning cosmological solutions [2],
and includes Galileon gravity [3] and massive gravity [4].
Moreover, it can be obtained by compactifying a suit-
able truncation of higher-dimensional Lovelock gravity
[5]. Among the many interesting features of Horndeski
gravity there is the coupling between the derivative of
a scalar field and the Einstein tensor. On cosmological
backgrounds, this term leads to accelerated expansion
without the need of any scalar potential, as noted for the
first time in [6]. A similar accelerating effect was also ob-
served in the case when the coupling involves the Ricci
tensor alone [7]. These features attracted much interest
in both inflationary [8–10] and late-time cosmology [11],
but little attention has been paid to local and stationary
solutions so far.

In this paper, we wish to partially fill this gap by con-
sidering static geometries with spherical symmetry in or-
der to find exact black hole solutions with regular hori-
zons. Approximate solutions in the presence of an elec-
tromagnetic field were found in [12]. In a recent paper,
it has been shown that a no-hair theorem is at work for
Galileon gravity. In other words, there cannot be asymp-
totically flat black hole solutions unless the scalar field
is globally constant [13]. Based on this result, Nicolis
and Hui have proposed an interesting test to constrain
the parameters of Galileon gravity [14]. To evade the
no-hair theorem we need to relax at least one hypothesis
and the most natural one is asymptotic flatness, an idea
supported by the existence of asymptotically de Sitter
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solutions.
This strategy turns out to be successful and we are able

to find analytic solutions with spherical symmetry and a
regular horizon to the equations of motion. The paper is
organized as follows. In Sec. 2 we obtain the equations of
motion and we show that spherically symmetric solutions
with a regular horizon exist in an analytic form. In Sec.
3 we focus on the the thermodynamical properties of the
black hole and the rle of the coupling parameter. In Sec.
4 we briefly discuss other solutions in different areas of
the parameter space and we conclude in Sec. 5 with some
remarks.

II. EQUATIONS OF MOTION AND ANALYTIC
SOLUTIONS

To begin with, let us consider the Lagrangian

L =
m2
p

2
R− 1

2

(
gµν − z

m2
p

Gµν
)
∂µϕ∂νϕ, (1)

where mp is the Planck mass, z a real number, Gµν the
Einstein tensor, ϕ a scalar field, and gµν is the metric,
chosen with mostly plus signature. The absence of scalar
potential allows for the shift symmetry ϕ → ϕ+const,
which is the relevant Galileon symmetry that survives in
curved space [3]. For this reason we will refer to ϕ as to
the Galileon field in the following. In the usual Galileon
terminology, the three terms in L are representative of
L2, L4 and L5, see e.g [15]. The term involving the Ein-
stein tensor also appears in the context of massive grav-
ity, where the parameter z is related to the inverse of the
graviton mass [4]. Our goal is to obtain static solutions
with spherical symmetry, so the metric ansatz is

ds2 = −F (r)dt2 +G(r)dr2 + ρ2(r)(dθ2 + sin2θdφ2). (2)

To obtain the equations of motion, we find more con-
venient to express the Lagrangian in terms of the metric
components and then vary the action S =

∫
d4x
√
gL with



2

respect to the four fields ϕ, F, G, ρ. Once the equations
of motion are known, one can set ρ = r and find

r
F ′

F
= G− 1 +

m2
pr

2G

z
+
Km2

pG
2

zψ
√
FG

, (3)

r
F ′

F
=

2m4
pG(G− 1) + zψ2(G− 3) +m2

pr
2Gψ2

(3zψ2 + 2m4
pG)

, (4)

r

2

(
F ′

F
− G′

G

)
=

2mpG(G− 1)− 2zψ2 − zr(ψ2)′

(3zψ2 + 2m4
pG)

, (5)

where K is an integration constant and ψ ≡ ϕ′. There is
also a fourth, redundant equation whose form is unimpor-
tant. We immediately note that ψ = 0 implies K = 0 and
the resulting metric turns out to be the Schwarzschild
one. If z = 0 (and ψ 6= 0), one finds the Just solution,
which is known to be singular both at the origin and at
the horizon, see e.g. [16]. Finally, we note that the first

equation includes the term
√
FG. Therefore, for K 6= 0,

G and F must have the same sign for all r for the metric
components to be real-valued.

When K = 0 and z 6= 0, we can analytically find exact
solutions to the system (5). Their form crucially depends
on the sign of z and in this letter we mainly focus on the
case z > 0 as it is the most interesting. We will comment
on the case with negative z at the end. The solution to
the system reads

F (r) =
3

4
+
r2

l2
− 2M

m2
pr

+

√
z

4mpr
arctan

(
mpr√
z

)
, (6)

G(r) =
(m2

pr
2 + 2z)2

4(m2
pr

2 + z)2F (r)
, (7)

ψ2(r) = −
m6
pr

2(m2
pr

2 + 2z)2

4z(m2
pr

2 + z)3F (r)
, (8)

where we defined l2 = 12z/m2
p and M is a constant of

integration that will play the role of a mass. There is a
second constant that multiplies F (r) and that can be ab-
sorbed into a redefinition of the time coordinate. We im-
mediately note that the function F is very similar to the
gtt component of a Schwarzschild Anti-de Sitter (SAdS)
black hole with spherical horizon [17, 18]. The analysis
of the curvature invariants reveals that these are all fi-
nite for r > 0, and, in particular, at r = rh, namely at
the zero of the function F (r), which is unique if M > 0.
On the opposite, the Ricci scalar diverges at r = 0 con-
firming that there is a physical singularity at the origin.
Thus, the solution above describes a genuine black hole
with one regular horizon located at r = rh if M > 0. In
contrast, when M = 0 the metric is non-singular for all
r ≥ 0 and this vacuum solution will be very important
for the analysis of the thermodynamical properties [24].

From Eq. (8) we see that ψ vanishes only when z →∞.
In fact, in this limit we recover the Schwarzschild solu-
tion with F = G−1 = 1− 2M/(m2

pr) and Rµν = 0. This
is also due to the fact that the Galileon term is constant
on shell as (grr − zGrr/m2

p)ψ
2 = −m4

p/z for all r. All

these elements indicate that z is a non-perturbative pa-
rameter when we regard the Lagrangian (1) as a theory
of modified gravity. Indeed, the deviation from general
relativity vanishes when z diverges and the Galileon field
is strongly coupled. Also, the parameter z clearly in-
terpolates between the flat black hole solution and the
SAdS one as 1/z essentially plays the role of an effective
negative cosmological constant.

III. THERMODYNAMICAL PROPERTIES

The similarity between the geometry of our solution
and the one of the SAdS black hole suggests standard
techniques to study the thermodynamical properties [18].
First of all, the inverse temperature β is determined by
the periodicity of the Euclidean metric obtained by the
analytic continuation t→ −iτ , that is [19]

β =
4π
√
gττgrr

g′ττ

∣∣∣∣∣
r=rh

=
8πzrh

(m2
pr

2
h + 2z)

(9)

For comparison, we recall that the inverse temperature
for a SAdS black hole with spherical horizon is given
by β = 4πl2rh/(l

2 + 3r2
h) [18]. With the definition of

l given above, one sees that, in the large mprh limit,
or for small z, the two β’s coincide. On the opposite,
in the large z limit we recover the inverse temperature
associated to the Schwarzschild black hole. For fixed z,
and similarly to the SAdS case, the temperature diverges
for M → 0 and reaches the absolute minimum Tmin =
mp/(2π

√
2z) ' 0.1125mp/

√
z. For large mass, it grows

again and linearly with rh.
As for the SAdS black holes, the volume of the Eu-

clidean action, obtained by the analytic continuation
t → −iτ , is infinite. Therefore, the partition function
related to the volume V and to the Helmotz free energy
A by the relations lnZ = −V = −βA is meaningless.
However, along the lines of [18], we can define a finite
quantity by subtracting the volume of the action with
mass M = 0 to the one with M 6= 0 according to the
formula

V = V0

(
β0

∫ r̄

0

L(r)dr − β
∫ r̄

rh

L(r)dr

)
, (10)

where V0 is the volume of the horizon space and r̄ � rh.
The constant β0 is identified with the arbitrary inverse
temperature that corresponds to the M = 0 background.
It is related to β by requiring that the periodicity of gtt
for the two backgrounds is the same for any large r̄, i.e.

β2
0F (r = r̄,M = 0) = β2F (r = r̄,M > 0). (11)

After some calculations, we find that, in the limit r̄ →∞,
the normalized volume reads

V =
πzx(−2x3 + 3x+ 3 arctan(x))

3(x2 + 2)
, (12)
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where we have defined the dimensionless variable x =
mprh/

√
z. From this result we can compute the energy

E = ∂V/∂β, the entropy S = βE − V and the heat
capacity C = ∂E/∂T . By utilizing the implicit relation
between the mass and the horizon radius of the black
hole

8M

mp
√
z

= arctan(x) + 3x

(
1 +

x2

9

)
, (13)

we find

E = M +
mp
√
z x3(x2 + 2)2

8(x2 − 2)(x2 + 1)
, (14)

S =
πzx2(2x4 + x2 − 2)

(x2 + 1)(x2 − 2)
, (15)

C =
2πzx2(x2 + 2)(2x8 − 4x6 − 11x4 − 4x2 + 4)

(x2 + 1)2(x2 − 2)3
. (16)

It is easy to show that all these expressions tend to the
values associated to a Schwarzschild black hole when z
diverges. We also note that the z → 0 (z → ∞) limit is
the same as the rh → ∞ (rh → 0) one, denoting a sort
of duality between z and rh (and hence M). For large z,
the leading term of the entropy is equal to πm2

pr
2
h namely

a quarter of the horizon area. For z → 0 the value is just
one half. Most importantly, for finite values of z the en-
tropy does not follow the area rule and this is reminiscent
of the effects on the entropy induced by high order cor-
rections to the Einstein-Hilbert action, such as in Gauss-
Bonnet gravity [20]. This fact also reinforces the con-
nection between Galileon theory and higher-dimensional
truncated Lovelock theory discussed in [5]. The en-
ergy E and the entropy S are always positive, except
in the interval defined by 0.979

√
z . mprh <

√
2z and

0.883
√
z . mprh <

√
2z respectively.

The heat capacity C becomes negative for large z and
tends to the Schwarzschild value −2πm2

pr
2
h. Instead C

tends to the positive value 4πm2
pr

2
h for vanishing z. As

in the SAdS case, it diverges at the minimum temper-
ature of the black hole Tmin. The sign of the heat ca-
pacity and the behavior of the temperature are shown
in Fig. (1). We see that for every T > Tmin there are
two black hole solutions with the same temperature. For
T > T2 the small-x black hole has negative heat capac-
ity, while the large-x one has positive heat capacity. We
recall that small x means small black hole mass or large
z, that is when the solution tends to the Schwarzschild
metric. Thus, for T > T2 the situation is the same as for
the SAdS case: the small-x black hole decays either into
radiation or into the large-x dual [18]. Between T1 and
T2, however, there is a region where both black holes are
thermodynamically stable as C > 0, and this marks a
difference with respect to the SAdS case. Moreover, be-
tween Tmin and T1, the situation is reversed, as the small-
x black is stable while the large-x is not. The Helmholtz
free energy A = β−1V is positive only in the tiny interval
Tmin < T < Th, where Th ' 0.1131mp/

√
z.

In the SAdS case, for Tmin < T < T1 the black hole
with the largest mass is locally stable. However, the evap-
oration reduces the mass and the temperature until Tmin
is reached and, as the free energy is positive here, the
phase transition to pure radiation occurs [18]. The other
black hole solution, with the smallest mass, is unstable in
any case as the heat capacity is negative. Therefore, low
temperature SAdS black holes are naturally attracted to-
wards the phase transition. In our case the situation is
more involved as, in opposition to the SAdS case, the
small black hole is stable (C > 0) in the regime where
the temperature increases when x decreases, eventually
keeping the system outside the region where A > 0. It
is therefore possible that the phase transition to pure
radiation does not occur at this stage. However, as x
keeps decreasing, the black hole temperature eventually
crosses the value T2 at which the heat capacity becomes
negative. Here, the black hole can dissolve into pure ra-
diation, which collapses into a large x black hole with the
same temperature just as in the SAdS case. Therefore, at
the end of the the day, the black hole will always end its
thermodynamical cycle on the right branch of the tem-
perature curve, where x and T decrease simultaneously,
bringing the system towards the usual phase transition
at Tmin.

FIG. 1: Plot of the temperature in units of mp/
√
z versus

x = mprh/
√
z. In the grey regions the heat capacity is neg-

ative. The tiny horizontal strip just above Tmin represents
the region where the free energy A is positive. The relevant
quantities are: Tmin = 0.1125mp/

√
z, T1 = 0.118mp/

√
z

T2 = 0.147mp/
√
z, x1 = 0.655, xdiv =

√
2, x2 = 1.904 .
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IV. OTHER SOLUTIONS

To conclude the analysis with z > 0, we discuss the
properties of the scalar field. It is easy to see that ψ2

is negative for all r > rh, which implies that ϕ is imagi-
nary. The question is whether this implies instabilities in
our solution. Examples of black holes with scalar fields
that become complex in some radial range are know in
low-energy string theory, see e. g. [21]. Generally speak-
ing, in these models the scalar field is complex inside the
event horizon, while in our case it is the opposite, so
one might worry that the solution is unstable outside the
event horizon. Our point of view is that ϕ should not be
considered as a matter field but rather as an extra de-
gree of freedom, expressed by the real quantity ψ2. This
is evident also from the equations of motion (5), where
the new degree of freedom appears only as ψ2.

For completeness, we briefly comment on the solu-
tion with negative z. The function F is basically the
same as in Eq. (6) with the arctan term replaced by
arctanh(mpr/

√
z), which reduces the domain of r in-

side the interval [0,
√
z/mp]. One can find a solution

that extends outside this domain by using the formula
arctanh(x) = 1/2 ln[(1 + x)/(1 − x)] and then allowing
1− x→ |1− x|, where x = mpr/

√
z as usual. The result

is that, in the large r limit, the solution tends to a de
Sitter space expressed in static coordinates, as expected.
However, the absolute value in F implies that the met-
ric is non-differentiable at x = 1, which, in principle,
calls for a non-trivial stress tensor to be added to the
Lagrangian. We leave to future work a detailed analysis
of this solution.

We conclude this paper by discussing the solutions to
the system (5) with K 6= 0. With a simple argument
we can show that there cannot be black hole solutions in
this case. The equation of motion (3) can be written as
a conservation of a current, ∂rJr = 0, where

Jr =
ψ
√
FG(m2

pr
2G+ zG− z)

m2
pG

2
= −K. (17)

Now, a regular horizon located at r = rh implies F (rh) =
0. But then Jr must necessarily vanish for all r, which
means that K must vanish too. Therefore, black hole
solutions are possible only when K vanishes. However,

there could be other interesting solutions. We first look
at Ricci flat solutions, for which F = G−1 = 1 + Q/r
for some constant Q. Direct substitution into the system
(5) shows that the only consistent solution requires again
K = 0. Finally, by using numerical integration, we find
a metric that is regular everywhere except at the origin
Unfortunately, it turns out that some curvature invari-
ants diverges precisely at r = 0 so we conclude that when
K 6= 0 all spherically symmetric solutions host a naked
singularity at the origin. Interestingly, a similar behavior
was also observed in the context of intersecting branes in
higher-dimensional gravity [23].

V. CONCLUSIONS

In this paper we have explored a brand-new class of
black holes that are exact vacuum solutions of scalar-
tensor gravity with non-derivative coupling, which is a
typical feature of Galileon gravity. They show a locally
asymptotic anti-de Sitter geometry and a rich thermody-
namical structure, with multiple phase transitions that
depend on the mass and on the coupling parameter. The
latter turns out to be non-perturbative, in the sense that
the usual Schwarzschild solution is recovered when it di-
verges.

We believe that our results deserve and need future
developments. For example, the classical stability of the
solution should be studied through the analysis of the
(coupled) fluctuations of the metric and of the Galileon
field. From an astrophysical point of view, it would be in-
teresting to choose a coupling between matter fields and
the Galileon to study the Tolman-Oppenheimer-Volkoff
equation and the stability of stars. The solutions that we
have found can be also used to test the theory against so-
lar system experiments, in order to constrain the parame-
ter z. The asymptotic structure of the solution might be
interesting in the context of AdS/CFT correspondence
and in brane cosmology, along the lines of [22]. Finally,
black hole solutions should be sought also when more
terms belonging to the Galileon family are present in the
Lagrangian, such as powers of �ϕ. We hope to report
soon on these issues.

We wish to thank R. Balbinot, J-P. Bruneton, A.
Füzfa, L. Heisenberg, L. Papantonopoulos and A.
Vikman for useful comments. This work is supported
by a grant of the ARC 11/15-040 convention.
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