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ABSTRACT 

Keratinocyte monolayers, cultured in immersed conditions, constitute a frequently used in vitro model system to 

study keratinocytes behaviour in response to environmental assaults. However, monolayers lack the keratinocyte 

terminal differentiation and the organisation of the epidermal tissue which are observed in vivo. Advancements 

of in vitro techniques were used to reconstruct three-dimensional equivalents that mimic human epidermis in 

terms of layering, differentiation and barrier function. Here we update a published method and illustrate the 

progressive morphogenesis responsible for in vitro reconstruction.  The analysis of cell proliferation, expression 

of differentiation markers, and barrier efficacy demonstrate the excellent similarity of the reconstructed tissue 

with normal human epidermis. Availability of epidermal tissue during its reconstruction phase in culture appears 

crucial for studies intending to challenge the barrier function. 

 

INTRODUCTION 

By creating an impermeable cornified layer on its surface, the epidermis provides a barrier against loss of body 

fluid and environmental assaults such as solar radiation, infections, or chemical aggressions (1).  Primary 

cultures of keratinocytes constitute an in vitro model to characterize this cell type’s behaviour. However, 

keratinocyte monolayers in immerged culture conditions represent an incomplete epidermal model regarding 

terminal differentiation and production of the barrier. Indeed, complete epidermal morphogenesis requires 

exposure of stratified keratinocytes to the air-liquid interface (1). Advancements in keratinocyte culture were 

used to reconstruct three-dimension epidermal equivalents that mimic human epidermis in terms of tissue 

architecture, differentiation and barrier function (2).  

While the pioneering work of Rheinwald and Green produced stratified colonies of human primary cultured 

keratinocytes (3),  the differentiation program was abnormal in such conditions (4), creating a need for cultures 

that would more closely mimic normal expression of differentiation markers. Chemically defined culture media 

permitted keratinocyte culture in absence of serum and feeder cells, in the presence of low calcium concentration 

(5), inspired by data collected with mouse keratinocytes (6). However, calcium concentration above 1 mM is 

required for intercellular anchoring junctions and stratification of keratinocytes. Thus, Prunieras and co-workers 

developed a well-differentiated epidermis in culture (7) and demonstrated full differentiation of keratinocytes 

from basal to cornified layers by exposing cells to the air-liquid interface (8,9). By sorting primary keratinocytes 

expressing high levels of integrin 6, highly proliferative clones capable of epidermal reconstruction can be 

obtained from single cells (10). 

Currently, several commercial human skin substitutes or reconstructed epidermis represent reproducible models 

with controlled environment, often used in cutaneous toxicological studies. However, the cost of such tissues and 

the need for tailor-made culture parameters led us to publish methods for an open-source reconstruction of a 

fully differentiated epidermis. Here we update detailed description of our method intended to obtain human 

epidermis that exhibits typical in vivo morphology 11 days after seeding keratinocytes on polycarbonate filters 

(11). We also illustrate progressive morphogenesis during reconstruction of the epidermis and concomitantly 

analyzed cell proliferation, expression of differentiation markers, and efficacy of the barrier. 

 

MATERIALS AND METHODS  

Culture media 



The basal medium for culture settings, KGM-2 (Clonetics), is supplemented with SingleQuot KGM-2 

(Clonetics) according to manufacturer’s instructions in order to contain as final concentrations 50µg/ml bovine 

pituitary extract, 10ng/ml EGF, 5µg/ml insulin, 5.10-7 M hydrocortisone, 5µg/ml transferrin and 0.15 mM Ca++. 

EpiLife medium (Cascade Biologics) supplemented with HKGS (Cascade Biologics) was used according to 

manufacturer’s instructions for growth of keratinocytes and contains 0.2 % bovine pituitary extract , 0.2 ng/ml 

EGF, 5µg/ml insulin, 5.10-7 M hydrocortisone, 5µg/ml transferrin and 0.06 mM of Ca++. The medium used on 

the first day of tissue reconstruction is composed of complete EpiLife medium supplemented by CaCl2 in order 

to reach 1.5 mM Ca++. After exposure to the air-liquid interface, modified complete EpiLife culture medium is 

used, supplemented with 1.5 mM Ca++, 50 µg/ml vitamin C (Sigma-Aldrich), and 10 ng/ml keratinocyte growth 

factor (KGF; R&D Systems). 

 

Human keratinocytes isolation and reconstruction of the epidermis 

Human primary keratinocytes were isolated from superficial normal adult skin collected from plastic surgery (Dr 

B. Bienfait, Clinique St. Luc, Namur-Bouge, Belgium) as described (12). Briefly, keratinocytes were isolated by 

the trypsin float technique and proliferating primary cultures initiated in complete KGM-2 medium. Before 

reaching confluence, proliferating keratinocytes were harvested by trypsinization and plated for sub-culture in 

complete EpiLife medium, containing supplements (HKGS). When a 60% density was reached, cells were 

trypsinized for preservation in liquid nitrogen (12). For tissue reconstruction, third-passage proliferating 

keratinocytes were used and our previously published protocol (11) was slightly improved. Cell suspensions 

containing approximately 2 million cells, thawed after preservation in liquid nitrogen, were diluted in complete 

KGM-2 medium in one 175 cm2 culture flask for 24h, and then in complete EpiLife medium renewed every two 

days. When keratinocytes covered 60-70 % of the flask area, cells were harvested by trypsinization and 

centrifuged for 10 min at 1000 rpm at 4°C. The pellet was resuspended at a density of 300 000 cells/ml in ice-

cold EpiLife medium containing high (1.5mM) calcium concentration. Polycarbonate culture inserts (0.63 cm2 of 

area containing 0.4 µm diameter pore size; Millipore) were placed in six-well plates containing 2.5 ml of cold 

medium. Each insert received 500 µl of keratinocyte suspension (300 000 cells/ml) corresponding to about 250 

000 cells/cm2. After 24h of incubation at 37°C in a humidified atmosphere containing 5% CO2, cells were 

exposed to the air-liquid interface by removal of the medium in the upper compartment. The 2.5 ml of medium 

under the filter were replaced by 1.5 ml of complete EpiLife medium, modified for tissue reconstruction (see 

above paragraph) and renewed every two days. 

 

Histological analysis and immunolabelling of epidermal differentiation markers 

Reconstructed human epidermis (RHE) were fixed after 1, 3, 5, 7, 9 and 11 days of culture in 4% formalin-acetic 

acid solution, dehydrated and embedded in paraffin. Incubation in toluene prior to paraffin embedding induces 

detachment of the polycarbonate filter from the insert, releasing tissue. Tissue sections (6 µm thick) were 

prepared perpendicular to the filter and laid over microscopic slides before staining with haematoxylin-eosin.  

Tissue sections for immunolabelling were deparaffinized, rehydrated and rinsed with water. For keratin 14 or 

filaggrin labelling, sections were immersed in 10 mM citrate buffer pH 6 at 90°C for 20 min, then washed twice 

in PBS before blocking in PBS containing 0.2% bovine serum albumin and 0.02% Triton X-100 for 1h followed 

by incubation for 1h at room temperature with the appropriate antibodies. Mouse monoclonal primary antibodies 



were used to label keratin 14 (Santa Cruz, dilution 1:50), keratin 10 (Dako, dilution 1:100), involucrin (Sigma-

Aldrich, dilution 1:200) and filaggrin (Thermo Scientific, dilution 1:75). For immunofluorescence, tissue 

sections were washed in PBS containing 0.2% bovine serum albumin and 0.02% Triton X-100 before incubation 

with Alexa 488-conjugated anti-mouse IgG (Molecular Probe Invitrogen, dilution 1:100) for 1h. Coverslips were 

mounted in Mowiol and tissue sections observed under confocal microscopy (Leica) and phase-contrast 

microscopy and pictures were finally overlapped.  

 

Labelling of cycling keratinocytes: BrdU incorporation 

Tissues were incubated for 24 h with 10 µM bromodeoxyuridine (BrdU) before fixation and embedding in 

paraffin. Tissue sections were deparaffinized and incubated for 30 min in 10 mM citrate buffer pH 6 at 90°C. 

DNA was denatured by incubation of sections for 30 min in 2N hydrochloric acid and then neutralized using 0.1 

M sodium tetraborate pH 8.5. Incorporated BrdU was detected using a monoclonal primary antibody (BD 

Pharmingen, dilution 1:25) followed by Alexa-488 anti-mouse secondary antibody (Molecular Probe Invitrogen 

Invitrogen, dilution 1:100). Coverslips were mounted in Mowiol for observation under confocal microscopy. 

Percentage of BrdU-positive cells in RHE was calculated as (number of BrdU-positive cells/total number of cells 

in basal layer) x 100 for each condition. 

 

Trans-epithelial electrical resistance measurements and permeability to Lucifer Yellow 

Trans-epithelial electrical resistance (TEER) measurements of RHE were performed from day 1 to 21 of culture 

using Millicell-Electrical Resistance System (Millipore). Tissues were placed in six-well multiplates containing 

3.5 ml of culture medium and overlaid with 450 µl of culture medium for the time required to measure electrical 

resistance. 

For determination of RHE permeability to Lucifer Yellow fluorescent dye, a 1 mM solution was laid over the 

tissue for 2 hours at 37°C before fixation and embedding in paraffin for tissue processing.  Sections were 

analysed using fluorescence microscopy.  

 

RESULTS 

Epidermal morphogenesis benefits from a transiently elevated keratinocyte proliferation and results into 

the formation of an efficient barrier at the air-liquid interface  

Histological observations, as well as measurements of keratinocyte proliferation by BrdU incorporation were 

performed through epidermis reconstruction process, on RHE obtained after 1, 3, 5, 7, 9 and 11 days of culture 

(Figures 1 and 2). One day after seeding keratinocytes, the tissue exhibits one or two not yet proliferative 

flattened cell layers (Day 1) (Figures 1 and 2). After exposure to the air-liquid interface, a suprabasal, probably 

protective layer, composed of rather acidophilic keratinocytes can be observed just above the highly proliferative 

basal layer (Day 3) (Figures 1 and 2). After five days, the proliferation rate of basal keratinocytes remains high 

(Figure 2) allowing keratinocytes to build RHE composed of four to five cell layers (Figure 1). Tissue 

differentiation leads to progressive formation of typical epidermal layers. Indeed, the presence of keratohyalin 

granules easily identified at Day 5 defines a granular layer (Figure 1). After 9 and 11 days of culture, 

keratinocyte proliferation in the RHE decreases while the tissue’s morphology becomes very similar to the 

normal human epidermis (Figures 1 and 2). Basal layer is composed of columnar keratinocytes anchored to the 



polycarbonate filter and covered by spinous and granular layers. Superficially, cornified flattened keratinocytes 

are acidophilic, showing no nucleus and superficial desquamation. TEER values increase progressively to reach 

a plateau by Day 15, illustrating the production of an effective barrier (Figure 3a). While penetration of Lucifer 

Yellow is observed in the immersed cells at Day 1, it is impeded from Day 3 as a consequence of exposure to the 

air-liquid interface (Figure 3b). 

 

Localization of differentiation markers during epidermal morphogenesis 

In order to monitor the different steps of the epidermal differentiation program, immunofluorescent staining of 

several markers was performed on sections of the RHE after 1, 3, 5, 7, 9 and 11 days of culture on polycarbonate 

filters (Figure 3c). Expression of keratin 14 (KRT 14), a marker of basal non-differentiated cell phenotype, is 

already observed 1 day after seeding. Through the complete reconstruction process, KRT 14 is localized in the 

basal layer as in normal human skin. The keratin 10 (KRT 10), considered as a marker of suprabasal layers with 

keratin 1, is rapidly highlighted in one or two cell layers after 3 or 5 days of growth. With thickening of the 

RHE, the number of cell layers expressing this protein is progressively increased, but the basal layer consistently 

remains negative. Expression of involucrin (IVL) or filaggrin (FLG), considered as later markers of epidermal 

differentiation, is observed as soon as on the third day of epidermal morphogenesis. The labelling is located 

within the upper layers of the RHE similarly to the labelling of the skin. Involucrin labelling appears more 

basally than in vivo during the differentiation process since its expression seems initiated earlier in the suprabasal 

layers, whereas the expression of filaggrin is found in upper layers only. These results illustrate that quite normal 

epidermal differentiation is rapidly initiated after exposure of keratinocytes to the air-liquid interface.     

 

DISCUSSION 

Progress in the field of tissue engineering has resulted in reconstruction of three-dimensional epidermal 

equivalents that mimic epidermis in terms of tissue architecture and function. When keratinocytes are grown at 

the air-liquid interface on a filter and are fed with a culture medium supplemented with calcium and vitamin C, 

they stratify as a normal epidermal tissue composed of basal, spinous, granular and cornified cell layers (11). 

Successful reconstruction of this multilayered tissue largely depends on the hyperproliferative status of 

keratinocytes harvested from growing monolayers. Such rapidly cycling cells create, when seeded on filter, a 

proliferative basal layer (Figure 2) which is responsible for tissue morphogenesis during the culture period at the 

air-liquid interface. The control of this proliferation is not totally defined, but a recent study has highlighted that 

tissues exposed to the air-liquid interface exhibit higher rates of basal cell proliferation than submerged tissues, 

suggesting that epidermal morphogenesis might be regulated by exposure of keratinocytes to higher oxygen 

tension (13,14). Accordingly, hyperbaric oxygen treatment has been shown to enhance keratinocyte stratification 

in a skin equivalent model (15). Basal epidermal proliferation is also induced in response to disruption of the 

barrier function. Indeed, a damaged barrier increases epidermal DNA synthesis, likely in order to restore a 

functional barrier (16,17). Keratinocytes seeded on filter following the procedure described herein exhibit an 

important decrease in their basal proliferation after the seventh days of culture. Histological analysis (Figure 1) 

suggests that this decrease happens when the tissue as acquired characteristics observed in vivo. In other words, 

our observations suggest that some homeostatic feed-back regulation slows down basal proliferation when a 

functional barrier is reconstructed. 



Exposure of keratinocytes to air-liquid interface increases the expression of genes involved in the making of an 

epidermal protection against environmental assaults responsible for oxidative damage or disruption of the barrier 

(13). For instance, topical exposure to organic solvents or detergents results in a transient burst of free fatty 

acids, sphingolipids, and cholesterol synthesis, which finally leads to the replenishment of lipids within the 

cornified layer (16). These properties of keratinocytes might explain the rapid formation of a “protective layer” 

composed of acidophilic, possibly cornified, cells as soon as two days after exposure of the tissue at the air-

liquid interface (Figure 1, day 3). Concomitantly, an increase in TEER indicates the progressive setting of a 

protective barrier (Figure 3a). 

In the literature, the differentiation process associated with epidermal reconstruction in vitro has revealed 

abnormalities. For instance, in contrast to in vivo observations, involucrin is expressed in cells located 

immediately above the basal layer in pioneering culture conditions (4). Conversely, labelling of several 

differentiation markers at the end of tissue reconstruction revealed correct localisation of KRT 14, KRT 10, IVL, 

and FLG after 11 days on polycarbonate filter (11). In vivo-like expression of K1 and K2 in the suprabasal layers 

was observed in organotypic epidermis cultured on de-epidermized dermis (18). Here, we have monitored the 

localisation of those markers during the whole process of tissue morphogenesis (Figure 3c). KRT 14 is mainly 

restricted to the basal layer as found in normal skin, whilst KRT 10 appears strictly suprabasal. Although IVL 

and FLG can be found just above the basal layer as soon as on Day 3, their localisation becomes progressively 

more restricted to the granular layer, similarly to what is observed in normal skin (4).  

Our data illustrate the excellent similarity of the RHE with normal epidermis at the end of tissue reconstruction 

(2). The availability of fully differentiated RHE is suitable for in vitro cutaneous toxicology or permeation 

studies (2,11,19), but not for studies of barrier establishment. Our data also demonstrate that experimental 

conditions suspected to alter tissue morphogenesis and homeostasis should be investigated in the course of the 

reconstruction phase. Thus, availability of epidermal tissue at different stages in culture appears crucial for 

studies intending to challenge the barrier function. 
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FIGURE LEGENDS 

 

Figure 1: Histological analysis of epidermal reconstruction. Perpendicular sections were performed on RHE 

1, 3, 5, 7, 9 or 11 days after seeding of keratinocytes on polycarbonate filters, or on normal human skin. Sections 

were stained with haematoxylin and eosin after fixation of RHE with formaldehyde and embedding in paraffin. 

They were observed in an Olympus AX70 microscope (bars 50 µm). 



 

Figure 2: Analysis of keratinocyte proliferation during epidermal reconstruction. BrdU incorporation was 

allowed for 24h in RHE cultured for 1, 3, 5, 7, 9 or 11 days before fixation and tissue embedding in paraffin. (a) 

Proliferative cells were detected using specific monoclonal antibody to BrdU followed by secondary Alexa 488 

anti-mouse IgG. Sections were observed under confocal microscopy (bars 50 µm). The dotted lines delineate the 

polycarbonate filter of RHE. In panel (b), results are expressed as the percentage of BrdU-positive cells and 

represented as the mean +/- SD from three independent tissues.  



 

Figure 3: Analysis of barrier efficiency and localization of differentiation markers during epidermal 

reconstruction. (a) Trans-epithelial electrical resistance (TEER) measurements were performed on RHE until 

Day 21. Data represent measurement for three different tissues at each time point. (b) Permeability of RHE to 

Lucifer Yellow was tested on Day 1, 3 or 14. (c) Immunofluorescent staining of histological sections 

perpendicular to the surface of RHE cultured for 1, 3, 5, 7, 9 or 11 days, and of normal human skin were 

performed using primary antibodies specific for keratin 14 (KRT 14), keratin 10 (KRT 10), involucrin (IVL) and 

filaggrin (FLG), followed by detection using Alexa 488-conjugated secondary antibodies. Sections were 

observed under confocal and phase-contrast microscopies (bars 50 µm). The dotted lines delineate the 

polycarbonate filter of RHE or the interface between epidermis and dermis in human skin. 



 


