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Abstract

In this paper we propose a filter-trust-region algorithm for solving nonlinear

optimization problems with simple bounds. It extends the technique of Gould,

Sainvitu and Toint [15] designed for unconstrained optimization. The two main

ingredients of the method are a filter-trust-region algorithm and the use of a

gradient-projection method. The algorithm is shown to be globally convergent

to at least one first-order critical point. Numerical experiments on a large set of

problems are also reported.

Keywords. Bound constrained optimization, filter techniques, trust-region algorithms,

gradient-projection methods, convergence theory, numerical results.
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1 Introduction

This paper describes an algorithm which combines filter techniques, gradient-projection

and trust-region methods, and which is designed for solving the following nonlinear

minimization problem

min
x∈IRn

f(x), (1.1)

subject to the simple-bound constraint

l ≤ x ≤ u, (1.2)

where f is a twice continuously differentiable function of the variables x ∈ IRn and l

and u represent lower and upper bounds on the variables. Note that any of the bounds

in (1.2) may be infinite. Without loss of generality, we assume that li < ui for all

i = 1, . . . , n.

Filter methods have been first introduced for constrained nonlinear optimization

problems by Fletcher and Leyffer [9] and they have been actually applied in many
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current optimization techniques [2, 8, 10, 11, 22, 23]. More recently, they have been

extended by Gould, Leyffer and Toint [12, 16] to the nonlinear feasibility problem (in-

cluding nonlinear least-squares and nonlinear equations) and by Gould, Sainvitu and

Toint [15] to the general unconstrained optimization problem. In this paper we present

and analyze a further extension of that filter-trust-region method to simple-bound

constrained optimization problems. We propose combining the filter-trust-region algo-

rithm of [15] with a gradient-projection method (see e.g. [3, 4, 17, 18, 19]).

This paper is organized as follows. In Section 2, we motivate and state the algo-

rithm, whose global convergence to points satisfying first-order optimality conditions

is shown in Section 3. Computational results are presented and discussed in Section 4.

In the last section, we give some concluding remarks.

2 The algorithm

In this section we present a filter-trust-region algorithm for the solution of optimization

problems subject to simple bounds. We need to define the following concepts. The

set of points which satisfy (1.2) is the feasible box and we denote it by C. Any point

belonging to this box is said to be feasible. The “projected” gradient of the objective

function f(x) into the feasible box (1.2) is defined by

ḡ(x)
def
= x − P [x −∇xf(x), l, u], (2.1)

where the projection operator P [x, l, u] is defined componentwise by

P [x, l, u]i =











li if xi ≤ li,

xi if li < xi < ui,

ui if ui ≤ xi,

and where ∇xf(x) denotes the gradient of the objective function. Note that the pro-

jection of any vector x onto the feasible region is extremely easy to compute when

the region is a box. The projected gradient is used to characterize first-order critical

points; a point x∗ ∈ C is a first-order critical point for the problem (1.1) and (1.2) if

and only if

ḡ(x∗) = 0. (2.2)

In what follows, we will use the following first-order criticality measure

π(x)
def
= ‖x − P [x −∇xf(x), l, u]‖∞ = ‖ḡ(x)‖∞ (2.3)

(see e.g. [5, Chapter 8] and [3]).

We propose a modification of the existing trust-region-filter algorithm of Gould, Sain-

vitu and Toint [15], designed for unconstrained optimization, to the bound constrained

case. As in this latter paper we use a multidimensional filter technique. In our context,

the optimality condition (2.2) suggests that an iterative method for the problem (1.1)

and (1.2) must drive the projected gradient ḡ(xk) to zero for some sequence of feasible
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xk. Therefore, the aim of the filter is to encourage convergence to first-order critical

points by driving every component of the projected gradient

ḡ(x) = (ḡ1(x), ḡ2(x), . . . , ḡn(x))T

to zero.

2.1 Computing a trial point

Before indicating how to apply our filter technique, we start describing how to compute

the trial point x+
k = xk + sk from a current feasible iterate xk . At each iteration k of

the algorithm, we define the quadratic model of the objective function to be

mk(xk + s) = f(xk) + gT
k s +

1

2
sT Hks, (2.4)

where gk denotes the gradient ∇xf(xk) and Hk is a symmetric approximation of the

Hessian matrix ∇xxf(xk). We also consider a trust-region centered at the current

iterate xk

Bk = {xk + s | ‖s‖∞ ≤ ∆k},

where we believe the quadratic model to be adequate. Note that we use the `∞-norm to

define the trust-region. A trial step sk is then computed by finding an approximation

to the solution of the trust-region subproblem

minimize mk(xk + s)

subject to l − xk ≤ s ≤ u − xk

‖s‖∞ ≤ ∆k.

(2.5)

This could be achieved by using a gradient-projection method to identify the set of

active bounds, followed by a minimization of the quadratic model over the subspace

of remaining free variables. The geometry of the “box” shapes of the `∞-norm and of

the simple bounds may be simply exploited. We can rewrite the bounds in (2.5) by

the following “box” constraints

(lk)i
def
= max (li − (xk)i,−∆k) ≤ si ≤ min (ui − (xk)i, ∆k)

def
= (uk)i ∀ i = 1, . . . , n.

Contrarily to traditional trust-region methods, we do not require here that

‖sk‖∞ ≤ ∆k (2.6)

at every iteration of our algorithm. Some steps may not be restricted to the trust-

region. As it is common in trust-region methods for constrained optimization [5, Chap-

ter 8], the convergence analysis of Section 3 requires that the step provides, at every

iteration k, a sufficient decrease on the model of the objective function, which is to say

that

mk(xk) − mk(xk + sk) ≥ κmdcπk min

[

πk

βk

, ∆k

]

, (2.7)
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where κmdc is a constant in (0, 1), πk
def
= π(xk) and

βk
def
= 1 + ‖Hk‖. (2.8)

Throughout the paper, the symbol ‖ · ‖ denotes the `2-norm.

We are now ready to specify the computation of the trial step sk. At each iteration,

the (approximate) solution of the trust-region subproblem (2.5) is achieved in two

stages. At the first, the Generalized Cauchy point (GCP) is computed in order to

ensure the sufficient decrease on the model (2.7). This GCP is defined as the first local

minimizer of the quadratic model along the Cauchy arc dk(t) defined as

dk(t)
def
= P [xk − tgk, lk, uk] − xk ∀ t ≥ 0,

(see [3], [18] or [20]). Note that this Cauchy arc is continuous and piecewise linear.

The GCP is then computed by investigating the model behavior between successive

pairs of breakpoints, that are points at which a bound is encountered along the Cauchy

arc, until the model starts to rise. The variables which lie on their bounds at the GCP

are fixed thereafter. There are efficient numerical algorithms for the GCP calculation

ensuring that (2.7) is satisfied (see [4], [17] or Section 12.2 of [5]). None of these methods

requires the explicit computation of βk. A further reduction of the quadratic model

mk beyond that guaranteed by (2.7) is often desirable if fast convergence is sought.

Therefore, at the second stage of the step computation, attempts are made to reduce

the quadratic model (2.4) by modifying the values of the remaining free variables. This

may be achieved by applying a conjugate-gradient algorithm, starting from the GCP,

to the subproblem (2.5) with the additional restriction that the variables fixed at the

GCP remain fixed throughout the process (see [1], [4], [5], [7] or [17]). In short, each

iteration of the technique used to solve the subproblem consists of choosing a face by the

gradient-projection method and then of exploring that face by the conjugate-gradient

algorithm.

2.2 The multidimensional filter

Traditional trust-region algorithms evaluate the objective function at the trial point

and, if the reduction achieved in the objective function is at least a fraction of that

predicted by the model, the new trial point x+
k is accepted as the new iterate xk+1 and

the trust-region radius ∆k is possibly enlarged. Otherwise, if the achieved reduction

is too small, the trial point is rejected and the trust-region radius is reduced. By

contrast, here we prefer a filter mechanism to assess the suitability of x+
k . Our strategy

is inspired by that of [15]: we decide that a trial point x+
k is acceptable for the filter F

if and only if

∀ ḡ` ∈ F ∃ j ∈ {1, . . . , n} : |ḡj(x
+
k )| ≤ |ḡ`,j | − γḡ‖ḡ`‖, (2.9)

where γḡ ∈ (0, 1/
√

n) is a small positive constant and where ḡ`,j
def
= ḡj(x`). We then

say that x+
k is not dominated by x`. If an iterate xk is acceptable in the sense of (2.9),
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we may wish to add it to the multidimensional filter, which is a list of n-tuples of the

form (ḡk,1, . . . , ḡk,n), such that none of the corresponding iterates is dominated by any

other. We also remove from the filter every ḡ` ∈ F such that |ḡ`,j | > |ḡk,j | for all

j ∈ {1, . . . , n}. We refer the reader to [15] for further detail.

The mechanism described so far is adequate for convex problems because a zero

projected gradient is both necessary and sufficient for second-order criticality. However,

it may be unsuitable for nonconvex ones. Indeed it might prevent progress away from

a saddle point, for which an increase in the projected gradient components is desirable.

Therefore, as in [15], we modify the filter mechanism to ensure that the filter is reset

to the empty set after each iteration giving sufficient descent on the objective function

(in the sense of (2.7)) at which the model mk was detected to be nonconvex, and set an

upper bound on the acceptable objective function values to ensure that the obtained

decrease is permanent.

2.3 The Filter-Trust-Region Algorithm

We are now ready to combine these ideas into an algorithm whose main objective is to

let the filter play the major role in ensuring global convergence within “convex basins”,

and to fall back on a traditional trust-region algorithm only if things do not go well or

if negative curvature is encountered.

Algorithm 2.1 Filter-Trust-Region Algorithm

Step 0 : Initialization.

Let be given an initial point x0 ∈ C and an initial trust-region radius ∆0 > 0.

The constants γḡ ∈ (0, 1/
√

n), η1, η2, γ1, γ2 and γ3 are also given and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 ≤ γ3. (2.10)

Compute f(x0) and ḡ(x0), set k = 0. Initialize the filter F to the empty set and

choose fsup ≥ f(x0). Define two flags RESTRICT and NONCONVEX, the former to

be unset.

Step 1: Determine a trial step.

Compute a finite step sk such that xk + sk ∈ C, that “sufficiently reduces” the

model mk, i.e. that satisfies (2.7), and that also satisfies ‖sk‖∞ ≤ ∆k if RESTRICT

is set or if mk is nonconvex. In the latter case, set NONCONVEX; otherwise unset

it. Compute the trial point x+
k = xk + sk.

Step 2: Compute f(x+
k ) and define the following ratio

ρk =
f(xk) − f(x+

k )

mk(xk) − mk(x+
k )

·

If f(x+
k ) > fsup, set xk+1 = xk, set RESTRICT and go to Step 4.

Step 3: Tests to accept the trial step.
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• Compute ḡ+
k = ḡ(x+

k ).

• If x+
k is acceptable for the filter F and NONCONVEX is unset:

Set xk+1 = x+
k , unset RESTRICT and add ḡ+

k to the filter F if either ρk < η1

or ‖sk‖∞ > ∆k.

• If x+
k is not acceptable for the filter F or NONCONVEX is set:

If ρk ≥ η1 and ‖sk‖∞ ≤ ∆k, then

set xk+1 = x+
k , unset RESTRICT and if NONCONVEX is set, set fsup =

f(xk+1) and reinitialize the filter F to the empty set;

else set xk+1 = xk and set RESTRICT.

Step 4: Update the trust-region radius.

If ‖sk‖∞ ≤ ∆k, update the trust-region radius by choosing

∆k+1 ∈











[γ1∆k, γ2∆k] if ρk < η1,

[γ2∆k, ∆k] if ρk ∈ [η1, η2),

[∆k, γ3∆k] if ρk ≥ η2;

(2.11)

otherwise, set ∆k+1 = ∆k. Increment k by one and go to Step 1.

As it stands, the algorithm lacks formal stopping criteria. In practice, we obviously

stop the calculation if the infinity norm of the projected gradient (2.1) falls below some

user-defined tolerance and the flag NONCONVEX is unset, or if some fixed maximum

number of iterations is exceeded. Note that our conditions on the step in Step 1

require that we recompute the step sk within the trust region if negative curvature is

discovered for the model.

3 Global convergence to first-order critical points

We now prove that the Algorithm 2.1 is globally convergent to at least one first-order

critical point. In order to obtain our global convergence properties, we will use the

following assumptions.

A1 f is twice continuously differentiable on IRn.

A2 The iterates xk remain in a closed, bounded domain of IRn.

A3 There exists a constant κumh ≥ 1 such that

‖Hk‖ ≤ κumh − 1

for all k.

Remark that A1 and A2 together imply that there exist constants κl, κu ≥ κl and

κufh ≥ 1 such that

f(xk) ∈ [κl, κu] and ‖∇xxf(xk)‖ ≤ κufh (3.12)
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for all k. Combining A3 with the definition of βk, we have that there exists a constant

κumh ≥ 1 such that

βk ≤ κumh (3.13)

for all k and all x in the convex hull of {xk}. In what follows, we shall denote

S = {k | xk+1 = xk + sk},

the set of successful iterations,

A = {k | ḡ+
k is added to the filter },

the set of filter iterations,

D = {k | ρk ≥ η1},
the set of sufficient descent iterations, and

N = {k | NONCONVEX is set },

the set of nonconvex iterations. Observe that A ⊆ S, i.e. that ḡ+
k is included into the

filter only at successful iterations. We also have that the mechanism of our algorithm

imposes that

S ∩ N = D ∩N . (3.14)

Finally, we state a property of the algorithm which is crucial for the proofs of the next

section.

Lemma 3.1 We have that, for all k ≥ 0,

f(x0) − f(xk+1) ≥
k

∑

j=0

j∈S∩N

[f(xj) − f(xj+1)]. (3.15)

Proof. The technical proof is exactly the same as for Lemma 3.1 in [15]. 2

Our convergence analysis is strongly inspired by Chapter 6 and Chapter 8 in [5] and

by [15]. We devote this section to a discussion of the modification of the convergence

analysis of [15] that are required to cover the bound constrained case.

We begin our convergence analysis to first-order critical points by proving that, as

long as a first-order critical point is not approached, we do not have infinitely many

successful nonconvex iterations in the course of the algorithm. Firstly, we recall two

results from [5] in order to show that the trust-region radius is bounded away from

zero.

The following lemma shows that the error between the objective function and its

model decreases quadratically with the trust-region radius.

Lemma 3.2 Suppose that A1-A3 hold and that ‖sk‖∞ ≤ ∆k. Then we have that

|f(xk + sk) − mk(xk + sk)| ≤ κubh∆
2
k, (3.16)

where xk + sk ∈ Bk and

κubh

def
= n max[ κufh, κumh]. (3.17)
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Proof. The proof is inspired by [5, Theorem 6.4.1] but, in our context, we need

to make the additional assumption that ‖sk‖∞ ≤ ∆k explicit (instead of being

implicit, in this reference, in the definition of a trust-region step) and we have to

use the equivalence between the `2- and `∞-norms. 2

We next show that the trust-region radius must increase if the current iterate is not

first-order critical and the trust-region radius is small enough.

Lemma 3.3 Suppose that A1-A3 hold and that ‖sk‖∞ ≤ ∆k. Suppose furthermore

that ḡk 6= 0 and that

∆k ≤ κmdcπk(1 − η2)

κubh

. (3.18)

Then we have that ρk ≥ η2 and

∆k+1 ≥ ∆k. (3.19)

Proof. The proof is the same as for Theorem 6.4.2 in [5] when ‖sk‖∞ ≤ ∆k

except that we now have to replace ‖gk‖ by the criticality measure πk and that we

use (2.7) instead of the model decrease defined in [5, Chapter 6]. The idea of the

proof is to show that, as long as the current iterate is not a first-order critical point,

and that the radius satisfies (3.18), the iteration must be very successful, and the

trust-region radius is enlarged according to (2.11). 2

Consequently, we may now obtain that the trust-region radius cannot become ar-

bitrarily small if the iterates stay away from first-order critical points.

Lemma 3.4 Suppose that A1-A3 hold and that there exists a constant κlbg > 0 such

that πk ≥ κlbg for all k. Then there is a constant κlbd > 0 such that

∆k ≥ κlbd (3.20)

for all k.

Proof. The proof is by contradiction and uses the Lemma 3.3. It is identical to

that of Lemma 3.4 in [15] except that we use the `∞-norm of the step instead of the

`2-norm and that we now have to replace ‖gk‖ by the criticality measure πk. 2

We now prove the essential result that the number of successful nonconvex iterations

must be finite unless a first-order critical point is approached.

Theorem 3.5 Suppose that A1-A3 hold and that there exists a constant κlbg > 0 such

that πk ≥ κlbg for all k. Then there can only be finitely many successful nonconvex

iterations in the course of the algorithm, i.e. |S ∩ N | < +∞.

Proof. The proof is inspired by [15, Theorem 3.5] except that ‖gk‖ is replaced by

πk and we now use the definitions (2.7) of mk and (2.8) of βk. 2
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We now establish the criticality of the limit point of the sequence of iterates when

there are only finitely many successful iterations.

Theorem 3.6 Suppose that A1-A3 and (2.7) hold and that there are only finitely many

successful iterations, i.e. |S| < +∞. Then xk = x∗ for all sufficiently large k, and x∗

is first-order critical.

Proof. The proof is identical to that of Theorem 3.6 in [15] except that we have

to replace ‖gk‖ by the criticality measure πk. 2

Having proved the desired convergence property for the case where S is finite, we

restrict our attention, for the rest of this section, to the case where the filter is updated

an infinite number of times, i.e. |S| = +∞. We start by investigating what happens

if infinitely many values are added to the filter in the course of the algorithm, i.e.

|A| = +∞.

Theorem 3.7 Suppose that A1-A3 hold and that |A| = |S| = +∞. Then

lim inf
k→∞

πk = 0. (3.21)

Proof. The proof is the same as for Theorem 3.7 in [15] except that ‖gk‖ is

replaced by πk and that we use the new filter acceptance definition (2.9). The proof

is by contradiction. We suppose that, for all k large enough, πk ≥ κlbg for some

κlbg > 0. Theorem 3.5 implies that the filter is no longer reset to the empty set for

k sufficiently large. By using the filter test acceptance mechanism and our initial

assumption, we can derive a contradiction exactly as in [15, Theorem 3.7]. 2

Consider now the case where the number of iterates added to the filter in the course

of the algorithm is finite.

Theorem 3.8 Suppose that A1-A3 hold and that |S| = +∞ but |A| < +∞. Then

(3.21) holds.

Proof. Again the proof is identical to that of Theorem 3.8 in [15]. 2

The preceding two results show that at least one of the limit points of the sequence

of iterates generated by the algorithm satisfies the first-order necessary condition. How-

ever this result cannot be improved to obtain that all limit points are first-order critical

without affecting the algorithm’s numerical behavior (see the example in [15]).

4 Numerical experiments

In this section, we report the computational results obtained by running our algorithm

on a set of 108 simple-bound constrained problems from the CUTEr collection [13].

The names of the problems with their dimension are given in Table 4.1. We consider

the dimension of a problem as the number of free variables and of variables which are
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bounded from below and/or above, i.e. the number of variables minus the number of

fixed ones. The dimension of the problems varies from 1 to 10000.

We always use the starting point supplied with the problem. However, if this initial

point is not feasible, we project it onto the feasible box. All tests were performed in

double precision on a workstation with a 3.2 GHz Pentium IV biprocessor and 2GB

of memory under Suse Professional 9.0 Linux and the Lahey Fortran compiler (version

L6.10a) with default options. We have limited all attempts to solve the test problems

to a maximum of 1000 iterations or 1 hour of CPU time. The values for the constants

of Algorithm (2.1) used in our tests are

γ1 = 0.0625, γ2 = 0.25, γ3 = 2, η1 = 0.01, η2 = 0.9, ∆0 = 1

and

γḡ = min

[

0.001,
1

2
√

n

]

.

We also choose

fsup = min(106|f(x0)|, f(x0) + 1000)

at Step 0 of the algorithm.

We have tested two particular variants. The first (called default) is the algorithm as

described in Section 2, where exact first and second derivatives are used. As we have

already mentioned, at each iteration, the trial point is computed by approximately

minimizing the subproblem (2.5). This computation is accomplished in a two-stage

approach: first, we use the gradient-projection method to identify variables that will

be fixed at their bounds; then the quadratic model of the objective function is further

reduced with respect to the free variables by using a conjugate-gradient algorithm (see

[3]). This iterative method is terminated at the first s for which

‖(∇mk(xk + s)) free ‖∞ ≤ min
[

0.1,
√

max(εM , ‖ ḡ(xk)‖∞)
]

‖ḡ(xk)‖∞, (4.22)

where (∇mk(xk + s)) free denotes the restricted gradient of the quadratic model with

respect to the remaining free variables(1) at the beginning of the conjugate-gradient

iteration and εM is the machine precision.

Based on practical experience [16], we also impose that ‖sk‖∞ ≤ 1000 ∆k at all

iterations following the first one at which a restricted step is taken. Every run of the

algorithm was terminated if the infinity norm of the projected gradient falls below some

tolerance, i.e if

‖ḡ(xk)‖∞ ≤ 10−6. (4.23)

Finally, dominated filter points are always removed from the filter.

The second algorithmic variant is a pure trust-region version, that is the same algorithm

with the exception that no trial point is ever accepted for the filter and that the flag

RESTRICT is always set, which is to say that steps are always restricted within the

trust-region.

(1)The remaining free variables are those which are not fixed at the Generalized Cauchy point.
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Figure 4.1: Iterations performance profiles for the two variants and LANCELOT B.

On the 108 problems, the default version successfully solves 102 problems and the

pure trust-region one 97. The two variants fail on BIGGSB1, PALMER5A, PALMER7A,

QRTQUAD and SCOND1LS because the maximum number of iterations has been reached

before convergence is declared. The filter variant also fails, for the same reason, on

MINSURFO, and the pure trust-region algorithm fails on PALMER5B and PALMER5E. The

pure trust-region variant is also unable, for problems BLEACHNG, EXPLIN, EXPQUAD and

PALEMR1A to reduce the infinity norm of the projected gradient sufficiently to meet the

stopping criterion (4.23) even though, for these problems, the objective function value

obtained is very good. For the problems where both variants succeed, they report

the same final objective function value except for the problems LINVERSE, PALMER2E,

PALMER3 and PALMER4.

Figures 4.1, 4.2 and 4.3 give the performance profiles for the two variants in term of

number of iterations, CPU-time and the total amount of conjugate-gradient iterations,

respectively. Performance profiles give, for every σ ≥ 1, the proportion p(σ) of test

problems on which each considered algorithmic variant has a performance within a

factor σ of the best (see [6] for a more complete discussion). The variability of CPU

times for small times is taken into account by repeatedly solving the same problem

until a threshold of ten seconds is exceeded and then taking the average.

Although the numerical results are not as significant as for the algorithm in the

unconstrained case (see the performance profiles in [15]), we obtain interesting results.

We can see on these figures that the filter variant is significantly more efficient than

the pure trust-region method in term of the number of iterations (which is identical

to the number of function evaluations minus one). Its advantage is smaller in term of
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Figure 4.2: CPU performance profiles for the two variants and LANCELOT B.
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Figure 4.3: CG iterations performance profiles for the two variants and LANCELOT

B.
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conjugate-gradient iterations and CPU-time efficiency.

We also remark from our numerical tests that the maximum number of filter entries

does not exceed 5 for 79 problems, lies between 6 and 10 for 9 problems, between 11

and 30 for 12 problems and exceeds 30 for only two problems: EXPQUAD (31 entries)

and PALMER5E (50 entries). Note that the pure trust-region variant does not solve these

two problems. Moreover, we did not observe any obvious correlation between filter size

and number of variables. It should be noted that for most of the problems where the

default variant fails, the algorithm puts a large number of entries in the filter. However,

for those problems(2), the pure trust-region variant also fails.

We also include a comparison with LANCELOT-B, one of the GALAHAD codes [14].

This is a non-monotone trust-region algorithm (see [21] or [5, Section 10.1]), which we

used unpreconditioned with ∆0 = 1 and with its other settings at their default values,

except that, in the convergence test, we set the accuracy on the projected gradient to

10−6. Again this method, which successfully solves 99 out of 108 problems, appears

to be slightly inferior to the new filter algorithm in term of number of iterations and

especially in term of CPU-time efficiency. As the default variant, LANCELOT-B does

not solve BIGGSB1, PALMER5A, PALMER7A, QRTQUAD or SCOND1LS either. It also fails on

BLEACHNG, CHENHARK, PALMER5B and PALMER5E.

5 Conclusion

In this paper, we have proposed an algorithm for the minimization of simple-bound

constrained optimization problems. The underlying idea of our algorithm is to combine

three tools in nonlinear programming, namely trust-region method, gradient-projection

method and filter techniques. We have shown that, under standard assumptions, it

produces at least a first-order critical point, irrespective of the chosen starting point.

A second-order convergence analysis remains to be done but difficulties are expected

since one knows that possibly only one limit point is first-order critical. The preliminary

numerical results obtained on the set of bound constrained test problems are reported

and discussed, showing a general good performance of the algorithm.
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Problem n Problem n Problem n

3PK 30 JNLBRNG2 9604 PALMER5A 8

ALLINIT 3 JNLBRNGA 9604 PALMER5B 9

BDEXP 5000 JNLBRNGB 9604 PALMER5D 8

BIGGSB1 5000 LINVERSE 1999 PALMER5E 8

BLEACHNG 9 LOGROS 2 PALMER6A 6

BQP1VAR 1 MAXLIKA 8 PALMER6E 8

BQPGABIM 46 MCCORMCK 5000 PALMER7A 6

BQPGASIM 50 MDHOLE 2 PALMER7E 8

BQPGAUSS 2003 MINSURFO 5002 PALMER8A 6

CAMEL6 2 NCVXBQP1 10000 PALMER8E 8

CHEBYQAD 100 NCVXBQP2 10000 PENTDI 5000

CHENHARK 5000 NCVXBQP3 10000 PROBPENL 500

CVXBQP1 10000 NOBNDTOR 5184 PSPDOC 4

DECONVB 61 NONSCOMP 5000 QR3DLS 610

EG1 3 OBSTCLAE 9604 QRTQUAD 5000

EXPLIN 1200 OBSTCLAL 9604 QUDLIN 5000

EXPLIN2 1200 OBSTCLBL 9604 S368 8

EXPQUAD 1200 OBSTCLBM 9604 SCOND1LS 5000

GRIDGENA 5560 OBSTCLBU 9604 SIM2BQP 1

HADAMALS 380 OSLBQP 8 SIMBQP 2

HART6 6 PALMER1 4 SINEALI 1000

HATFLDA 4 PALMER1A 6 SPECAN 9

HATFLDB 4 PALMER1B 4 TORSION1 5184

HATFLDC 25 PALMER1E 8 TORSION2 5184

HIMMELP1 2 PALMER2 4 TORSION3 5184

HS1 2 PALMER2A 6 TORSION4 5184

HS110 200 PALMER2B 4 TORSION5 5184

HS2 2 PALMER2E 8 TORSION6 5184

HS25 3 PALMER3 4 TORSIONA 5184

HS3 2 PALMER3A 6 TORSIONB 5184

HS38 4 PALMER3B 4 TORSIONC 5184

HS3MOD 2 PALMER3E 8 TORSIOND 5184

HS4 2 PALMER4 4 TORSIONE 5184

HS45 5 PALMER4A 6 TORSIONF 5184

HS5 2 PALMER4B 4 WEEDS 3

JNLBRNG1 9604 PALMER4E 8 YFIT 3

Table 4.1: The test problems and their dimension.
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