
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

CUTEr and SIFDEC

Gould, N.I.M.; Orban, D.; Toint, P.L.

Published in:
ACM Transactions on Mathematical Software

DOI:
10.1145/962437.962439

Publication date:
2003

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Gould, NIM, Orban, D & Toint, PL 2003, 'CUTEr and SIFDEC: A constrained and unconstrained testing
environment, revisited' ACM Transactions on Mathematical Software, vol. 29, no. 4, pp. 373-394.
https://doi.org/10.1145/962437.962439

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198261989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/962437.962439
https://researchportal.unamur.be/en/publications/cuter-and-sifdec(aa0690a4-2618-4cc4-a9c3-27f41a3e1f4f).html

CUTEr and SifDe
: a Constrained andUn
onstrained Testing Environment, revisitedNi
holas I. M. GouldRutherford Appleton Laboratory,Dominique Orban
erfa
sandPhilippe L. TointFa
ult�es Universitaires Notre-Dame de la PaixThe initial release of CUTE, a widely used testing environment for optimization software, was de-s
ribed in [2℄. A new version, now known as CUTEr is presented. Features in
lude reorganisationof the environment to allow simultaneous multi-platform installation, new tools for, and interfa
esto, optimization pa
kages, and a
onsiderably simpli�ed and entirely automated installation pro-
edure for unix systems. The environment is fully ba
kward
ompatible with its prede
essor, o�erssupport for Fortran 90/95 and a general C/C++ Appli
ation Programming Interfa
e. The SIFde
oder, formerly a part of CUTE, has be
ome a separate tool, easily
allable by various pa
kages.It features simple extensions to the SIF test problem format and the generation of �les suited toautomati
 di�erentiation pa
kages.Additional Key Words and Phrases: Nonlinearly-
onstrained optimization, testing environment,shared �lesystems, heterogeneous environment, SIF formatThis work was supported by the MRNT grant for joint thesis support.Name: N. I. M. GouldAddress: Computational S
ien
e and Engineering Department, Chilton, Oxfordshire, OX11 0QX,England. n.gould�rl.a
.ukAÆliation: Rutherford Appleton LaboratoryName: D. OrbanAddress: 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 1, Fran
e. orban�
erfa
s.frAÆliation:
erfa
sName: Ph. L. TointAddress: 61, rue de Bruxelles, B-5000 Namur, Belgium. Philippe.Toint�fundp.a
.beAÆliation: Fa
ult�es Universitaires Notre-Dame de la PaixPermission to make digital or hard
opies of part or all of this work for personal or
lassroom use isgranted without fee provided that
opies are not made or distributed for pro�t or dire
t
ommer
ialadvantage and that
opies show this noti
e on the �rst page or initial s
reen of a display alongwith the full
itation. Copyrights for
omponents of this work owned by others than ACM mustbe honored. Abstra
ting with
redit is permitted. To
opy otherwise, to republish, to post onservers, to redistribute to lists, or to use any
omponent of this work in other works, requires priorspe
i�
 permission and/or a fee. Permissions may be requested from Publi
ations Dept, ACMIn
., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions�a
m.org.

2 � N.I.M. Gould, D. Orban and Ph.L. Toint1. INTRODUCTIONThe CUTE testing environment for optimization software and the asso
iated testproblem
olle
tion originated from the need to perform extensive and do
umentedtesting on the LANCELOT pa
kage [10℄. Be
ause the large set of test problemsand testing fa
ilities produ
ed in this
ontext were useful in their own right, theywere extended to provide easy interfa
es with other
ommonly used optimizationpa
kages, gathered in a
oherent multi-platform framework and made available, onthe world wide web and via anonymous ftp, to the resear
h
ommunity. The paper[2℄ provides an overview of the environment, and full do
umentation of the availabletools and interfa
es at the time.Sin
e 1993, the CUTE environment and test problems have been widely used bythe
ommunity of optimization software developers [1; 3; 4; 7; 8; 11; 12; 13; 14; 15;22; 24; 26; 27; 28; 32; 33; 37; 38; 39; 40; 42; 43; 44℄. Su
h widespread use has in-evitably led to a
learer awareness of the de�
ien
ies of the original design, and also
reated a demand for new tools and new interfa
es. The environment has evolvedover time by the addition of new test problems and minor updates to a numberof tools. The present paper aims to des
ribe its next major evolution: CUTEr, inwhi
h we revisit the original CUTE design. This new release is
hara
terized by|a set of new tools, in
luding a uni�ed fa
ility to report the performan
e of thevarious optimization pa
kages being tested,|full ba
kward
ompatibility with CUTE,|a set of new interfa
es to additional optimization pa
kages,|some Fortran 90/95 support, and|an integrated C/C++ Appli
ation Programming Interfa
e.The SIF optimization test-problem de
oder, whi
h used to be a
onstituent part ofthe CUTE environment, has been isolated into a separate pa
kage named SifDe
.Any software that
ould require the de
oding of a SIF �le may now rely on it, as apa
kage in its own right. It is
hara
terized by|the de�nition and support of an extension to SIF (the Standard Input Format) al-lowing for easier input of quadrati
 programs and for
asting the problem againsta sele
tion of parameters, su
h as the problem size, and|the ability to generate input �les suited to automati
 di�erentiation tools, su
has the HSL [30℄ AD01 and AD02 pa
kages [36℄.Both CUTEr and SifDe
 have the following features:|Completely new organization of the various �les that make up the environment,now allowing
on
urrent installations on a single ma
hine and shared installationson a network, and|a new simpli�ed and automated installation pro
edure, but|the restri
tion of the environment to unix systems.The last of these items is the reason why the rest of the paper only
onsidersdire
tory stru
tures and/or �le names in a style typi
ally found on unix systems.To some, the restri
tion to unix systems might seem a retrograde step be
ause

The CUTEr environment � 3CUTE o�ered VMS and some DOS support, but this merely re
e
ts our
urrentexpertise.This paper is intended to supersede the parts of [2℄ that are depre
ated in CUTEr,to
omplement it in order to
over the new features and to des
ribe the new SifDe
environment. It is organized as follows. Se
tion 2 dis
usses the new organization ofthe CUTEr environment �les. Se
tion 3 do
uments the new tools and dis
usses ap-pli
ation program interfa
es. Se
tion 4 do
uments the new interfa
es to additionaloptimization pa
kages and Se
tion 5
overs the isolated SIF de
oder environment,the extension of the SIF des
ription language to quadrati
 programs, and its supportof user-
hangeable parameters. Se
tion 6 des
ribes the new installation pro
edures.Details of how the pa
kages may be obtained are given in Se
tion 7, and
on
luding
omments are presented in Se
tion 8.2. A NEW FLEXIBLE ORGANIZATIONOne of the defe
ts of CUTE is that it was not designed to support a multi-platformenvironment; that is, instan
es of the environment that
ould be used simulta-neously from a
entral server on several, possibly di�erent, ma
hines, with theirown diale
ts of unix. Moreover, using CUTE on a single ma
hine in
onjun
tionwith several di�erent
ompilers (a
ase that frequently o

urs when new softwareis tested) is extremely
umbersome. Likewise, handling di�erent instan
es of theenvironment
orresponding to di�erent sizes of the tools (that is the size of the testproblems that they
an handle) is problemati
. The reason for these diÆ
ulties isthat the stru
ture of the CUTE �les, as des
ribed in [2℄, does not lend itself to su
huse, be
ause it only
ontains a single subtree of obje
ts �les. If we
all the
ombina-tion of a ma
hine, operating system,
ompiler and size of the tools an ar
hite
ture,the obvious solution to su
h a defe
t is then to allow several su
h subtrees in theinstallation, one for ea
h ar
hite
ture.However, as soon as the possibility of using ar
hite
ture-dependent subtrees israised, the proper identi�
ation of the parts (s
ripts, programs) of the environmentthat are independent of the ar
hite
ture also be
omes an issue. Sin
e it would be in-eÆ
ient to store
opies of these independent s
ripts and programs in ea
h subtree, itis natural to store them in a data stru
ture that is itself disjoint from the dependentsubtrees. Finally, the propagation of subtrees
ontaining sometimes very similar yetvitally di�erent data makes the maintenan
e of the environment substantially more
ompli
ated, and therefore requires enhan
ed tools and a
lear distin
tion betweenthe parts of the environment that are related to testing optimization software andthose related to its own maintenan
e.The dire
tory organization
hosen for CUTEr, shown in Fig. 1, re
e
ts these
onsiderations. We now brie
y des
ribe its
omponents.Starting from the top of the �gure, the �rst subtree under the main $CUTER di-re
tory (the root of the CUTEr environment) is build, whi
h essentially
ontains allthe �les ne
essary for installation and maintenan
e. Its ar
h subdire
tory
ontainsthe �les de�ning all possible ar
hite
tures that are
urrently supported by CUTEr,allowing users to install new ar
hite
ture-dependent subtrees as they are required,depending on the testing needs and the evolution of platforms, systems and
ompil-ers. The prototypes subdire
tory
ontains the parts of the environment that haveto be spe
ialized to one ar
hite
ture before they
an be used. We
all su
h �les

4 � N.I.M. Gould, D. Orban and Ph.L. Toint

$CUTER

...

build ar
hprototypess
ripts

ommon

do
man man1man3sr
 toolsmatlab
sif pkg
obyla...hsl ve12
onfiglog$MYCUTERfor a givenma
hine/op. system/
ompiler/size
binsingle binlib
onfigspe
sdouble binlib
onfigspe
sFig. 1. Stru
ture of the CUTEr dire
tories

The CUTEr environment � 5prototypes and the pro
ess of spe
ializing them to a spe
i�
 ar
hite
ture
asting.The prototype �les in
lude a number of tools and s
ripts whose �nal form typi
allydepends on
ompiler options and the
hosen size of the tools. Finally, the remainingsubdire
tory of build, named s
ripts,
ontains the environment maintenan
e toolsand various do
umentation �les.The se
ond subtree under $CUTER is
alled
ommon and
ontains the environmentdata �les that are relevant for the purpose of testing optimization pa
kages, butare independent of the ar
hite
ture. Subdire
tory do

ontains a number of do
u-mentation �les
on
erning the environment, su
h as a des
ription of its stru
tureand pro
edures to follow for interfa
ing the supported optimization pa
kages. TheCUTEr tools and s
ripts themselves are do
umented in the man subdire
tory, and,as is
ommon on unix systems, its man1 and man3 subdire
tories. The sr
 subdi-re
tory
ontains the sour
e �les for many of the environment utilities disseminatedin a number of subdire
tories. We brie
y des
ribe them in turn. tools
ontainsthe sour
es of the Fortran tools used in user's programs. matlab
ontains all the\m-�les" that provide a matlab interfa
e to the environment. pkg holds infor-mation related to the various optimization pa
kages for whi
h CUTEr provides aninterfa
e|these being stored separately in their own subdire
tory of pkg; Fig.1represents those for
obyla and HSL VE12. Ea
h of these pa
kage-spe
i�
 subdi-re
tories typi
ally in
ludes an algorithmi
 spe
i�
ation �le and a suitable READMEdes
ription of how to build an interfa
e between CUTEr and the pa
kage. The lastsubdire
tory, sif,
ontains a few test problems in SIF format.The next subdire
tory under $CUTER is
alled
onfig and
ontains all the
on�g-uration and rules �les needed to generate the platform-spe
i�
 Make�les.The log subdire
tory of $CUTER
ontains a history of the various installations|and, possibly, subsequent un-installations|of the environment for the various ar-
hite
tures.The remaining subdire
tories of $CUTER are all ar
hite
ture dependent: ea
h
or-responds to the installation of CUTEr in a spe
i�
 ma
hine, for a given operatingsystem and
ompiler and for a given tool size. The �gure only represents one, butthe
ontinuation dots at the bottom of the leftmost verti
al line indi
ate that theremight be more than one. Although these dire
tories have been symboli
ally rep-resented as subdire
tories of $CUTER in the �gure to re
e
t their dependen
e upon$CUTER, they may be lo
ated anywhere on the host system, in
luding on remotema
hines over the lo
al network. The names of these dire
tories are (by default)automati
ally
hosen at installation, but a user of one of these subtrees would typ-i
ally give it a symboli
 name, like $MYCUTER, to distinguish the version of CUTEr
urrently in use. Ea
h ar
hite
ture-dependent subtree is divided into its single pre-
ision and double pre
ision instan
es (single and double, respe
tively), ea
h of these
ontaining four subdire
tories. The �rst, bin,
ontains the obje
t �les
orrespond-ing to the driving programs for the optimization pa
kages and, if relevant, for thepa
kage
odes themselves. If appli
able, it should also
ontain the Fortran 90/95module information �les, that is those usually suÆxed by .mod. The se
ond, lib,
ontains the library of CUTEr tools and, if relevant, any obje
t libraries asso
iatedwith the interfa
ed optimization pa
kages. The
onfig subdire
tory
ontains thear
hite
ture-dependent �les that were used to build the
urrent $MYCUTER subtree(they are reused when a tool or optimization pa
kage is added or updated), while

6 � N.I.M. Gould, D. Orban and Ph.L. Tointspe
s
ontains the algorithmi
 spe
i�
ation �les for the optimization pa
kages thatare ar
hite
ture dependent, if any. Finally, $MYCUTER/bin
ontains s
ripts that arear
hite
ture, but not pre
ision, -dependent.The fa
t that the CUTEr tools are now stored in the form of libraries (whilethey were stored as a
olle
tion of individual obje
t �les in CUTE), is another newfeature. This allows a mu
h simpler design of new optimization pa
kage interfa
es,be
ause the interfa
e no longer needs to spe
ify the exa
t list of tools that need tobe loaded with the pa
kage.A �nal new feature of the environment organization is that the do
umentationis available via the usual man
ommand for the s
ripts and tools, and in ASCII,posts
ript and pdf formats for the rest.3. NEW FEATURESThis se
tion des
ribes innovations in CUTEr, from the point of view of optimizationsoftware and the manipulation of data de
oded from problems. Se
tion 3.1 des
ribesre
ently added CUTEr tools whi
h handle data to be used by optimization softwarewhile Se
tion 3.2
on
entrates on programming languages support.3.1 New toolsThe CUTEr tools for un
onstrained and
onstrained optimization are presented inTables 1 and 2 respe
tively, a

ompanied by a brief des
ription. Storage of theHessian matrix of either the obje
tive or the Lagrangian fun
tion may be eitherdense or sparse. Unless otherwise spe
i�ed, sparse storage o

urs in
oordinateformat [17, x2.6℄. Expli
it mention is made whenever the storage s
heme is instead�nite-element format [17, x10.5℄. Besides the general CUTEr do
umentation, manpages des
ribing all supplied tools and their
alling sequen
e are in
luded in thedistribution.Users of the previous versions of CUTE will noti
e a number of new tools forboth un
onstrained|or bound-
onstrained|and
onstrained problems. We notethe uvarty and
varty tools, whose purpose is to determine the type of ea
h vari-able, whi
h may be
ontinuous, binary (0-1) or integer. For
onstrained problems,the tool
dimen determines the number of variables and
onstraints involved. Thetools
dimse and
dimsh determine the number of nonzero entries in the Hessian ofthe Lagrangian when using (respe
tively) �nite-element or general sparse matrixstorage, and thus allow users to set appropriate array sizes in advan
e, while
dimsjdoes the same for the
onstraint Ja
obian. The tool
s
ifg is now obsolete andrepla
ed by

ifsg. For ba
kward-
ompatibility reasons, the former is in
luded butsimply
alls the latter as a subroutine. Programs that ran under earlier versions ofCUTE will therefore still run under CUTEr. Similarly, for un
onstrained problems,the new tools udimen, udimse and udimsh determine the number of variables involved,and the numbers of nonzeros in the Hessian in �nite-element and sparse formatsrespe
tively. Finally, the ureprt and
reprt tools produ
e statisti
s about a parti
-ular run on (respe
tively) an un
onstrained or
onstrained test problem, reportingdata su
h as total CPU time, number of iterations, fun
tion and
onstraints evalu-ations (if appropriate), number of evaluations of their derivatives, and the numberof Hessian matrix-ve
tor produ
ts used.All the external pa
kage drivers supply report data using the ureprt and
reprt

The CUTEr environment � 7Tool name Brief des
riptionubandh extra
t a banded matrix out of the Hessian matrixudh evaluate the Hessian matrix in dense formatudimen get the number of variables involvedudimse determine the number of nonzeros required to store thesparse Hessian matrix in �nite-element formatudimsh same as udimse, in sparse formatueh evaluate the sparse Hessian matrix in �nite-element formatufn evaluate fun
tion valueugr evaluate gradientugrdh evaluate the gradient and Hessian matrix in dense formatugreh evaluate the gradient and Hessian matrix in �nite-element formatugrsh evaluate the gradient and Hessian matrix in sparse formatunames obtain the names of the problem and its variablesuofg evaluate fun
tion value and possibly gradientuprod form the matrix-ve
tor produ
t of a ve
tor with the Hessian matrixusetup set up the data stru
tures for un
onstrained optimizationush evaluate the sparse Hessian matrixuvarty determine the type of ea
h variableureprt obtain statisti
s
on
erning fun
tion evaluation and CPU time usedTable 1. The un
onstrained optimization CUTEr tools.tools. These drivers have �lenames mat
hing the *ma.f or *ma.f90 expression.They may be found in $CUTER/
ommon/sr
/tools before
ompilation and under thename $MYCUTER/pre
ision/bin/*ma.o after
ompilation. For example, the hypothet-i
al sour
e pa
kage pak.f needs to be
ompiled into $MYCUTER/pre
ision/bin/pak.o.All the obje
t �les and the relevant libraries are subsequently linked by the
orre-sponding interfa
e, following the pro
edure des
ribed in Se
tion 4.3.2 New Appli
ation Programming Interfa
esIn this se
tion, we
omment on the possibility of hooking optimization softwarewritten in Fortran 90/95 or C/C++ to CUTEr.CUTEr makes provision for optimization or linear algebra
odes written in stan-dard Fortran 90/95 by providing expli
it interfa
e blo
ks to all tools present inthe library and delayed
ompilation in
ase module information is not present atinstallation time. As guidelines to writing new Fortran 90/95 interfa
es, a generi
interfa
e gen90ma and a real interfa
e ve12ma, interfa
ing the HSL
ode HSL VE12are already part of the CUTEr distribution.Optimization and linear algebra software in
reasingly use the
exibility and gen-erality of obje
t-oriented languages like C++ and, more generally, enjoy the bene�tsand portability of the C language. As a response to those interests, CUTEr pro-vides a C/C++ Appli
ation Programming Interfa
e to every tool available in theenvironment. This interfa
e is transparent in the sense that users need not worryabout ar
hite
ture or
ompiler-dependent details as these are treated internally.At the time of this writing, only the most popular
ombinations of Fortran andC
ompilers have been
onsidered, but inevitably further support will be providedin the future.

8 � N.I.M. Gould, D. Orban and Ph.L. TointTool name Brief des
ription

fg evaluate
onstraint fun
tions values and possibly gradients

fsg same as

fg, in sparse format

ifg evaluate a single
onstraint fun
tion value and possibly gradient

ifsg same as

ifg, in sparse format
dh evaluate the Hessian of the Lagrangian in dense format
dimen get the number of variables and
onstraints involved
dimse determine number of nonzeros to store the Lagrangian Hessianin �nite-element format
dimsh determine number of nonzeros to store the Lagrangian Hessianin
oordinate format
dimsj determine number of nonzeros to store the matrix of gradients ofthe obje
tive fun
tion and
onstraints, in sparse format
eh evaluate the sparse Lagrangian Hessian in �nite-element format
fn evaluate fun
tion and
onstraints values
gr evaluate
onstraints gradients and obje
tive/Lagrangian gradient
grdh same as
gr, plus Lagrangian Hessian in dense format
idh evaluate the Hessian of a problem fun
tion
ish same as
idh, in sparse format
names obtain the names of the problem and its variables
ofg evaluate fun
tion value and possibly gradient
prod form the matrix-ve
tor produ
t of a ve
tor with the Lagrangian Hessian
s
fg evaluate
onstraint fun
tions values and possibly gradients in sparse format
s
ifg same as
s
fg, for a single
onstraint
setup set up the data stru
tures for
onstrained optimization
sgr evaluate
onstraints and obje
tive/Lagrangian fun
tion gradients
sgreh evaluate both the
onstraint gradients, the Lagrangian Hessianin �nite-element format and the gradient of theobje
tive/Lagrangian in sparse format
sgrsh same as
sgreh, in sparse format instead of �nite-element format
sh evaluate the Hessian of the Lagrangian, in sparse format
varty determine the type of ea
h variable
reprt obtain statisti
s
on
erning fun
tion evaluation and CPU time usedTable 2. The
onstrained optimization CUTEr tools.4. NEW INTERFACESCUTEr
ontains a number of additional interfa
es to existing pa
kages (as well asinterfa
es to newer versions of previously supported pa
kages) beyond those o�eredwith CUTE. The purpose of providing these interfa
es is to allow resear
hers torun a variety of solvers on a
onsistent set of test examples, and thus to assess therespe
tive merits of ea
h for solving
lasses of related problems, and pra
titionersto solve simpli�ed versions of their problems or similar problems by establishedsolvers and
ross-
ompare the results. The newly supported pa
kages are:�ltersqp. This nonlinear programming pa
kage
ombines �lter and trust-regionmethods to globalize an SQP iteration [21; 22; 23℄. The �ltersqp pa
kage ismaintained by, and may be obtained from, Roger Flet
her (flet
her�maths.dundee.a
.uk)and Sven Ley�er (leyffer�m
s.anl.gov).hrb. To
onvert matri
es (for example, Hessians, Ja
obians, and KKT augmentedsystem matri
es) derived from SIF problem data into Harwell-Boeing [18; 19℄or Rutherford-Boeing [20℄ sparse matrix formats. HRB was written by Ni
k

The CUTEr environment � 9Gould, and is unique in CUTEr in that the interfa
e requires no external pa
k-age.HSL VE12. This pa
kage �nds
riti
al points of non
onvex quadrati
 programmingproblems using an interior-point trust-region algorithm [9℄. HSL VE12 is part ofHSL [30℄ and was written by Ni
k Gould and Philippe Toint.knitro. This minimizes a smooth nonlinear fun
tion subje
t to nonlinear equalityand inequality
onstraints using an interior-point approa
h. The resulting bar-rier subproblems are treated using SQP. knitro [6℄ is maintained by Jorge No-
edal (no
edal�e
e.northwestern.edu) and Ri
hardWaltz (rwaltz�e
e.northwestern.edu).l-bfgs-b. This pa
kage [45℄ treats un
onstrained or bound
onstrained problems.It uses a limited memory BFGS quasi-Newton method and is available fromJorge No
edal (no
edal�e
e.northwestern.edu).loqo. A linesear
h-based primal-dual interior-point
ode for nonlinear program-ming, using an SQP approa
h and dire
t fa
torizations [41℄. loqo is maintainedby its author Robert Vanderbei (rvdb�prin
eton.edu).praxis. This is Brent's algorithm, reimplemented in Fortran 77 by John Chandler,for un
onstrained minimization without derivatives [5℄. It is available from JohnChandler (jp
�a.
s.okstate.edu).snopt. This pa
kage [25℄ minimizes a smooth linear or nonlinear fun
tion subje
tto bounds and sparse linear or nonlinear
onstraints using sequential quadrati
programming (SQP). The pa
kagemay be obtained from Philip Gill (pgill�u
sd.edu).The implementation of the interfa
es di�er slightly from that of past CUTE re-leases. If pak is a generi
 name for an interfa
e, the s
ripts sdpak and pak are foundunder $MYCUTER/bin. The s
ript sdpak applies the SIF de
oder (see Se
tion 5) toan input problem, sets a number of environment variables,
olle
ts and
ompilessour
e and obje
t �les as ne
essary, links them together and exe
utes the resultingprogram. The s
ript pak is similar to sdpak ex
ept it assumes the input problemhas already been de
oded.Generi
 interfa
ing s
ripts|sdgen and gen for Fortran 77 pa
kages and sdgen90and gen90 for Fortran 90/95 pa
kages|may also be found in $MYCUTER/bin. Theseserve the purpose of helping users to design interfa
es to new or
urrently un-supported pa
kages. The
orresponding prototype �les may be found under thedire
tory $CUTER/build/prototypes.Besides the general CUTEr do
umentation, man pages des
ribing all suppliedinterfa
es are in
luded in the distribution. Do
umentation for installing and us-ing the pa
kage pak may be found in the dire
tory $CUTER/
ommon/sr
/pkg/pak.Note, however, that the supported pa
kages are not supplied in CUTEr, rather di-re
tions on how to obtain them are indi
ated on the oÆ
ial CUTEr website (seeSe
tion 7). Obje
t �les should be pla
ed where CUTEr
an �nd and link them|forinstan
e in $MYCUTER/pre
ision/bin, where pre
ision is the working pre
ision. Thepre
ision-independent spe
i�
ation �les for the pa
kage pak are found in the dire
-tory $CUTER/
ommon/sr
/pkg/pak, whereas if the options spe
i�
ation �les dependon the working pre
ision, they are found in $MYCUTER/pre
ision/spe
s.

10 � N.I.M. Gould, D. Orban and Ph.L. Toint5. AN ISOLATED SIF DECODERIn this se
tion, we examine the new design of the SIF de
oder. In
ontrast withearlier versions of CUTE [2℄, the SIF de
oder is not embedded in CUTEr. We believethat this may be justi�ed for a number of reasons. Firstly, while the de
oder isused intensively by the CUTEr testing environment, there is no a priori reasonwhy it should not also be useful in other
ontexts. As a prime example, the SIFde
oder plays a vital role in the pa
kage LANCELOT B (an updated version of theLANCELOT pa
kage [10℄) from the GALAHAD [29℄ optimization software library.It is thus more
onsistent to isolate the de
oder and simply have any dependentpa
kages
all it as needed. Another reason for our de
ision is ease of maintenan
e,and
onsisten
y when upgrading the de
oder|all the pa
kages that refer to it arethen guaranteed to use the same version. Finally, the SIF de
oder may evolve inits own right and develop separately. For example, it has re
ently been extendedto generate routines for fun
tion evaluation suited for input to the HSL automati
di�erentiation pa
kages HSL AD01 and its threadsafe
ounterpart HSL AD02 [30℄. Theresulting isolated de
oder has been named SifDe
.5.1 A new designThe design and
ontents of the SifDe
 dire
tory tree are very similar to the newdesign of CUTEr des
ribed in se
tion 2 and re
e
ts similar
on
erns. The designis summarized in Fig. 2. Corresponding environment variables play
orrespondingroles; the root of the tree is
alled $SIFDEC while the
urrent instan
e of SifDe
 isreferred to as $MYSIFDEC. In addition, the do
 subdire
tory
ontains the
ompleteSIF referen
e do
ument.5.2 Extensions to the SIF5.2.1 Quadrati
 programs. A long sour
e of irritation for CUTE users was that theSIF representation of test problems did not expli
itly allow for quadrati
 obje
tivefun
tions (although it was obviously possible to represent su
h fun
tions via suitablenonlinear element fun
tions). Sin
e this situation arises frequently, and as a numberof extensions to the MPS Linear Programming format from whi
h SIF evolved are inuse [31; 34; 35℄, we have
hosen to extend the original SIF format to handle quadrati
parts of the obje
tive fun
tion in a more
exible manner. We now brie
y des
ribethis extension for the reader already familiar with the SIF format as spe
i�ed in[10℄. The terminology we used is adopted from there.In [10℄, the obje
tive fun
tion is represented as a group partially separable fun
tion
onsisting of several potentially nonlinear groups. The purpose of our extension isto allow one of the groups to be spe
i�ed as a quadrati
 obje
tive group, whosetype of nonlinearity is immediately identi�ed by its de�nition without the needfor additional nonlinear group or element fun
tions. More pre
isely, the obje
tivefun
tion is now assumed to have the formf(x) = Xi2IO gi(�i) + 12 nXj=1 nXk=1hj;kxjxk ; with �i =Xj2Ji wi;jfj(�xj) + aTi x� bi;where x = (x1; x2; : : : ; xn). The term 12Pnj=1Pnk=1 hj;kxjxk in the obje
tive fun
-tion is the quadrati
 obje
tive group and
onstitutes an extension to the format

The CUTEr environment � 11

$SIFDEC

...

build ar
hprototypess
ripts

onfig

ommon man man1sr
 sele
tsifde
do
log$MYSIFDEC for� ma
hine� op. system�
ompiler� size

singlebin
bin
onfig

double bin
onfig
Fig. 2. Stru
ture of the SifDe
 dire
tories

12 � N.I.M. Gould, D. Orban and Ph.L. Tointproposed in [10℄; the leading 12 is present by
onvention. This de
omposition isillustrated in Example 5.1.Example 5.1: In order to �x the ideas, let us
onsider the optimizationproblem minimize f(x1; x2) = ex21 + x22 + 4x1x2:Its obje
tive fun
tion then
omprises two groups, the �rst of whi
h (ex21)uses a non-trivial nonlinear group fun
tion g(�) = e�. The rest of theobje
tive fun
tion may then be
onsidered as a quadrati
 obje
tive groupand written as12 (h1;1x1x1 + h1;2x1x2 + h2;1x2x1 + h2;2x2x2);where h1;1 = 0, h1;2 = h2;1 = 4 and h2;2 = 2. 2The quadrati
 obje
tive group is spe
i�ed in the SIF �le by a new se
tion startingwith the keyword (or indi
ator
ard) QUADRATIC (the
ards HESSIAN, QUADS1, QUADOBJ2and QSECTION3 are treated as synonyms of QUADRATIC); this se
tion must appearbetween the se
tions START POINT and ELEMENT TYPE (see [10, x7.2.1℄).Within this new se
tion, ea
h line is used to spe
ify at most two values of hi;jthat share a
ommon value of i or j; any hi;j not re
orded is assumed to have thevalue zero, only one of the pair (hi;j ; hj;i); i 6= j; should be given, and any repeatedvalues will be summed. The syntax for data following these indi
ator
ards is givenin Table 3. F.1 Field 2 Field 3 Field 4 Field 5 Field 63 �10�! �10�! �12�! �10�! �12�!QUADRATIC orHESSIAN orQUADS orQUADOBJ orQSECTIONvar name var name num value var name num valueX var name var name num value var name num valueZ var name var name arr name" " " " " " " "2 5 15 25 36 40 50 61Table 3. Possible data
ards for QUADRATIC, HESSIAN, QUADS, QUADOBJ or QSECTIONThe strings var name in data �elds 2 and 3 (and optionally 2 and 5 for those
ardswhose �eld 1 does not
ontain Z) give the names of pairs of problem variables xjand xk for whi
h hj;k is nonzero. All problem variables must have been previouslyset in the VARIABLES/COLUMNS se
tion. Additionally, on a Z
ard, the name of thevariable must be an element of an array of variables, with a valid name and index,while on a X
ard, the name may be either a s
alar or an array name.1For
ompatibility with Pon
ele�on's proposal [35℄.2For
ompatibility with Maros and Meszaros' test set [34℄.3For
ompatibility with OSL [31℄.

The CUTEr environment � 13On
ards whose �eld 1 is either empty or
ontains the
hara
ter X, the stringsnum value in data �elds 4 and (optionally) 6
ontain the asso
iated numeri
al valuesof the
oeÆ
ients hj;k. On
ards for whi
h �eld 1
ontains the
hara
ter Z, the stringarr name in data �eld 5 gives a real parameter array name. This name must havebeen previously de�ned and its asso
iated value then gives the numeri
al value ofthe parameter.In Example 5.1, if the variables x1 and x2 are named X1 and X2, the QUADRATICse
tion for this problem takes the form given in Table 4.F.1 Field 2 Field 3 Field 4 Field 5 Field 63 � 10 �! �10�! �12�! �10�! �12�!QUADRATICX2 X1 4.0 X2 2.0Table 4. The SIF �le spe
i�
ation for Example 5.1This extension to the SIF format has resulted in our in
luding the Maros andMeszaros
olle
tion of quadrati
 programming test problems [34℄ as an annex tothe main CUTEr
olle
tion. The
omplete test set may be downloaded from thelo
ation http://
uter.rl.a
.uk/
uter-www/mastsif.html.5.2.2 User-
hangeable parameters. One of the less
onvenient features of SIF-en
oded problems was that the de
oding pro
edures in CUTE were not designedto re
ognise, nor alter, instan
e-dependent variable parameters su
h as problemdimensions or
riti
al
oeÆ
ients. Many real models, parti
ularly those arisingfrom some form of dis
retization, depend upon parameters that a user might wishto re�ne. With CUTE, a user wishing to
hange su
h a parameter was for
ed toedit the SIF �le. This �le was usually provided with a number of suggested values,all but one of whi
h were \
ommented out". To remove this in
onvenien
e, SifDe
makes provisions for both the de�nition and the altering of variable parametersfrom the problem-de
oding s
ripts.Any real or integer parameter de�nition
ontaining the
omment $-PARAMETERin �eld 5 (i.e., in
olumns 40-49) de�nes that parameter to be a variable parame-ter. This is
onsistent with old-style SIF-en
oded problems be
ause strings start-ing with $ in this �eld were previously treated as
omments. Any
hara
ters after$-PARAMETER are regarded as
omments, and will be passed ba
k to a user on request.All SIF �les in the CUTE
olle
tion that previously
ontained variable parametershave been updated to take advantage of this new SifDe
 fa
ility, but of
ourse theyare still
onsistent with CUTE.Given this extra syntax, the SIF de
oding s
ripts have been extended to supporttwo new options, allowing users to sele
t variable parameters in the SIF �le. The�rst of these options, -show, prints all the variable parameters present in the SIF�le, along with suggested values to whi
h they may be set as well as any otherprovided
omments. The se
ond, -param allows users to
hoose, from the
ommandline, whi
h values to assign to these parameters. For instan
e, assuming that N andTHETA have been marked as variables parameters of SAMPLE.SIF and that N=400 andTHETA=3.5 are valid values, the
ommandsifde
ode -param N=400,THETA=3.5 SAMPLE.SIF

14 � N.I.M. Gould, D. Orban and Ph.L. Toint(see Se
tion 4 for a dis
ussion of the related s
ript sdpak, whi
h also inherits thesefeatures) will de
ode SAMPLE.SIF into the appropriate subroutines and data �les,setting N to 400 and THETA to 3.5.These new features allow users to solve systemati
ally a set of problems in allpres
ribed sizes. Default values are given in ea
h SIF �le, and we have taken theopportunity to raise these defaults to re
e
t the size of problems that we feel oughtto be of
urrent interest, given that many of the previous defaults were assignedover ten years ago and are rather small to
hallenge state-of-the art solvers.As an extension of the -param
ommand-line option, users may for
e a problemto be solved using parameter values that may not have been pre-assigned in the SIF�le. This is done using the -for
e option, as insifde
ode -for
e -param N=1000,THETA=3.5 SAMPLE.SIFwhere SAMPLE.SIF might not
ontain the parameter setting N=1000, or THETA=3.5.Omitting the -for
e option would result in an abort of the pro
ess, while spe
ifyingit results in the SIF de
oder and the optimizer attempting to
omplete the solveusing the spe
i�ed values. Sin
e nothing guarantees that these values are valid, the-for
e
ommand-line option should be used
arefully.6. THE NEW INSTALLATION PROCEDURESWe now des
ribe the CUTEr installation pro
edure. It applies equally to SifDe
,the only di�eren
e being the names of the pro
edures invoked, as we mention atthe end of this se
tion.The installation of CUTEr is driven by portability
on
erns and is performed bythe s
ript install
uter, whi
h prompts for information on the lo
al ar
hite
tureand environment and the desired
ompiler,
reates the appropriate dire
tory stru
-ture but leaves the lo
al installation to Umake�les. Umake�les
an be
onsideredas Make�le generators, or \meta Make�les" in that they generate Make�les suitedto the lo
al platform and ar
hite
ture without user intervention. Their use is fullydo
umented within CUTEr and they are in fa
t a simpli�ed
avour of Imake�les[16℄. They greatly ease the task of the user when it
omes to modifying the size ofthe CUTEr tools and rebuilding part of their instan
e of CUTEr, asMake�les rebuildonly what needs to be rebuilt. The Umake�les needed to build a
omplete instan
eof CUTEr rely on a set of
on�guration �les stored under $MYCUTER/
onfig, wherethe details about the lo
al ar
hite
ture are
ontained. Should users need to modifylo
al parameters, they
an do so by editing two �les, namely Umake.tmpl and the
on�guration �le
orresponding to their platform; for instan
e sun.
f, linux.
f,ibm.
f, et
. The Make�les then need to be re-generated and CUTEr needs to berebuilt using normal make
ommands.The installation s
ript sear
hes the $CUTER/build/ar
h/f.ar
h �le to present a listof possible Fortran
ompilers to the user. This does not imply that the
orrespond-ing
ompilers are a
tually installed on the lo
al system but this list is meant torepresent the most
ommon
ompilers on that system. Details about ea
h
ompilerin the list are found in the �le $CUTER/
onfig/platform.
f if it is platform-spe
i�
or in $CUTER/
onfig/all.
f if it is available on all platforms. Similarly, the �le$CUTER/build/ar
h/
.ar
h is sear
hed for possible C/C++
ompilers. Addition of a
ompiler,
an normally be a
hieved by modifying one \similar" to those provided.The �les $CUTER/
onfig/platform.
f and $CUTER/
onfig/all.
f should be
he
ked

The CUTEr environment � 15before the installation pro
edure is initiated.The
on�guration �les also provide basi
 system
ommands and de�nition of atemporary dire
tory. Some or all of these �les may need to be properly modi�ed,although suitable settings are given for systems we have a

ess to.During installation, the option to
hoose between small, medium, large or
ustom\sizes" for CUTEr is provided. These sizes
ome pre-spe
i�ed, but may be tuned byediting the size.* �les in the dire
tory $CUTER/build/ar
h and re-issuing the install
ommand.The installation pro
edure works by
asting prototype �les against the system,
ompiler, pre
ision and size information
hosen by the user,
asting the Fortransour
e �les following the same pattern, and
ompiling and possibly linking the re-sult. Ea
h installation is logged, both for information purposes and with subsequentun-installation possibilities in mind. Un-installing an installed CUTEr is
arried outby the s
ript uninstall
uter, whi
h also updates the log �le. The CUTEr tools,do
umentation, s
ripts, or other may be updated by the s
ript update
uter, asupdates and bug �xes be
ome available.The installation pro
edure for SifDe
 is identi
al, with the sole proviso that thenames install s
ript
uter, install
uter, update
uter, uninstall
uter, CUTERand MYCUTER should instead be interpreted as install s
ript sifde
, install sifde
,update sifde
, uninstall sifde
, SIFDEC, and MYSIFDEC respe
tively.7. OBTAINING CUTEr AND SifDe
CUTEr and SifDe
 are written is standard ISO Fortran 77, but additionally CUTErprovides support for Fortran 90/95 and C/C++ pa
kages. Single and double pre-
ision versions are available in a variety of sizes. Ma
hine dependen
ies are
are-fully isolated and easily adaptable, making installation on heterogeneous networkspossible. Automati
 installation pro
edures are available for a variety of Uni
es,in
luding Linux. CUTEr and SifDe

an be downloaded fromhttp://
uter.rl.a
.uk/
uter-www, andhttp://
uter.rl.a
.uk/
uter-www/sifde
respe
tively. Information on updates as well as indi
ations on how to obtain thesupported optimization and linear algebra software is available on the websites.8. CONCLUSION AND PERSPECTIVESThis paper des
ribes improvements and new features of CUTEr, the latest releaseof the CUTE testing environment, and of SifDe
, the isolated SIF de
oder. Thepurposes of CUTEr are to|provide a way to explore an extensive
olle
tion of problems,|provide a way to
ompare existing pa
kages,|provide a way to use a large test problem
olle
tion with new pa
kages,|provide motivation for building a meaningful set of new interesting test problems,|provide ways to manage and update the system eÆ
iently, and|do all the above on a variety of popular platforms.SifDe
 has been isolated and designed in order to

16 � N.I.M. Gould, D. Orban and Ph.L. Toint|supply a
onsistent interfa
e to any pa
kage that may require the de
oder, su
has CUTEr and LANCELOT-B [10℄,|ease its maintenan
e, upgrading and addition of new
apabilities,|provide a

ess to automati
 di�erentiation pa
kages.The environments are
urrently only available for unix platforms, but it is pos-sible to install both pa
kages on shared-�lesystem lo
al networks, be
ause ma
hinedependen
ies have been
arefully isolated. A number of previously unsupportedoptimization and linear algebra pa
kages are now interfa
ed to CUTEr, and
orre-sponding driver programs are supplied. New tools for both
onstrained and un
on-strained optimization have been added. Some support for automati
 di�erentiationpa
kages is now integrated into SifDe
. Do
umentation now appears in di�erentforms, in
luding the usual unix manual pages des
ribing the tools and interfa
es,posts
ript and pdf general do
umentation
overing installation, maintenan
e andusage. Additional details will be provided on the dedi
ated websites. It is hopedthat installing CUTEr and SifDe
 on
urrently unsupported unix platforms, as wellas writing interfa
es for additional optimization pa
kages, will be found relativelyeasy.In the future, we plan to merge the di�erent CUTEr tools so as to remove theirdependen
y on whether the input problem is
onstrained or not, and have a single
onsistent set of tools. We also intend to use automati
 memory allo
ation to re-move the dependen
y of both the SIF de
oder and the CUTEr tools on presele
tedsizes. An intuitive graphi
al user interfa
e (GUI) is under way to ease the instal-lation phase, to manage the di�erent lo
al installations of CUTEr and SifDe
, andto enable the user to work in a uni�ed environment. As already mentioned, thewebsites will keep up-to-date information about new features for both pa
kages,bug �xes, new do
umentation and more.A
knowledgmentsThanks to the following people for providing interfa
es: Philip Gill for snopt,Jorge No
edal and Ri
hard Waltz for knitro, Sven Ley�er and Roger Flet
her for�ltersqp. We also wish to thank CUTE users for their
omments, bug reports, use,abuse and
ontributions. Finally detailed
omments by Mi
hael Saunders and ananonymous referee have been most useful.APPENDIXA. CALLING SEQUENCES FOR THE NEW EVALUATION TOOLSIn this se
tion, we give the argument lists for those subroutines summarized in Ta-bles 1 and 2 that are new to CUTEr; the remaining subroutines are fully do
umentedin the appendix to [2℄. There are two sets of tools: one set for un
onstrained andbound
onstrained problems, and one set for generally
onstrained problems. Notethat these two sets of tools
annot be mixed.The supers
ript i on an argument means that the argument must be set on input.A supers
ript o means that the argument is set by the subroutine.A.1 Un
onstrained and bound
onstrained problems|Dis
over how many variables are involved in the problem:

The CUTEr environment � 17CALL UDIMEN (INPUTi, No)|Determine how many nonzeros are required to store the Hessian matrix of theobje
tive fun
tion (when stored in a sparse format):CALL UDIMSH (NNZHo)|Determine how many nonzeros are required to store the Hessian matrix of theobje
tive fun
tion (when stored as a sparse matrix in �nite-element format):CALL UDIMSE(NEo, NZHo, NZIRNHo)|Obtain the type of ea
h variable:CALL UVARTY(Ni, IVARTYo)|Obtain statisti
s
on
erning fun
tion evaluation and CPU time use:CALL UREPRT (UCALLSo, TIMEo)A.2 Generally
onstrained problems|Dis
over how many variables and
onstraints are involved in the problem:CALL CDIMEN (INPUTi, No, Mo)|Determine how many nonzeros are required to store the matrix of gradients ofthe obje
tive fun
tion and
onstraints (when stored in a sparse format):CALL CDIMSJ (NNZJo)|Determine how many nonzeros are required to store the Hessian matrix of theLagrangian (when stored in a sparse format):CALL CDIMSH (NNZHo)|Determine how many nonzeros are required to store the Hessian matrix of theLagrangian (when stored as a sparse matrix in �nite-element format):CALL CDIMSE(NEo, NZHo, NZIRNHo)|Obtain the type of ea
h variable:CALL CVARTY(Ni, IVARTYo)|Evaluate an individual
onstraint fun
tion and possibly its gradient (when thisis stored in a sparse format):CALL CCIFSG (Ni, Ii, Xi,CIo, NNZSGCo, LSGCIi,SGCIo, IVSGCIo, GRADi)|Obtain statisti
s
on
erning fun
tion evaluation and CPU time use:CALL CREPRT (CCALLSo, TIMEo)A.3 Argument des
riptionsThe arguments in the above
alling sequen
es have the following meanings:CCALLS is an array whose
omponents give
ounts for various a
tivities duringthe
urrent exe
ution of the
onstrained tools. Components are:CCALLS(1) number of obje
tive fun
tion evaluationsCCALLS(2) number of obje
tive gradient evaluationsCCALLS(3) number of obje
tive Hessian evaluationsCCALLS(4) number of Hessian-ve
tor produ
tsCCALLS(5) number of
onstraint evaluationsCCALLS(6) number of
onstraint Ja
obian evaluationsCCALLS(7) number of
onstraint Hessian evaluationsCI is the value of the general
onstraint fun
tion I evaluated at X.

18 � N.I.M. Gould, D. Orban and Ph.L. TointGRAD is a logi
al variable whi
h should be set .TRUE. if the gradient of the
onstraint fun
tion is required from CCIFSG. Otherwise, it should be set.FALSE.I is the index of the general
onstraint fun
tion to be evaluated by CCIFSG.INPUT is the unit number for the de
oded data, i.e., from whi
h OUTSDIF.d (see[2℄) is read.IVARTY is an array whose i-th
omponent indi
ates the type of variable i. Possiblevalues are 0 (a variable whose value may be any real number), 1 (aninteger variable that
an only take the values zero or one) and 2 (avariable that
an only take integer values).IVSGCI is an array whose i-th
omponent is the index of the variable with respe
tto whi
h SGCI(i) is the derivative.LSGCI is the de
lared dimension of SGCI.M is the number of general
onstraints.N is the number of variables for the problem.NE is the number of elements in a �nite-element representation of the Hessianfor the problem.NZH is the dimension of the array needed to store the real values of the �nite-element Hessian.NZIRNH is the dimension of the array needed to store the integer values of the�nite-element Hessian.NNZH is the number of nonzeros in the Hessian.NNZJ is the number of nonzeros in the
onstraint Ja
obian.NNZSGC is the number of nonzeros in SGCI.SGCI is an array that gives the values of the nonzeros of the gradient of thegeneral
onstraint fun
tion I evaluated at X. The i-th entry of SGCI givesthe value of the derivative with respe
t to variable IVSGCI(i) of fun
tionI.TIME is an array whose
omponents give CPU times (in se
onds) for variousa
tivities during the
urrent exe
ution of the tools. Components are:TIME(1) CPU time for
all to USETUP/CSETUP.TIME(2) CPU time sin
e last
all to USETUP/CSETUP.UCALLS is an array whose
omponents give
ounts for various a
tivities duringthe
urrent exe
ution of the un
onstrained tools. Components are:UCALLS(1) number of obje
tive fun
tion evaluationsUCALLS(2) number of obje
tive gradient evaluationsUCALLS(3) number of obje
tive Hessian evaluationsUCALLS(4) number of Hessian-ve
tor produ
tsX is an array that gives the
urrent estimate of the solution of the problem.REFERENCES[1℄ R. H. Biels
howsky and F. A. M. Gomes. Dynami
al
ontrol of infeasibility in nonlinearly
onstrained optimization. Presentation at the Optimization 98 Conferen
e, Coimbra,1998.

The CUTEr environment � 19[2℄ I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and Un
on-strained Testing Environment. ACM Transa
tions on Mathemati
al Software, 21(1):123{160, 1995.[3℄ M. G. Breitfeld and D. F. Shanno. Preliminary
omputational experien
e with modi�ed log-barrier fun
tions for large-s
ale nonlinear programming. In W. W. Hager, D. W. Hearn,and P. M. Pardalos, editors, Large S
ale Optimization: State of the Art, pages 45{66,Dordre
ht, The Netherlands, 1994. Kluwer A
ademi
 Publishers.[4℄ M. G. Breitfeld and D. F. Shanno. Computational experien
e with penalty-barrier methodsfor nonlinear programming. Annals of Operations Resear
h, 62:439{463, 1996.[5℄ R. P. Brent. Algorithms for Minimization without Derivatives. Prenti
e-Hall, EnglewoodCli�s, NJ, 1973.[6℄ R. H. Byrd, J. Ch. Gilbert, and J. No
edal. A trust region method based on interior pointte
hniques for nonlinear programming.Mathemati
al Programming, 89(1):149{185, 2000.[7℄ R. H. Byrd, J. No
edal, and R. A. Waltz. Feasible interior methods using sla
ks for nonlinearoptimization. Te
hni
al Report 11, Optimization Te
hnology Center, Argonnne NationalLaboratory, Argonne, IL, USA, 2000.[8℄ T. F. Coleman and W. Yuan. A new trust region algorithm for equality
onstrained optimiza-tion. Report TR95-1477, Department of Computer S
ien
e, Cornell University, Itha
a,NY, USA, 1995.[9℄ A. R. Conn, N. I. M. Gould, D. Orban, and Ph. L. Toint. A primal-dual trust-region al-gorithm for non-
onvex nonlinear programming.Mathemati
al Programming, 87(2):215{249, 2000.[10℄ A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: A Fortran Pa
kage for Large-s
aleNonlinear Optimization (Release A). Springer Series in Computational Mathemati
s.Springer Verlag, Heidelberg, Berlin, NY, 1992.[11℄ A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A primal-dual algorithm for minimizinga non
onvex fun
tion subje
t to bound and linear equality
onstraints. In G. Di Pilloand F. Giannessi, editors, Nonlinear Optimization and Related Topi
s, pages 15{50,Dordre
ht, The Netherlands, 1999. Kluwer A
ademi
 Publishers.[12℄ A. R. Conn, L. N. Vi
ente, and C. Visweswariah. Two-step algorithms for nonlinear opti-mization with stru
tured appli
ations. SIAM J. on Optimization, 9(4):924{947, 1999.[13℄ J. E. Dennis, M. El-Alem, and K. A. Williamson. A trust-region approa
h to nonlinearsystems of equalities and inequalities. SIAM J. on Optimization, 9(2):291{315, 1999.[14℄ M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero, and S. A. Santos. Comparing the numeri
alperforman
e of two trust-region algorithms for large-s
ale bound-
onstrained minimiza-tion. Revista Latino Ameri
ana de Investiga
i�on Operativa, 7:23{54, 1997.[15℄ M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero, and S. A. Santos. Numeri
al analysis ofleaving-fa
e parameters in bound-
onstrained quadrati
 minimization. Report 52/98, De-partment of Applied Mathemati
s, IMECC-UNICAMP, Campinas, Brasil, 1998.[16℄ P. Dubois. Software Portability with imake. O'Reilly & Asso
iates, In
, 1993.[17℄ I. S. Du�, A. M. Erisman, and J. K. Reid. Dire
t Methods for Sparse Matri
es. OxfordUniversity Press, Oxford, England, 1986.[18℄ I. S. Du�, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM Transa
tionson Mathemati
al Software, 15(1):1{14, 1989.[19℄ I. S. Du�, R. G. Grimes, and J. G. Lewis. Users' guide for the Harwell-Boeing sparse matrix
olle
tion (Release 1). Report RAL-92-086, Rutherford Appleton Laboratory, Chilton,Oxfordshire, England, 1992.[20℄ I. S. Du�, R. G. Grimes, and J. G. Lewis. The Rutherford-Boeing sparse matrix
olle
-tion. Report RAL-TR-97-031, Rutherford Appleton Laboratory, Chilton, Oxfordshire,England, 1997.[21℄ R. Flet
her, N. I. M. Gould, S. Ley�er, and Ph. L. Toint. Global
onvergen
e of trust-region SQP-�lter algorithms for nonlinear programming. Report 99/03, Department ofMathemati
s, University of Namur, Namur, Belgium, 1999.

20 � N.I.M. Gould, D. Orban and Ph.L. Toint[22℄ R. Flet
her and S. Ley�er. Nonlinear programming without a penalty fun
tion. Mathemati
alProgramming, 91(2):239{269, 2002.[23℄ R. Flet
her and S. Ley�er. User manual for �lterSQP. Numeri
al Analysis Report NA/181,Department of Mathemati
s, University of Dundee, Dundee, S
otland, 1998.[24℄ E. M. Gertz. Combination Trust-Region Line-Sear
h Methods for Un
onstrained Optimiza-tion. PhD thesis, Department of Mathemati
s, University of California, San Diego, CA,USA, 1999.[25℄ P. E. Gill, W. Murray, and M. A. Saunders. User's guide for SNOPT 5.3: a Fortran pa
kagefor large-s
ale nonlinear programming, 1998.[26℄ F. A. M. Gomes, M. C. Ma
iel, and J. M. Mart��nez. Nonlinear programming algorithmsusing trust regions and augmented Lagrangians with nonmonotone penalty parameters.Mathemati
al Programming, 84(1):161{200, 1999.[27℄ N. I. M. Gould, S. Lu
idi, M. Roma, and Ph. L. Toint. Solving the trust-region subproblemusing the Lan
zos method. SIAM J. on Optimization, 9(2):504{525, 1999.[28℄ N. I. M. Gould and J. No
edal. The modi�ed absolute-value fa
torization norm for trust-region minimization. In R. De Leone, A. Murli, P. M. Pardalos, and G. Toraldo, editors,High Performan
e Algorithms and Software in Nonlinear Optimization, pages 225{241.Kluwer A
ademi
 Publishers, Dordre
ht, The Netherlands, 1998.[29℄ N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD|a library of thread-safe Fortran 90pa
kages for large-s
ale nonlinear optimization. Report RAL-TR-2002-014, RutherfordAppleton Laboratory, Chilton, Oxfordshire, England, 2002.[30℄ HSL. A
olle
tion of Fortran
odes for large s
ale s
ienti�

omputation, 2002.[31℄ IBM Optimization Solutions and Library. QP Solutions User Guide. IBM Corporation, 1998.[32℄ M. Lalee, J. No
edal, and T. D. Plantenga. On the implementation of an algorithm forlarge-s
ale equality
onstrained optimization. SIAM J. on Optimization, 8(3):682{706,1998.[33℄ M. Marazzi and J. No
edal. Wedge trust region methods for derivative free optimization.Report 2000/10, Optimization Te
hnology Center, Northwestern University, Evanston,IL, USA, 2000.[34℄ I. Maros and C. Meszaros. A repository of
onvex quadrati
 programming problems. Opti-mization Methods and Software, 11-12:671{681, 1999.[35℄ D. B. Pon
ele�on. Barrier Methods for Large-S
ale Quadrati
 Programming. PhD thesis, De-partment of Computer S
ien
e, Stanford University, Stanford, CA, USA, 1990.[36℄ J. D. Pry
e and J. K. Reid. AD01, a Fortran 90
ode for automati
 di�erentiation. Re-port RAL-TR-1998-057, Rutherford Appleton Laboratory, Chilton, Oxfordshire, Eng-land, 1998.[37℄ R. W. H. Sargent and X. Zhang. An interior-point algorithm for solving general variationalinequalities and nonlinear programs. Presentation at the Optimization 98 Conferen
e,Coimbra, 1998.[38℄ A. Sartenaer. Automati
 determination of an initial trust region in nonlinear programming.SIAM J. on S
ienti�
 Computing, 18(6):1788{1803, 1997.[39℄ J. S. Shahabuddin. Stru
tured Trust-Region Algorithms for the Minimization of NonlinearFun
tions. PhD thesis, Department of Computer S
ien
e, Cornell University, Itha
a, NewYork, USA, 1996.[40℄ S. Ulbri
h and M. Ulbri
h. Nonmonotone trust region methods for nonlinear equality
on-strained optimization without a penalty fun
tion. Presentation at the First Workshop onNonlinear Optimization, \Interior-Point and Filter Methods", Coimbra, Portugal, 1999.[41℄ R.J. Vanderbei and D.F. Shanno. An interior point algorithm for non
onvex nonlinear pro-gramming. Te
hni
al Report SOR 97-21, Prin
eton University, New-Jersey, USA, 1997.[42℄ Y. Xiao. Non-Monotone Algorithms in Optimization and their Appli
ations. PhD thesis,Monash University, Clayton, Australia, 1996.[43℄ Y. Xiao and E. K. W. Chu. Nonmonotone trust region methods. Report 95/17, MonashUniversity, Clayton, Australia, 1995.

The CUTEr environment � 21[44℄ H. Yamashita, H. Yabe, and T. Tanabe. A globally and superlinearly
onvergent primal-dualpoint trust-region method for large s
ale
onstrained optimization. Report, Mathemati
alSystems, In
., Sinjuku-ku, Tokyo, Japan, 1997.[45℄ C. Zhu, R. H. Byrd, P. Lu, and J. No
edal. Algorithm 778. L-BFGS-B: Fortran subroutines forlarge-s
ale bound
onstrained optimization. ACM Transa
tions on Mathemati
al Soft-ware, 23(4):550{560, 1997.

