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CUTEr and SifDe: a Constrained andUnonstrained Testing Environment, revisitedNiholas I. M. GouldRutherford Appleton Laboratory,Dominique OrbanerfasandPhilippe L. TointFault�es Universitaires Notre-Dame de la PaixThe initial release of CUTE, a widely used testing environment for optimization software, was de-sribed in [2℄. A new version, now known as CUTEr is presented. Features inlude reorganisationof the environment to allow simultaneous multi-platform installation, new tools for, and interfaesto, optimization pakages, and a onsiderably simpli�ed and entirely automated installation pro-edure for unix systems. The environment is fully bakward ompatible with its predeessor, o�erssupport for Fortran 90/95 and a general C/C++ Appliation Programming Interfae. The SIFdeoder, formerly a part of CUTE, has beome a separate tool, easily allable by various pakages.It features simple extensions to the SIF test problem format and the generation of �les suited toautomati di�erentiation pakages.Additional Key Words and Phrases: Nonlinearly-onstrained optimization, testing environment,shared �lesystems, heterogeneous environment, SIF formatThis work was supported by the MRNT grant for joint thesis support.Name: N. I. M. GouldAddress: Computational Siene and Engineering Department, Chilton, Oxfordshire, OX11 0QX,England. n.gould�rl.a.ukAÆliation: Rutherford Appleton LaboratoryName: D. OrbanAddress: 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 1, Frane. orban�erfas.frAÆliation: erfasName: Ph. L. TointAddress: 61, rue de Bruxelles, B-5000 Namur, Belgium. Philippe.Toint�fundp.a.beAÆliation: Fault�es Universitaires Notre-Dame de la PaixPermission to make digital or hard opies of part or all of this work for personal or lassroom use isgranted without fee provided that opies are not made or distributed for pro�t or diret ommerialadvantage and that opies show this notie on the �rst page or initial sreen of a display alongwith the full itation. Copyrights for omponents of this work owned by others than ACM mustbe honored. Abstrating with redit is permitted. To opy otherwise, to republish, to post onservers, to redistribute to lists, or to use any omponent of this work in other works, requires priorspei� permission and/or a fee. Permissions may be requested from Publiations Dept, ACMIn., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions�am.org.



2 � N.I.M. Gould, D. Orban and Ph.L. Toint1. INTRODUCTIONThe CUTE testing environment for optimization software and the assoiated testproblem olletion originated from the need to perform extensive and doumentedtesting on the LANCELOT pakage [10℄. Beause the large set of test problemsand testing failities produed in this ontext were useful in their own right, theywere extended to provide easy interfaes with other ommonly used optimizationpakages, gathered in a oherent multi-platform framework and made available, onthe world wide web and via anonymous ftp, to the researh ommunity. The paper[2℄ provides an overview of the environment, and full doumentation of the availabletools and interfaes at the time.Sine 1993, the CUTE environment and test problems have been widely used bythe ommunity of optimization software developers [1; 3; 4; 7; 8; 11; 12; 13; 14; 15;22; 24; 26; 27; 28; 32; 33; 37; 38; 39; 40; 42; 43; 44℄. Suh widespread use has in-evitably led to a learer awareness of the de�ienies of the original design, and alsoreated a demand for new tools and new interfaes. The environment has evolvedover time by the addition of new test problems and minor updates to a numberof tools. The present paper aims to desribe its next major evolution: CUTEr, inwhih we revisit the original CUTE design. This new release is haraterized by|a set of new tools, inluding a uni�ed faility to report the performane of thevarious optimization pakages being tested,|full bakward ompatibility with CUTE,|a set of new interfaes to additional optimization pakages,|some Fortran 90/95 support, and|an integrated C/C++ Appliation Programming Interfae.The SIF optimization test-problem deoder, whih used to be a onstituent part ofthe CUTE environment, has been isolated into a separate pakage named SifDe.Any software that ould require the deoding of a SIF �le may now rely on it, as apakage in its own right. It is haraterized by|the de�nition and support of an extension to SIF (the Standard Input Format) al-lowing for easier input of quadrati programs and for asting the problem againsta seletion of parameters, suh as the problem size, and|the ability to generate input �les suited to automati di�erentiation tools, suhas the HSL [30℄ AD01 and AD02 pakages [36℄.Both CUTEr and SifDe have the following features:|Completely new organization of the various �les that make up the environment,now allowing onurrent installations on a single mahine and shared installationson a network, and|a new simpli�ed and automated installation proedure, but|the restrition of the environment to unix systems.The last of these items is the reason why the rest of the paper only onsidersdiretory strutures and/or �le names in a style typially found on unix systems.To some, the restrition to unix systems might seem a retrograde step beause



The CUTEr environment � 3CUTE o�ered VMS and some DOS support, but this merely reets our urrentexpertise.This paper is intended to supersede the parts of [2℄ that are depreated in CUTEr,to omplement it in order to over the new features and to desribe the new SifDeenvironment. It is organized as follows. Setion 2 disusses the new organization ofthe CUTEr environment �les. Setion 3 douments the new tools and disusses ap-pliation program interfaes. Setion 4 douments the new interfaes to additionaloptimization pakages and Setion 5 overs the isolated SIF deoder environment,the extension of the SIF desription language to quadrati programs, and its supportof user-hangeable parameters. Setion 6 desribes the new installation proedures.Details of how the pakages may be obtained are given in Setion 7, and onludingomments are presented in Setion 8.2. A NEW FLEXIBLE ORGANIZATIONOne of the defets of CUTE is that it was not designed to support a multi-platformenvironment; that is, instanes of the environment that ould be used simulta-neously from a entral server on several, possibly di�erent, mahines, with theirown dialets of unix. Moreover, using CUTE on a single mahine in onjuntionwith several di�erent ompilers (a ase that frequently ours when new softwareis tested) is extremely umbersome. Likewise, handling di�erent instanes of theenvironment orresponding to di�erent sizes of the tools (that is the size of the testproblems that they an handle) is problemati. The reason for these diÆulties isthat the struture of the CUTE �les, as desribed in [2℄, does not lend itself to suhuse, beause it only ontains a single subtree of objets �les. If we all the ombina-tion of a mahine, operating system, ompiler and size of the tools an arhiteture,the obvious solution to suh a defet is then to allow several suh subtrees in theinstallation, one for eah arhiteture.However, as soon as the possibility of using arhiteture-dependent subtrees israised, the proper identi�ation of the parts (sripts, programs) of the environmentthat are independent of the arhiteture also beomes an issue. Sine it would be in-eÆient to store opies of these independent sripts and programs in eah subtree, itis natural to store them in a data struture that is itself disjoint from the dependentsubtrees. Finally, the propagation of subtrees ontaining sometimes very similar yetvitally di�erent data makes the maintenane of the environment substantially moreompliated, and therefore requires enhaned tools and a lear distintion betweenthe parts of the environment that are related to testing optimization software andthose related to its own maintenane.The diretory organization hosen for CUTEr, shown in Fig. 1, reets theseonsiderations. We now briey desribe its omponents.Starting from the top of the �gure, the �rst subtree under the main $CUTER di-retory (the root of the CUTEr environment) is build, whih essentially ontains allthe �les neessary for installation and maintenane. Its arh subdiretory ontainsthe �les de�ning all possible arhitetures that are urrently supported by CUTEr,allowing users to install new arhiteture-dependent subtrees as they are required,depending on the testing needs and the evolution of platforms, systems and ompil-ers. The prototypes subdiretory ontains the parts of the environment that haveto be speialized to one arhiteture before they an be used. We all suh �les
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$CUTER
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ommon

doman man1man3sr toolsmatlab
sif pkg obyla...hsl ve12onfiglog$MYCUTERfor a givenmahine/op. system/ompiler/size
binsingle binlibonfigspesdouble binlibonfigspesFig. 1. Struture of the CUTEr diretories



The CUTEr environment � 5prototypes and the proess of speializing them to a spei� arhiteture asting.The prototype �les inlude a number of tools and sripts whose �nal form typiallydepends on ompiler options and the hosen size of the tools. Finally, the remainingsubdiretory of build, named sripts, ontains the environment maintenane toolsand various doumentation �les.The seond subtree under $CUTER is alled ommon and ontains the environmentdata �les that are relevant for the purpose of testing optimization pakages, butare independent of the arhiteture. Subdiretory do ontains a number of dou-mentation �les onerning the environment, suh as a desription of its strutureand proedures to follow for interfaing the supported optimization pakages. TheCUTEr tools and sripts themselves are doumented in the man subdiretory, and,as is ommon on unix systems, its man1 and man3 subdiretories. The sr subdi-retory ontains the soure �les for many of the environment utilities disseminatedin a number of subdiretories. We briey desribe them in turn. tools ontainsthe soures of the Fortran tools used in user's programs. matlab ontains all the\m-�les" that provide a matlab interfae to the environment. pkg holds infor-mation related to the various optimization pakages for whih CUTEr provides aninterfae|these being stored separately in their own subdiretory of pkg; Fig.1represents those for obyla and HSL VE12. Eah of these pakage-spei� subdi-retories typially inludes an algorithmi spei�ation �le and a suitable READMEdesription of how to build an interfae between CUTEr and the pakage. The lastsubdiretory, sif, ontains a few test problems in SIF format.The next subdiretory under $CUTER is alled onfig and ontains all the on�g-uration and rules �les needed to generate the platform-spei� Make�les.The log subdiretory of $CUTER ontains a history of the various installations|and, possibly, subsequent un-installations|of the environment for the various ar-hitetures.The remaining subdiretories of $CUTER are all arhiteture dependent: eah or-responds to the installation of CUTEr in a spei� mahine, for a given operatingsystem and ompiler and for a given tool size. The �gure only represents one, butthe ontinuation dots at the bottom of the leftmost vertial line indiate that theremight be more than one. Although these diretories have been symbolially rep-resented as subdiretories of $CUTER in the �gure to reet their dependene upon$CUTER, they may be loated anywhere on the host system, inluding on remotemahines over the loal network. The names of these diretories are (by default)automatially hosen at installation, but a user of one of these subtrees would typ-ially give it a symboli name, like $MYCUTER, to distinguish the version of CUTErurrently in use. Eah arhiteture-dependent subtree is divided into its single pre-ision and double preision instanes (single and double, respetively), eah of theseontaining four subdiretories. The �rst, bin, ontains the objet �les orrespond-ing to the driving programs for the optimization pakages and, if relevant, for thepakage odes themselves. If appliable, it should also ontain the Fortran 90/95module information �les, that is those usually suÆxed by .mod. The seond, lib,ontains the library of CUTEr tools and, if relevant, any objet libraries assoiatedwith the interfaed optimization pakages. The onfig subdiretory ontains thearhiteture-dependent �les that were used to build the urrent $MYCUTER subtree(they are reused when a tool or optimization pakage is added or updated), while



6 � N.I.M. Gould, D. Orban and Ph.L. Tointspes ontains the algorithmi spei�ation �les for the optimization pakages thatare arhiteture dependent, if any. Finally, $MYCUTER/bin ontains sripts that arearhiteture, but not preision, -dependent.The fat that the CUTEr tools are now stored in the form of libraries (whilethey were stored as a olletion of individual objet �les in CUTE), is another newfeature. This allows a muh simpler design of new optimization pakage interfaes,beause the interfae no longer needs to speify the exat list of tools that need tobe loaded with the pakage.A �nal new feature of the environment organization is that the doumentationis available via the usual man ommand for the sripts and tools, and in ASCII,postsript and pdf formats for the rest.3. NEW FEATURESThis setion desribes innovations in CUTEr, from the point of view of optimizationsoftware and the manipulation of data deoded from problems. Setion 3.1 desribesreently added CUTEr tools whih handle data to be used by optimization softwarewhile Setion 3.2 onentrates on programming languages support.3.1 New toolsThe CUTEr tools for unonstrained and onstrained optimization are presented inTables 1 and 2 respetively, aompanied by a brief desription. Storage of theHessian matrix of either the objetive or the Lagrangian funtion may be eitherdense or sparse. Unless otherwise spei�ed, sparse storage ours in oordinateformat [17, x2.6℄. Expliit mention is made whenever the storage sheme is instead�nite-element format [17, x10.5℄. Besides the general CUTEr doumentation, manpages desribing all supplied tools and their alling sequene are inluded in thedistribution.Users of the previous versions of CUTE will notie a number of new tools forboth unonstrained|or bound-onstrained|and onstrained problems. We notethe uvarty and varty tools, whose purpose is to determine the type of eah vari-able, whih may be ontinuous, binary (0-1) or integer. For onstrained problems,the tool dimen determines the number of variables and onstraints involved. Thetools dimse and dimsh determine the number of nonzero entries in the Hessian ofthe Lagrangian when using (respetively) �nite-element or general sparse matrixstorage, and thus allow users to set appropriate array sizes in advane, while dimsjdoes the same for the onstraint Jaobian. The tool sifg is now obsolete andreplaed by ifsg. For bakward-ompatibility reasons, the former is inluded butsimply alls the latter as a subroutine. Programs that ran under earlier versions ofCUTE will therefore still run under CUTEr. Similarly, for unonstrained problems,the new tools udimen, udimse and udimsh determine the number of variables involved,and the numbers of nonzeros in the Hessian in �nite-element and sparse formatsrespetively. Finally, the ureprt and reprt tools produe statistis about a parti-ular run on (respetively) an unonstrained or onstrained test problem, reportingdata suh as total CPU time, number of iterations, funtion and onstraints evalu-ations (if appropriate), number of evaluations of their derivatives, and the numberof Hessian matrix-vetor produts used.All the external pakage drivers supply report data using the ureprt and reprt



The CUTEr environment � 7Tool name Brief desriptionubandh extrat a banded matrix out of the Hessian matrixudh evaluate the Hessian matrix in dense formatudimen get the number of variables involvedudimse determine the number of nonzeros required to store thesparse Hessian matrix in �nite-element formatudimsh same as udimse, in sparse formatueh evaluate the sparse Hessian matrix in �nite-element formatufn evaluate funtion valueugr evaluate gradientugrdh evaluate the gradient and Hessian matrix in dense formatugreh evaluate the gradient and Hessian matrix in �nite-element formatugrsh evaluate the gradient and Hessian matrix in sparse formatunames obtain the names of the problem and its variablesuofg evaluate funtion value and possibly gradientuprod form the matrix-vetor produt of a vetor with the Hessian matrixusetup set up the data strutures for unonstrained optimizationush evaluate the sparse Hessian matrixuvarty determine the type of eah variableureprt obtain statistis onerning funtion evaluation and CPU time usedTable 1. The unonstrained optimization CUTEr tools.tools. These drivers have �lenames mathing the *ma.f or *ma.f90 expression.They may be found in $CUTER/ommon/sr/tools before ompilation and under thename $MYCUTER/preision/bin/*ma.o after ompilation. For example, the hypothet-ial soure pakage pak.f needs to be ompiled into $MYCUTER/preision/bin/pak.o.All the objet �les and the relevant libraries are subsequently linked by the orre-sponding interfae, following the proedure desribed in Setion 4.3.2 New Appliation Programming InterfaesIn this setion, we omment on the possibility of hooking optimization softwarewritten in Fortran 90/95 or C/C++ to CUTEr.CUTEr makes provision for optimization or linear algebra odes written in stan-dard Fortran 90/95 by providing expliit interfae bloks to all tools present inthe library and delayed ompilation in ase module information is not present atinstallation time. As guidelines to writing new Fortran 90/95 interfaes, a generiinterfae gen90ma and a real interfae ve12ma, interfaing the HSL ode HSL VE12are already part of the CUTEr distribution.Optimization and linear algebra software inreasingly use the exibility and gen-erality of objet-oriented languages like C++ and, more generally, enjoy the bene�tsand portability of the C language. As a response to those interests, CUTEr pro-vides a C/C++ Appliation Programming Interfae to every tool available in theenvironment. This interfae is transparent in the sense that users need not worryabout arhiteture or ompiler-dependent details as these are treated internally.At the time of this writing, only the most popular ombinations of Fortran andC ompilers have been onsidered, but inevitably further support will be providedin the future.



8 � N.I.M. Gould, D. Orban and Ph.L. TointTool name Brief desriptionfg evaluate onstraint funtions values and possibly gradientsfsg same as fg, in sparse formatifg evaluate a single onstraint funtion value and possibly gradientifsg same as ifg, in sparse formatdh evaluate the Hessian of the Lagrangian in dense formatdimen get the number of variables and onstraints involveddimse determine number of nonzeros to store the Lagrangian Hessianin �nite-element formatdimsh determine number of nonzeros to store the Lagrangian Hessianin oordinate formatdimsj determine number of nonzeros to store the matrix of gradients ofthe objetive funtion and onstraints, in sparse formateh evaluate the sparse Lagrangian Hessian in �nite-element formatfn evaluate funtion and onstraints valuesgr evaluate onstraints gradients and objetive/Lagrangian gradientgrdh same as gr, plus Lagrangian Hessian in dense formatidh evaluate the Hessian of a problem funtionish same as idh, in sparse formatnames obtain the names of the problem and its variablesofg evaluate funtion value and possibly gradientprod form the matrix-vetor produt of a vetor with the Lagrangian Hessiansfg evaluate onstraint funtions values and possibly gradients in sparse formatsifg same as sfg, for a single onstraintsetup set up the data strutures for onstrained optimizationsgr evaluate onstraints and objetive/Lagrangian funtion gradientssgreh evaluate both the onstraint gradients, the Lagrangian Hessianin �nite-element format and the gradient of theobjetive/Lagrangian in sparse formatsgrsh same as sgreh, in sparse format instead of �nite-element formatsh evaluate the Hessian of the Lagrangian, in sparse formatvarty determine the type of eah variablereprt obtain statistis onerning funtion evaluation and CPU time usedTable 2. The onstrained optimization CUTEr tools.4. NEW INTERFACESCUTEr ontains a number of additional interfaes to existing pakages (as well asinterfaes to newer versions of previously supported pakages) beyond those o�eredwith CUTE. The purpose of providing these interfaes is to allow researhers torun a variety of solvers on a onsistent set of test examples, and thus to assess therespetive merits of eah for solving lasses of related problems, and pratitionersto solve simpli�ed versions of their problems or similar problems by establishedsolvers and ross-ompare the results. The newly supported pakages are:�ltersqp. This nonlinear programming pakage ombines �lter and trust-regionmethods to globalize an SQP iteration [21; 22; 23℄. The �ltersqp pakage ismaintained by, and may be obtained from, Roger Flether (flether�maths.dundee.a.uk)and Sven Ley�er (leyffer�ms.anl.gov).hrb. To onvert matries (for example, Hessians, Jaobians, and KKT augmentedsystem matries) derived from SIF problem data into Harwell-Boeing [18; 19℄or Rutherford-Boeing [20℄ sparse matrix formats. HRB was written by Nik



The CUTEr environment � 9Gould, and is unique in CUTEr in that the interfae requires no external pak-age.HSL VE12. This pakage �nds ritial points of nononvex quadrati programmingproblems using an interior-point trust-region algorithm [9℄. HSL VE12 is part ofHSL [30℄ and was written by Nik Gould and Philippe Toint.knitro. This minimizes a smooth nonlinear funtion subjet to nonlinear equalityand inequality onstraints using an interior-point approah. The resulting bar-rier subproblems are treated using SQP. knitro [6℄ is maintained by Jorge No-edal (noedal�ee.northwestern.edu) and RihardWaltz (rwaltz�ee.northwestern.edu).l-bfgs-b. This pakage [45℄ treats unonstrained or bound onstrained problems.It uses a limited memory BFGS quasi-Newton method and is available fromJorge Noedal (noedal�ee.northwestern.edu).loqo. A linesearh-based primal-dual interior-point ode for nonlinear program-ming, using an SQP approah and diret fatorizations [41℄. loqo is maintainedby its author Robert Vanderbei (rvdb�prineton.edu).praxis. This is Brent's algorithm, reimplemented in Fortran 77 by John Chandler,for unonstrained minimization without derivatives [5℄. It is available from JohnChandler (jp�a.s.okstate.edu).snopt. This pakage [25℄ minimizes a smooth linear or nonlinear funtion subjetto bounds and sparse linear or nonlinear onstraints using sequential quadratiprogramming (SQP). The pakagemay be obtained from Philip Gill (pgill�usd.edu).The implementation of the interfaes di�er slightly from that of past CUTE re-leases. If pak is a generi name for an interfae, the sripts sdpak and pak are foundunder $MYCUTER/bin. The sript sdpak applies the SIF deoder (see Setion 5) toan input problem, sets a number of environment variables, ollets and ompilessoure and objet �les as neessary, links them together and exeutes the resultingprogram. The sript pak is similar to sdpak exept it assumes the input problemhas already been deoded.Generi interfaing sripts|sdgen and gen for Fortran 77 pakages and sdgen90and gen90 for Fortran 90/95 pakages|may also be found in $MYCUTER/bin. Theseserve the purpose of helping users to design interfaes to new or urrently un-supported pakages. The orresponding prototype �les may be found under thediretory $CUTER/build/prototypes.Besides the general CUTEr doumentation, man pages desribing all suppliedinterfaes are inluded in the distribution. Doumentation for installing and us-ing the pakage pak may be found in the diretory $CUTER/ommon/sr/pkg/pak.Note, however, that the supported pakages are not supplied in CUTEr, rather di-retions on how to obtain them are indiated on the oÆial CUTEr website (seeSetion 7). Objet �les should be plaed where CUTEr an �nd and link them|forinstane in $MYCUTER/preision/bin, where preision is the working preision. Thepreision-independent spei�ation �les for the pakage pak are found in the dire-tory $CUTER/ommon/sr/pkg/pak, whereas if the options spei�ation �les dependon the working preision, they are found in $MYCUTER/preision/spes.



10 � N.I.M. Gould, D. Orban and Ph.L. Toint5. AN ISOLATED SIF DECODERIn this setion, we examine the new design of the SIF deoder. In ontrast withearlier versions of CUTE [2℄, the SIF deoder is not embedded in CUTEr. We believethat this may be justi�ed for a number of reasons. Firstly, while the deoder isused intensively by the CUTEr testing environment, there is no a priori reasonwhy it should not also be useful in other ontexts. As a prime example, the SIFdeoder plays a vital role in the pakage LANCELOT B (an updated version of theLANCELOT pakage [10℄) from the GALAHAD [29℄ optimization software library.It is thus more onsistent to isolate the deoder and simply have any dependentpakages all it as needed. Another reason for our deision is ease of maintenane,and onsisteny when upgrading the deoder|all the pakages that refer to it arethen guaranteed to use the same version. Finally, the SIF deoder may evolve inits own right and develop separately. For example, it has reently been extendedto generate routines for funtion evaluation suited for input to the HSL automatidi�erentiation pakages HSL AD01 and its threadsafe ounterpart HSL AD02 [30℄. Theresulting isolated deoder has been named SifDe.5.1 A new designThe design and ontents of the SifDe diretory tree are very similar to the newdesign of CUTEr desribed in setion 2 and reets similar onerns. The designis summarized in Fig. 2. Corresponding environment variables play orrespondingroles; the root of the tree is alled $SIFDEC while the urrent instane of SifDe isreferred to as $MYSIFDEC. In addition, the do subdiretory ontains the ompleteSIF referene doument.5.2 Extensions to the SIF5.2.1 Quadrati programs. A long soure of irritation for CUTE users was that theSIF representation of test problems did not expliitly allow for quadrati objetivefuntions (although it was obviously possible to represent suh funtions via suitablenonlinear element funtions). Sine this situation arises frequently, and as a numberof extensions to the MPS Linear Programming format from whih SIF evolved are inuse [31; 34; 35℄, we have hosen to extend the original SIF format to handle quadratiparts of the objetive funtion in a more exible manner. We now briey desribethis extension for the reader already familiar with the SIF format as spei�ed in[10℄. The terminology we used is adopted from there.In [10℄, the objetive funtion is represented as a group partially separable funtiononsisting of several potentially nonlinear groups. The purpose of our extension isto allow one of the groups to be spei�ed as a quadrati objetive group, whosetype of nonlinearity is immediately identi�ed by its de�nition without the needfor additional nonlinear group or element funtions. More preisely, the objetivefuntion is now assumed to have the formf(x) = Xi2IO gi(�i) + 12 nXj=1 nXk=1hj;kxjxk ; with �i =Xj2Ji wi;jfj(�xj) + aTi x� bi;where x = (x1; x2; : : : ; xn). The term 12Pnj=1Pnk=1 hj;kxjxk in the objetive fun-tion is the quadrati objetive group and onstitutes an extension to the format
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ommon man man1sr seletsifdedolog$MYSIFDEC for� mahine� op. system� ompiler� size

singlebin
binonfig

double binonfig
Fig. 2. Struture of the SifDe diretories



12 � N.I.M. Gould, D. Orban and Ph.L. Tointproposed in [10℄; the leading 12 is present by onvention. This deomposition isillustrated in Example 5.1.Example 5.1: In order to �x the ideas, let us onsider the optimizationproblem minimize f(x1; x2) = ex21 + x22 + 4x1x2:Its objetive funtion then omprises two groups, the �rst of whih (ex21)uses a non-trivial nonlinear group funtion g(�) = e�. The rest of theobjetive funtion may then be onsidered as a quadrati objetive groupand written as12 (h1;1x1x1 + h1;2x1x2 + h2;1x2x1 + h2;2x2x2);where h1;1 = 0, h1;2 = h2;1 = 4 and h2;2 = 2. 2The quadrati objetive group is spei�ed in the SIF �le by a new setion startingwith the keyword (or indiator ard) QUADRATIC (the ards HESSIAN, QUADS1, QUADOBJ2and QSECTION3 are treated as synonyms of QUADRATIC); this setion must appearbetween the setions START POINT and ELEMENT TYPE (see [10, x7.2.1℄).Within this new setion, eah line is used to speify at most two values of hi;jthat share a ommon value of i or j; any hi;j not reorded is assumed to have thevalue zero, only one of the pair (hi;j ; hj;i); i 6= j; should be given, and any repeatedvalues will be summed. The syntax for data following these indiator ards is givenin Table 3. F.1 Field 2 Field 3 Field 4 Field 5 Field 63  �10�! �10�! �12�!  �10�! �12�!QUADRATIC orHESSIAN orQUADS orQUADOBJ orQSECTIONvar name var name num value var name num valueX var name var name num value var name num valueZ var name var name arr name" " " " " " " "2 5 15 25 36 40 50 61Table 3. Possible data ards for QUADRATIC, HESSIAN, QUADS, QUADOBJ or QSECTIONThe strings var name in data �elds 2 and 3 (and optionally 2 and 5 for those ardswhose �eld 1 does not ontain Z) give the names of pairs of problem variables xjand xk for whih hj;k is nonzero. All problem variables must have been previouslyset in the VARIABLES/COLUMNS setion. Additionally, on a Z ard, the name of thevariable must be an element of an array of variables, with a valid name and index,while on a X ard, the name may be either a salar or an array name.1For ompatibility with Ponele�on's proposal [35℄.2For ompatibility with Maros and Meszaros' test set [34℄.3For ompatibility with OSL [31℄.



The CUTEr environment � 13On ards whose �eld 1 is either empty or ontains the harater X, the stringsnum value in data �elds 4 and (optionally) 6 ontain the assoiated numerial valuesof the oeÆients hj;k. On ards for whih �eld 1 ontains the harater Z, the stringarr name in data �eld 5 gives a real parameter array name. This name must havebeen previously de�ned and its assoiated value then gives the numerial value ofthe parameter.In Example 5.1, if the variables x1 and x2 are named X1 and X2, the QUADRATICsetion for this problem takes the form given in Table 4.F.1 Field 2 Field 3 Field 4 Field 5 Field 63  � 10 �! �10�! �12�! �10�! �12�!QUADRATICX2 X1 4.0 X2 2.0Table 4. The SIF �le spei�ation for Example 5.1This extension to the SIF format has resulted in our inluding the Maros andMeszaros olletion of quadrati programming test problems [34℄ as an annex tothe main CUTEr olletion. The omplete test set may be downloaded from theloation http://uter.rl.a.uk/uter-www/mastsif.html.5.2.2 User-hangeable parameters. One of the less onvenient features of SIF-enoded problems was that the deoding proedures in CUTE were not designedto reognise, nor alter, instane-dependent variable parameters suh as problemdimensions or ritial oeÆients. Many real models, partiularly those arisingfrom some form of disretization, depend upon parameters that a user might wishto re�ne. With CUTE, a user wishing to hange suh a parameter was fored toedit the SIF �le. This �le was usually provided with a number of suggested values,all but one of whih were \ommented out". To remove this inonveniene, SifDemakes provisions for both the de�nition and the altering of variable parametersfrom the problem-deoding sripts.Any real or integer parameter de�nition ontaining the omment $-PARAMETERin �eld 5 (i.e., in olumns 40-49) de�nes that parameter to be a variable parame-ter. This is onsistent with old-style SIF-enoded problems beause strings start-ing with $ in this �eld were previously treated as omments. Any haraters after$-PARAMETER are regarded as omments, and will be passed bak to a user on request.All SIF �les in the CUTE olletion that previously ontained variable parametershave been updated to take advantage of this new SifDe faility, but of ourse theyare still onsistent with CUTE.Given this extra syntax, the SIF deoding sripts have been extended to supporttwo new options, allowing users to selet variable parameters in the SIF �le. The�rst of these options, -show, prints all the variable parameters present in the SIF�le, along with suggested values to whih they may be set as well as any otherprovided omments. The seond, -param allows users to hoose, from the ommandline, whih values to assign to these parameters. For instane, assuming that N andTHETA have been marked as variables parameters of SAMPLE.SIF and that N=400 andTHETA=3.5 are valid values, the ommandsifdeode -param N=400,THETA=3.5 SAMPLE.SIF



14 � N.I.M. Gould, D. Orban and Ph.L. Toint(see Setion 4 for a disussion of the related sript sdpak, whih also inherits thesefeatures) will deode SAMPLE.SIF into the appropriate subroutines and data �les,setting N to 400 and THETA to 3.5.These new features allow users to solve systematially a set of problems in allpresribed sizes. Default values are given in eah SIF �le, and we have taken theopportunity to raise these defaults to reet the size of problems that we feel oughtto be of urrent interest, given that many of the previous defaults were assignedover ten years ago and are rather small to hallenge state-of-the art solvers.As an extension of the -param ommand-line option, users may fore a problemto be solved using parameter values that may not have been pre-assigned in the SIF�le. This is done using the -fore option, as insifdeode -fore -param N=1000,THETA=3.5 SAMPLE.SIFwhere SAMPLE.SIF might not ontain the parameter setting N=1000, or THETA=3.5.Omitting the -fore option would result in an abort of the proess, while speifyingit results in the SIF deoder and the optimizer attempting to omplete the solveusing the spei�ed values. Sine nothing guarantees that these values are valid, the-fore ommand-line option should be used arefully.6. THE NEW INSTALLATION PROCEDURESWe now desribe the CUTEr installation proedure. It applies equally to SifDe,the only di�erene being the names of the proedures invoked, as we mention atthe end of this setion.The installation of CUTEr is driven by portability onerns and is performed bythe sript install uter, whih prompts for information on the loal arhitetureand environment and the desired ompiler, reates the appropriate diretory stru-ture but leaves the loal installation to Umake�les. Umake�les an be onsideredas Make�le generators, or \meta Make�les" in that they generate Make�les suitedto the loal platform and arhiteture without user intervention. Their use is fullydoumented within CUTEr and they are in fat a simpli�ed avour of Imake�les[16℄. They greatly ease the task of the user when it omes to modifying the size ofthe CUTEr tools and rebuilding part of their instane of CUTEr, asMake�les rebuildonly what needs to be rebuilt. The Umake�les needed to build a omplete instaneof CUTEr rely on a set of on�guration �les stored under $MYCUTER/onfig, wherethe details about the loal arhiteture are ontained. Should users need to modifyloal parameters, they an do so by editing two �les, namely Umake.tmpl and theon�guration �le orresponding to their platform; for instane sun.f, linux.f,ibm.f, et. The Make�les then need to be re-generated and CUTEr needs to berebuilt using normal make ommands.The installation sript searhes the $CUTER/build/arh/f.arh �le to present a listof possible Fortran ompilers to the user. This does not imply that the orrespond-ing ompilers are atually installed on the loal system but this list is meant torepresent the most ommon ompilers on that system. Details about eah ompilerin the list are found in the �le $CUTER/onfig/platform.f if it is platform-spei�or in $CUTER/onfig/all.f if it is available on all platforms. Similarly, the �le$CUTER/build/arh/.arh is searhed for possible C/C++ ompilers. Addition of aompiler, an normally be ahieved by modifying one \similar" to those provided.The �les $CUTER/onfig/platform.f and $CUTER/onfig/all.f should be heked



The CUTEr environment � 15before the installation proedure is initiated.The on�guration �les also provide basi system ommands and de�nition of atemporary diretory. Some or all of these �les may need to be properly modi�ed,although suitable settings are given for systems we have aess to.During installation, the option to hoose between small, medium, large or ustom\sizes" for CUTEr is provided. These sizes ome pre-spei�ed, but may be tuned byediting the size.* �les in the diretory $CUTER/build/arh and re-issuing the installommand.The installation proedure works by asting prototype �les against the system,ompiler, preision and size information hosen by the user, asting the Fortransoure �les following the same pattern, and ompiling and possibly linking the re-sult. Eah installation is logged, both for information purposes and with subsequentun-installation possibilities in mind. Un-installing an installed CUTEr is arried outby the sript uninstall uter, whih also updates the log �le. The CUTEr tools,doumentation, sripts, or other may be updated by the sript update uter, asupdates and bug �xes beome available.The installation proedure for SifDe is idential, with the sole proviso that thenames install sript uter, install uter, update uter, uninstall uter, CUTERand MYCUTER should instead be interpreted as install sript sifde, install sifde,update sifde, uninstall sifde, SIFDEC, and MYSIFDEC respetively.7. OBTAINING CUTEr AND SifDeCUTEr and SifDe are written is standard ISO Fortran 77, but additionally CUTErprovides support for Fortran 90/95 and C/C++ pakages. Single and double pre-ision versions are available in a variety of sizes. Mahine dependenies are are-fully isolated and easily adaptable, making installation on heterogeneous networkspossible. Automati installation proedures are available for a variety of Unies,inluding Linux. CUTEr and SifDe an be downloaded fromhttp://uter.rl.a.uk/uter-www, andhttp://uter.rl.a.uk/uter-www/sifderespetively. Information on updates as well as indiations on how to obtain thesupported optimization and linear algebra software is available on the websites.8. CONCLUSION AND PERSPECTIVESThis paper desribes improvements and new features of CUTEr, the latest releaseof the CUTE testing environment, and of SifDe, the isolated SIF deoder. Thepurposes of CUTEr are to|provide a way to explore an extensive olletion of problems,|provide a way to ompare existing pakages,|provide a way to use a large test problem olletion with new pakages,|provide motivation for building a meaningful set of new interesting test problems,|provide ways to manage and update the system eÆiently, and|do all the above on a variety of popular platforms.SifDe has been isolated and designed in order to



16 � N.I.M. Gould, D. Orban and Ph.L. Toint|supply a onsistent interfae to any pakage that may require the deoder, suhas CUTEr and LANCELOT-B [10℄,|ease its maintenane, upgrading and addition of new apabilities,|provide aess to automati di�erentiation pakages.The environments are urrently only available for unix platforms, but it is pos-sible to install both pakages on shared-�lesystem loal networks, beause mahinedependenies have been arefully isolated. A number of previously unsupportedoptimization and linear algebra pakages are now interfaed to CUTEr, and orre-sponding driver programs are supplied. New tools for both onstrained and unon-strained optimization have been added. Some support for automati di�erentiationpakages is now integrated into SifDe. Doumentation now appears in di�erentforms, inluding the usual unix manual pages desribing the tools and interfaes,postsript and pdf general doumentation overing installation, maintenane andusage. Additional details will be provided on the dediated websites. It is hopedthat installing CUTEr and SifDe on urrently unsupported unix platforms, as wellas writing interfaes for additional optimization pakages, will be found relativelyeasy.In the future, we plan to merge the di�erent CUTEr tools so as to remove theirdependeny on whether the input problem is onstrained or not, and have a singleonsistent set of tools. We also intend to use automati memory alloation to re-move the dependeny of both the SIF deoder and the CUTEr tools on preseletedsizes. An intuitive graphial user interfae (GUI) is under way to ease the instal-lation phase, to manage the di�erent loal installations of CUTEr and SifDe, andto enable the user to work in a uni�ed environment. As already mentioned, thewebsites will keep up-to-date information about new features for both pakages,bug �xes, new doumentation and more.AknowledgmentsThanks to the following people for providing interfaes: Philip Gill for snopt,Jorge Noedal and Rihard Waltz for knitro, Sven Ley�er and Roger Flether for�ltersqp. We also wish to thank CUTE users for their omments, bug reports, use,abuse and ontributions. Finally detailed omments by Mihael Saunders and ananonymous referee have been most useful.APPENDIXA. CALLING SEQUENCES FOR THE NEW EVALUATION TOOLSIn this setion, we give the argument lists for those subroutines summarized in Ta-bles 1 and 2 that are new to CUTEr; the remaining subroutines are fully doumentedin the appendix to [2℄. There are two sets of tools: one set for unonstrained andbound onstrained problems, and one set for generally onstrained problems. Notethat these two sets of tools annot be mixed.The supersript i on an argument means that the argument must be set on input.A supersript o means that the argument is set by the subroutine.A.1 Unonstrained and bound onstrained problems|Disover how many variables are involved in the problem:



The CUTEr environment � 17CALL UDIMEN ( INPUTi, No )|Determine how many nonzeros are required to store the Hessian matrix of theobjetive funtion (when stored in a sparse format):CALL UDIMSH ( NNZHo )|Determine how many nonzeros are required to store the Hessian matrix of theobjetive funtion (when stored as a sparse matrix in �nite-element format):CALL UDIMSE( NEo, NZHo, NZIRNHo )|Obtain the type of eah variable:CALL UVARTY( Ni, IVARTYo )|Obtain statistis onerning funtion evaluation and CPU time use:CALL UREPRT ( UCALLSo, TIMEo )A.2 Generally onstrained problems|Disover how many variables and onstraints are involved in the problem:CALL CDIMEN ( INPUTi, No, Mo )|Determine how many nonzeros are required to store the matrix of gradients ofthe objetive funtion and onstraints (when stored in a sparse format):CALL CDIMSJ ( NNZJo )|Determine how many nonzeros are required to store the Hessian matrix of theLagrangian (when stored in a sparse format):CALL CDIMSH ( NNZHo )|Determine how many nonzeros are required to store the Hessian matrix of theLagrangian (when stored as a sparse matrix in �nite-element format):CALL CDIMSE( NEo, NZHo, NZIRNHo )|Obtain the type of eah variable:CALL CVARTY( Ni, IVARTYo )|Evaluate an individual onstraint funtion and possibly its gradient (when thisis stored in a sparse format):CALL CCIFSG ( Ni, Ii, Xi,CIo, NNZSGCo, LSGCIi,SGCIo, IVSGCIo, GRADi )|Obtain statistis onerning funtion evaluation and CPU time use:CALL CREPRT ( CCALLSo, TIMEo )A.3 Argument desriptionsThe arguments in the above alling sequenes have the following meanings:CCALLS is an array whose omponents give ounts for various ativities duringthe urrent exeution of the onstrained tools. Components are:CCALLS(1) number of objetive funtion evaluationsCCALLS(2) number of objetive gradient evaluationsCCALLS(3) number of objetive Hessian evaluationsCCALLS(4) number of Hessian-vetor produtsCCALLS(5) number of onstraint evaluationsCCALLS(6) number of onstraint Jaobian evaluationsCCALLS(7) number of onstraint Hessian evaluationsCI is the value of the general onstraint funtion I evaluated at X.



18 � N.I.M. Gould, D. Orban and Ph.L. TointGRAD is a logial variable whih should be set .TRUE. if the gradient of theonstraint funtion is required from CCIFSG. Otherwise, it should be set.FALSE.I is the index of the general onstraint funtion to be evaluated by CCIFSG.INPUT is the unit number for the deoded data, i.e., from whih OUTSDIF.d (see[2℄) is read.IVARTY is an array whose i-th omponent indiates the type of variable i. Possiblevalues are 0 (a variable whose value may be any real number), 1 (aninteger variable that an only take the values zero or one) and 2 (avariable that an only take integer values).IVSGCI is an array whose i-th omponent is the index of the variable with respetto whih SGCI(i) is the derivative.LSGCI is the delared dimension of SGCI.M is the number of general onstraints.N is the number of variables for the problem.NE is the number of elements in a �nite-element representation of the Hessianfor the problem.NZH is the dimension of the array needed to store the real values of the �nite-element Hessian.NZIRNH is the dimension of the array needed to store the integer values of the�nite-element Hessian.NNZH is the number of nonzeros in the Hessian.NNZJ is the number of nonzeros in the onstraint Jaobian.NNZSGC is the number of nonzeros in SGCI.SGCI is an array that gives the values of the nonzeros of the gradient of thegeneral onstraint funtion I evaluated at X. The i-th entry of SGCI givesthe value of the derivative with respet to variable IVSGCI(i) of funtionI.TIME is an array whose omponents give CPU times (in seonds) for variousativities during the urrent exeution of the tools. Components are:TIME(1) CPU time for all to USETUP/CSETUP.TIME(2) CPU time sine last all to USETUP/CSETUP.UCALLS is an array whose omponents give ounts for various ativities duringthe urrent exeution of the unonstrained tools. Components are:UCALLS(1) number of objetive funtion evaluationsUCALLS(2) number of objetive gradient evaluationsUCALLS(3) number of objetive Hessian evaluationsUCALLS(4) number of Hessian-vetor produtsX is an array that gives the urrent estimate of the solution of the problem.REFERENCES[1℄ R. H. Bielshowsky and F. A. M. Gomes. Dynamial ontrol of infeasibility in nonlinearlyonstrained optimization. Presentation at the Optimization 98 Conferene, Coimbra,1998.
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