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ABSTRACT 

 

The Heparin-Binding EGF-like Growth Factor (HB-EGF) is an autocrine/paracrine 

keratinocyte growth factor which binds to the EGF (Epidermal Growth Factor) receptor 

family and plays a critical role during the re-epithelialization of cutaneous wound by 

stimulating the keratinocytes proliferation and migration. In this study, cellular stressing 

condition in autocrine cultures of human keratinocytes was induced by cholesterol depletion 

methyl-beta-cyclodextrin (MCD). MCD treatment induces the expression and the release of 

HB-EGF. By analysis of the culture media, large amounts of cellular ATP were measured 

particularly after 1h of MCD treatment. To investigate whether ATP contributes to the 

expression of HB-EGF, the nonhydrolyzable ATP analogue, ATP-S, was used to mimic the 

extracellular ATP released. We report that keratinocytes stimulated with ATP--S induce HB-

EGF expression and activate EGFR and ERK1/2. Using an antagonist of P2 purinergic 

receptors, we demonstrate that HB-EGF synthesis induced by lipid rafts disruption is 

dependent on ATP interaction with P2 purinergic receptors. Moreover, our data suggest that 

both MAPKs p38 and ERK1/2 are involved together or independently in the regulation of 

HB-EGF gene expression. These findings provide new insight into the signalling pathway by 

which HB-EGF is expressed after lipid rafts disruption. In summary, after lipid raft 

disruption, keratinocytes release large amount of extracellular ATP. ATP induces HB-EGF 

synthesis and release by interacting with the P2 purinergic receptor and through p38 and 

ERK1/2 signaling in response to a challenging environment. A release of ATP acts as an early 

stress response in keratinocytes. 

 

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

 

The skin is the most outer organ of the mammalian body and so its major function is to 

provide at the epidermis level, a protective barrier against dehydration and insults from the 

environment. The epidermis is mainly composed of keratinocytes which undergo a complex 

differentiation program leading to keratinization. The maintenance of the keratinized barrier is 

a process regulated by keratinocyte proliferation and differentiation, thus when injuries affect 

the epidermal barrier it is crucial to rapidly restore the original tissue. The epidermis is able to 

hyperproliferate in response to several stimuli, including growth factors secreted by the 

keratinocyte itself or by other cells (macrophages, platelets …). More particularly, 

keratinocytes respond to members of the epidermal growth factor (EGF) family. Here, we 

focus on the Heparin-Binding EGF-like Growth Factor (HB-EGF) which is an autocrine 

keratinocyte growth factor (Hashimoto et al., 1994; Raab and Klagsbrun, 1997). Similarly to 

all other members of the EGF family of growth factors, HB-EGF is synthesized as a 

transmembrane protein, proHB-EGF, which can be shed enzymatically by metalloproteases in 

order to release the soluble growth factor (Nishi and Klagsbrun, 2004). At cellular level, it has 

been shown that HB-EGF binds and activates the EGF receptor (EGFR), stimulating the 

keratinocyte proliferation and migration (Nishi and Klagsbrun, 2004). In vivo, Marikovsky et 

al, (1993) have first detected HB-EGF in wound fluid of pigs and HB-EGF also appeared 

after analysis of burn wound fluid from human, who had sustained partial thickness burns 

(Marikovsky et al., 1993; McCarthy et al., 1996). These findings support an important role of 

HB-EGF in skin wound healing and studies reveal that during the re-epithelialization of 

cutaneous wound, HB-EGF stimulates the migration and the proliferation of keratinocytes 

(Hashimoto et al., 1994; Tokumaru et al., 2000).  

 

Cholesterol, an essential component of the plasma membrane involved in membrane structure 

and function, is especially present in specific microdomains called lipid rafts. Previous studies 

from our laboratory have shown that cellular stress with methyl--cyclodextrin, a molecule 

that extracts cholesterol from the plasma membrane and thereby disrupts of lipids rafts, 

strongly induces the expression of HB-EGF in human keratinocytes through the activation of 

p38 mitogen-activated protein kinase (Jans et al., 2004; Mathay et al., 2008). However, the 

mechanisms leading to the expression of HB-EGF have not been fully established. 

 



ATP is known to be the principal intracellular energy source in cells but it has been 

demonstrated that a number of cell types release ATP in the extracellular environment in 

response to mechanical stress or biological activation (Hansen et al., 1993; Pastore et al., 

2007). The first evidence that ATP has extracellular effects was noted in 1929 by Drury & 

Szent-Gyorgyi in their study of the effects of adenine compounds on the heart (Drury and 

Szent-Gyorgyi, 1929). Since this discovery of an involvement in cardiac function, many 

studies have revealed that extracellular ATP contributes to regulate of a variety of biological 

processes, including neurotransmission, smooth muscle contraction, vasodilatation, bone 

metabolism, cell proliferation and differentiation, platelet activation and inflammation 

(Agteresch et al., 1999; Birk et al., 2002; Burnstock and Knight, 2004; Hoebertz et al., 2003; 

Schwiebert and Zsembery, 2003). Despite this knowledge, the mechanisms and physiological 

roles of cellular ATP release are incompletely understood. Once released, the extracellular 

ATP activates P2 purinergic receptors, a family of transmembrane receptors which has been 

divided into two classes: the P2X (ligand-gated ion channels) receptors and the P2Y (G-

protein-coupled) receptors (Boarder and Hourani, 1998). During cutaneous wound healing, 

skin is exposed to extracellular ATP released from platelets and damaged cells (Burrell et al., 

2005; Huang et al., 1989; Weinger et al., 2005) and Dixon et al., (1999) have demonstrated 

that ATP released promotes keratinocyte proliferation. Moreover, during wound healing, 

extracellular ATP acts synergistically with growth factors such as PDGF, TGF- or EGF to 

enhance DNA synthesis and to promote cell proliferation (Wang et al., 1990). Recently, Yin 

et al. demonstrated that ATP released from epithelial cells upon scratch wound was able to 

induce HB-EGF shedding (Yin et al., 2007). 

 

In the present work, we focused on the keratinocyte stress response induced by cholesterol 

depletion using MCD. We demonstrate for the first time that stress conditions like lipid rafts 

disruption by MCD in human keratinocyte, induce a strong release of ATP which can be 

responsible for the expression and shedding of HB-EGF. These results suggest that a release 

of ATP, consecutive to membrane microdomains alterations in keratinocytes, induces HB-

EGF expression and release which can be crucial for epidermal healing and homeostasis. 

 

 

 

 



MATERIALS AND METHODS 

 

Antibodies and chemicals 

MBCD, Suramin, CRM197 and Apyrase were obtained from Sigma-Aldrich (Munich, 

Germany). PD 98059 was from Calbiochem VWR (Leuven, Belgium). Goat anti-human HB-

EGF antibody was obtained from R&D Systems (Abingdon, UK). Mouse anti-phospho-

ERK1/2, rabbit anti-ERK1/2, rabbit anti-p38, anti-phospho-p38 and rabbit anti-human EGFR 

antibody were purchased from Cell Signaling (Leiden, The Netherlands). Rabbit anti-human 

phospho-EGFR Tyr1173 antibody was from Biosource (Nivelles, Belgium). Serum-free 

keratinocyte growth medium was from Lonza (Verviers, Belgium). Serum-free keratinocyte 

complete culture medium (Epilife and HKGS) and keratinocyte autocrine culture medium 

(Epilife without HKGS) were from Cascade Biologics (Mansfield, UK). 

 

Culture of human keratinocytes 

Normal human adult abdominal skin samples were obtained from plastic surgery (Dr Bienfait, 

Clinique St Luc, Namur-Bouge, Belgium). Superficial skin samples were cut with a 

dermatome and keratinocytes were isolated following the trypsin float technique (Wille et al., 

1984). Primary cultures were initiated in KGM2. Proliferating primary cultures were 

trypsinized and keratinocytes were plated into secondary cultures at 6 X 103 cells/cm2 in 

complete culture medium (EpiLife containing HKGS). When the cells covered approximately 

50% of the culture substratum, keratinocytes were switched to an autocrine medium (EpiLife 

alone) which does not contain any growth factor (Minner et al., 2010). In such conditions, 

keratinocytes proliferate autonomously until the confluence of the culture is reached 

concomitantly with cell growth arrest (Poumay and Pittelkow, 1995). All experiments were 

performed at confluence in autocrine culture conditions. 

 

Keratinocytes treatments 

For cholesterol depletion, confluent keratinocyte cultures were incubated in the presence of 

7.5mM MCD for 1 hour followed by incubation in autocrine culture medium for different 

periods (recovery times). This current working MCD concentration has been previously used 

for treatment of keratinocytes (Jans et al., 2004; Lambert et al., 2008) as Jans et al. (2004) 

showed that 1h of MCD is efficient to decrease significantly the concentration of cholesterol 



in keratinocytes. MCD loaded with cholesterol was used as control to avoid any effect not 

resulting from cholesterol extraction (Mathay et al., 2008; Mathay and Poumay, 2010). 

For scratch wound assay, multiple linear scratch wounds were made with a 200 µl pipette tip 

in confluent keratinocytes cultures. Then keratinocytes were washed with PBS to remove 

cellular debris and were incubated in fresh autocrine culture medium for different indicated 

periods (recovery times).  

 

Protein extraction and Western blotting 

Before lysis, cells were washed with phosphate-buffered saline (PBS) and then scraped into 

twice concentrated Laemmli sample buffer (62.5mM Tris–HCl, 2% SDS, 8.7% glycerol, 

0.05% bromophenol blue, 0.2% dithiothreitol). The proteins of the cell lysates were analyzed 

by SDS-polyacrylamide gel electrophoresis and transferred onto polyvinylidene difluoride 

membranes (GE Healthcare Bio-Sciences, Uppsala, Sweden). Blocking of the membrane in 

PBS/1% Tween 20/5% skimmed milk (blocking buffer) was followed by incubation of the 

membrane with primary antibody diluted in blocking buffer. After three washing steps, the 

membrane was incubated with a HRP-conjugated secondary antibody in blocking buffer. 

Finally, a POD Chemoluminescence Substrate (Roche Diagnostics, Mannheim, Germany) 

was used in order to visualize the recognized protein bands. For the visualisation, an 

ImageQuant 350 (GE Healthcare Bio-Sciences, Uppsala, Sweden) was used. 

 

Measurement of the release of HB-EGF 

Release of HB-EGF in the culture medium was quantified by quantitative sandwich  

enzyme-linked immunosorbent assay (ELISA), using the DuoSet ELISA human HB-EGF kit 

from R&D systems (Abingdon, U.K.). Using a microplate reader (Molecular Devices, 

Sunnyvale, CA, U.S.A.), the optical density was determined at 540 nm (wavelength 

correction at 450 nm). The amount of HB-EGF present in the culture supernatants was 

calculated on the basis of a standard curve with the Softmax Pro 5.2 program. 

 

Lactate dehydrogenase (LDH) release 

Lactate dehydrogenase (LDH) release was measured with the CyTox-ONETM Homogeneous 

Membrane Integrity Assay from Promega (Leiden, Netherlands) according to the 

manufacturer’s protocol. Fluorescence was measured using a fluorescence plate reader 

(Thermo Scientific, Zellick, Belgium) and LDH release was determined using background 

control and positive control cell lysis in Triton X-100 (maximum LDH release). 



 

Measurement of extracellular ATP 

Release of extracellular ATP was quantified using the Molecular Probes’ ATP determination 

kit based on the requirement of luciferase for ATP to produce light. After treatment (scratch 

wound or cholesterol depletion), the media were harvested and luciferase activity in the 

presence of these media was measured using a luminometer. The amount of extracellular ATP 

was calculated in reference to a standard curve. 

 

Measurement of cell survival: MTT assay 

MTT solution (Sigma-Aldrich, Bornem, Belgium) dissolved in culture medium was used at a 

concentration of 0.5 mg/ml during 1h. After this incubation, the MTT solution was discarded 

and isopropanol was added to each well for 1h at room temperature. The optical density of 

MTT extraction solution was determined using a microplate reader (550 nm) (Molecular 

Devices, Sunnyvale, CA, U.S.A.).  

 

Cholesterol extraction and quantification  

Cells were scraped into demineralised water before being sonicated (1 minute). Lipids and 

proteins were then separated in chloroform/methanol (2:1). NaCl (0.05 M) was added to the 

organic phase, which was then washed twice with 0.36 M CaCl2/methanol (1:1). 1% Triton X-

100/acetone was added and samples were evaporated in air flow with SpeedVac SC100 

(Thermo Electron Corporation). The extracts were then solubilised with demineralised water 

before measurement of cholesterol. 

Cholesterol was quantified using the Amplex Red Cholesterol Assay Kit (Invitrogen) 

according to the instructions of the manufacturer. 

 

Statistical analysis 

Data were analysed by analysis of variance (ANOVA 1) after testing the homogeneity of 

variance (Bartlett). Post hoc comparisons were performed by pairwise Scheffe’s test 

(*p<0.05, **p<0.01, ***p<0.001). All data represent a mean of three independent 

experiments. 

 

 

 

 

 

 



RESULTS 

 

Lipid rafts disruption in keratinocytes induces the expression and the shedding of HB-

EGF which subsequently binds to the EGFR.  

Previous studies of human keratinocytes have shown that cholesterol depletion by MCD 

induces the activation of p38 and ERK1/2 MAPKs, followed by the expression of proHB-

EGF which has been shown to depend on p38 activity (Mathay et al., 2008). Although 

keratinocytes can produce several growth factors of the EGF family including amphiregulin, 

betacellulin, epiregulin, transforming growth factor- and HB-EGF, it has been shown that 

after treatment for 1h with MCD or 1h of MCD treatment followed by 1h of recovery 

period, HB-EGF is the only member of the family that is rapidly and strongly induced in these 

conditions (Mathay et al., 2010). 

In this work, time-course experiments have been performed after lipid rafts disruption (1h 

MCD) in order to study the recovery period varying from 1 hour to 18 hours in normal 

autocrine culture medium. Figure 1a confirms that protein expression of proHB-EGF is 

indeed expressed following stress conditions in keratinocytes where cholesterol has been 

extracted from the plasma membrane. Immediately after lipid rafts disruption, EGFR and the 

MAPK ERK1/2 and p38 were phosphorylated. However, whereas the phosphorylations of 

EGFR and p38 MAPK were rapidly down-regulated, the ERK1/2 MAPK remained activated 

during the full period of recovery.  

HB-EGF is synthesized as a precursor transmembrane protein that has to be cleaved 

enzymatically to release a soluble growth factor (mature HB-EGF) which then can bind and 

activate the EGFR. Thus, to investigate whether the mature form of HB-EGF was shedded 

and secreted in the cellular environment following cholesterol depletion by MCD, we 

analysed HB-EGF concentration in the culture medium using the ELISA technique. Figure 1b 

illustrates that HB-EGF is mainly secreted after long recovery periods (4h, 8h and 18h) in 

accordance with the maximum of expression of its precursor (1h, 2h, 4h, 8h) as seen in figure 

1a. When the GM6001 metalloprotease inhibitor was added, we observed a decrease in HB-

EGF concentration in the culture medium particularly after 4h, 8h and 18h of recovery 

periods, confirming the implication of metalloprotease in the shedding of HB-EGF (data not 

shown). 

To explore if the mature form of HB-EGF secreted was able to activate the EGFR, cells were 

incubated after cholesterol depletion in the presence of CRM197, a non-toxic mutant of 



diphtheria toxin. CRM197 binds to the proHB-EGF as well as to the mature form of HB-EGF, 

impairing the binding between the EGFR and HB-EGF and subsequently inhibiting the 

mitogenic action of HB-EGF. CRM197 does not bind to other growth factors of the EGF 

family (Mitamura et al., 1995). We focused on the timing where HB-EGF is principally 

secreted and found that after 4h and 8h of recovery times, the phosphorylation of EGFR 

decreases in the presence of CRM197 (Figure 1c), demonstrating that part of the EGFR 

phosphorylation following cholesterol depletion is partly due to receptor binding by HB-EGF 

ligand. Comparing data in Figure 1a, there was a surprising slight increase in the 

phosphorylation of EGFR after 4h of recovery. However generally, the phosphorylation of 

EGFR decreases during the recovery periods.  

These results suggest that perturbation of lipid rafts in keratinocytes plasma membrane of 

induces a stress response which results in the synthesis and shedding of HB-EGF by 

epidermal cells as found during skin wound repair at the margin of the healing epidermis 

(Mathay et al., 2008). A similar pattern of precursor expression and mature form release is 

observed when keratinocytes are wounded in a scratch wound assay (Figure 2a and b), 

indicating that HB-EGF, due to its mitogenic and chemotactic properties, is likely released by 

this cell type in order to participate to healing of the epidermal tissue. To investigate the 

importance of HB-EGF synthesis and release in scratch wound assays, cells were incubated in 

the presence or absence of CRM197. We report that keratinocytes migration was reduced in 

the presence of CRM197, suggesting involvement of HB-EGF in cell migration and 

proliferation (Figure 2c).  

These data suggest that HB-EGF must be considered as a key factor in epidermal stress 

response, as it was already suggested by studies revealing that HB-EGF neutralization with 

CRM197 or with specific neutralizing antibody produces an impaired wound closure (Block 

et al., 2004; Xu et al., 2004). 

                     

  

ATP--S treatment induces HB-EGF synthesis. 

Membrane cholesterol depletion, like other cellular stress, induces an HB-EGF synthesis 

(Mathay et al., 2008). However, the mechanisms leading to the expression of HB-EGF have 

not been fully established although a role for p38 MAPK was identified. It is known that ATP 

signalling in epithelial cells can play a critical role in tissue wound repair since ATP is a 

known extracellular signalling molecule inducing cell proliferation and migration and thus 

promoting wound closure (Klepeis et al., 2004; Weinger et al., 2005). Because the shedding 



of HB-EGF has already been linked to extracellular ATP in other epithelial cells (Yin et al., 

2007), we wondered whether ATP could play a role in the early stages of keratinocyte stress 

response. To investigate whether ATP can contribute directly to cellular protein expression of 

HB-EGF, ATP-S, the nonhydrolyzable ATP analogue, was added to culture medium in 

order to mimic an extracellular ATP release. Figure 3 illustrates that EGFR and ERK1/2 were 

activated 30 minutes after ATP-S stimulation in keratinocytes, followed by expression of 

HB-EGF as detected after 1h and up to 4h. The HB-EGF concentration released in the 

medium were also measured simultaneously, revealing a weak shedding of HB-EGF after 4h 

and 8h only (data not shown), probably due to very low concentrations of released HB-EGF. 

In addition, increasing concentrations of ATP-S stimulate EGFR phosphorylation and HB-

EGF protein expression (Figure 3b).  

This result demonstrates that some extracellular ATP is able to induce the synthesis of HB-

EGF in keratinocytes. Moreover, in good accordance with response to the cholesterol 

depletion, we also observe phosphorylation of EGFR and ERK1/2 after ATP-S treatment, 

suggesting that early cell response after cholesterol depletion could be due to some release of 

ATP by keratinocytes.  

 

Cholesterol depletion induces ATP release from keratinocytes. 

Because extracellular ATP was demonstrated as being able to induce HB-EGF synthesis, the 

question was then to know whether cholesterol depletion could induce some ATP release. In 

order to investigate whether keratinocytes do release ATP after cholesterol depletion, the 

concentrations of ATP were measured in the culture media. Briefly, confluent keratinocyte 

cultures were treated for 1h with MCD followed by incubation in autocrine culture medium 

for different periods of recovery. The culture media were harvested and analysed using the 

luciferase-luciferin ATP bioluminescent assay. Figure 4 illustrates that during incubation 1h 

with MCD, keratinocytes release a high concentration of ATP (355 nM) which corresponds 

to an approximately 21-fold increase over the control condition (16 nM). During the first hour 

of recovery time, we observe a reduced release of extracellular ATP secreted in the culture 

medium compared with the sole incubation with MCD (1h). This release is also seen up to 4 

hours of recovery, and then returns to normal values after 8h of recovery. These results 

strongly suggest that the extracellular ATP released by keratinocytes during cholesterol 

depletion could explain the induced HB-EGF expression after this treatment.   



The question was then to determine whether some cell lysis could be responsible for ATP 

release. To quantify eventual cell lysis, we measured the cytosolic lactate dehydrogenase 

(LDH) activity in the culture media after MCD treatment and during the recovery period. 

The cell membrane is impermeable to LDH, but when the integrity of the plasma membrane is 

altered or disrupted, LDH is rapidly released into the culture medium and therefore can be 

considered as a marker for cell damage. Keratinocyte cultures were grown to confluence and 

treated for 1h with MCD, followed by recovery periods in autocrine culture medium. The 

culture medium was collected and then analysed to measure the amount of LDH activity 

released during the recovery period. Figure 5a shows that MCD did not cause any immediate 

damage to the cell membrane. Some LDH release progressively happened during recovery, 

but its kinetics could not explain the cellular release of ATP, discarding damages to plasma 

membranes as a potential explanation. MTT assays were also performed and showed that 

cholesterol depletion does not affect cellular viability (data not shown). Finally, 

measurements of cholesterol have shown that during recovery periods, cholesterol is 

progressively re-synthesized, reaching a cholesterol concentration in keratinocytes after 17h 

of recovery period that is similar to the initial concentration measured in control conditions 

(Figure 5b).  

 

HB-EGF synthesis induced by lipid rafts disruption is dependent on ATP interaction 

with purinergic receptors. 

Released ATP stimulates cells via the activation of the P2 purinergic receptors in plasma 

membranes (Klepeis et al., 2004). To elucidate whether the expression of HB-EGF observed 

in MCD treatment could be due to the interaction between the extracellular ATP with the P2 

purinergic receptors, we added suramin, a known antagonist of the P2 purinergic receptor.  

Suramin is a non-selective antagonist P2 receptor inhibitor (Dunn and Blakeley, 1988). 

Keratinocyte cultures were incubated 1h with suramin, followed by 1h of MCD treatment 

before washing and incubation for cell recovery in autocrine culture medium containing 200 

µM of suramin (Figure 6a). Results illustrate downregulations of the phosphorylations of 

EGFR and ERK1/2, suggesting that the lipid rafts-induced activation of EGFR and ERK1/2 is 

potentially mediated by the P2 purinergic receptor signalling pathway. On the other hand, the 

p38 MAPK was still phosphorylated in the presence of suramin whilst HB-EGF synthesis was 

completely impaired. This was surprising because previous data have shown that HB-EGF 

synthesis, particularly during short recovery periods after disruption of lipid rafts, is 



dependent on p38 MAPK activity (Mathay et al., 2008). Thus, to control the efficiency of p38 

activity after suramin treatment, the phosphorylation of Hsp27, a down-stream target of p38 

activity in keratinocytes (Garmyn et al., 2001), was checked by Western blot analysis (Figure 

6a). The state of phosphorylation of Hsp27 is in concordance with the activity of p38, 

indicating that the MAPK p38 activity is not affected by suramin. To confirm the implication 

of extracellular ATP in the synthesis of HB-EGF after cholesterol depletion, keratinocytes 

were treated with apyrase. Figure 6b shows that in the presence of apyrase, HB-EGF protein 

expression is also downregulated.  

Because these data indicate that suramin is responsible for some downregulation of ERK1/2 

phosphorylation, followed by a strong decrease in HB-EGF protein expression (Figure 6a), 

we decided to assess whether the MAPK ERK1/2 could participate in the synthesis of HB-

EGF. For this purpose, the MEK inhibitor PD98069 was employed. Interestingly, this 

experiment revealed that inhibition of ERK1/2 phosphorylation by PD98069 decreases 

detection of HB-EGF protein after 1h, 2h and 4h of recovery (Figure 7a). However, since the 

expression of HB-EGF is not completely abolished by this treatment, one can deduce that the 

induction of the synthesis of HB-EGF is probably dependent on an interaction between p38 

and ERK1/2. Indeed, Sharma et al. (2003) observed that a two-way cross-talk between p38 

and ERK1/2 MAPKs in corneal epithelium exists and that, when ERK1/2 pathway is 

interrupted by specific inhibitor, the MAPK p38 is concomitantly up-regulated (Sharma et al., 

2003). Moreover, our previous results showed that the inhibition of p38 did not completely 

abolish the protein expression of HB-EGF after long time (8h and 18h) recovery periods 

(Mathay et al. 2008). For this reason, we analysed the effect of PD98069 combined with the 

p38 MAPK inhibitor PD169316 during the cell response to lipid rafts disruption. Figure 7b 

shows a complete impairing of HB-EGF protein expression in the presence of both inhibitors, 

supporting a two-way cross-talk between p38 and ERK1/2 in controlling the induction of HB-

EGF. 

Altogether our results demonstrate that extracellular ATP acts as an early keratinocytes stress 

response able to induce ERK1/2 signalling through suramin-antagonized receptor (likely the 

P2-purinergic receptor), leading to strong cooperation with p38 in order to induce the 

transient expression of HB-EGF by this cell type. 

 

 

 

 



 

DISCUSSION 

 

Previous data from our laboratory have shown that cellular stresses, such as cholesterol 

depletion or oxidative stress, strongly induced the expression of HB-EGF in human 

keratinocytes (Jans et al., 2004; Mathay et al., 2008). However the mechanisms leading to the 

synthesis of HB-EGF have not been fully understood. 

It has been shown that cholesterol depletion using MCD disorganizes the structures of lipid 

rafts (Kabouridis et al., 2000) and initiates keratinocytes signalling pathways including the 

activation of EGFR (Jans et al., 2004; Lambert et al., 2008). The present work precisely 

focuses on the keratinocyte stress response consecutive to cholesterol depletion and which has 

been shown previously to include a strong induction of HB-EGF expression (Mathay et al., 

2008). Here, cells and culture media following cholesterol depletion, during a recovery period 

(Lambert et al., 2008; Mathay et al., 2008) were analysed by Western blotting and ELISA and 

revealed that HB-EGF is mainly released 4h, 8h and 18h following lipid rafts disruption. 

Using the non-toxic mutant of diphtheria toxin, CRM197, we provide evidence that HB-EGF 

secreted in the culture media is likely binding the EGFR, partly inducing its phosphorylation 

after 4h and 8h of recovery. Since HB-EGF expression has been also demonstrated as 

dependent on p38 phosphorylation in stress conditions (Mathay et al., 2008), further 

characterization of the early stress response in keratinocyte was initiated.  

An important role for ATP in keratinocyte proliferation, differentiation and cell-to-cell 

communication has previously been underlined (Burrell et al., 2005; Dixon et al., 1999). In 

vivo, during skin wound healing, keratinocytes are exposed to high levels of ATP released 

from platelets, damaged cells including keratinocytes, and such exposure promotes epidermal 

healing. In addition, because a recent study has shown that extracellular ATP is responsible 

for HB-EGF shedding from epithelial cells after scratch wound (Yin et al., 2007), we 

investigated whether the nonhydrolyzable ATP analogue, ATP--S, was able to induce HB-

EGF expression in autocrine keratinocyte culture model. Interestingly, HB-EGF was indeed 

detected after ATP--S treatment, together with phosphorylation of EGFR and ERK1/2. 

Because related signaling pathways were also activated after MCD treatment, we 

investigated whether keratinocytes do release ATP in their environment after cholesterol 

depletion. Using an ATP bioluminescent assay, we showed that keratinocytes release large 

amount of extracellular ATP upon cholesterol depletion. However, other stresses, like 



oxidative stress or treatment with phorbol ester, which are known to also increase HB-EGF 

expression in keratinocytes, do not induce release of ATP in the culture media (data not 

shown).  

Mechanisms responsible for the release of ATP are multiple and probably differ from cell 

type to another. There are several potential mechanisms, including cytolysis, ATP-binding 

cassette (ABC) protein, neighboring ion channels or exocytosis of vesicles (Bodin and 

Burnstock, 2001; Schwiebert and Zsembery, 2003). Because MCD extracts cholesterol from 

plasma membrane and thereby disrupts lipid rafts, we evaluated the damage to cell membrane 

by measurement of the release of lactate dehydrogenase (LDH) after MCD treatment of 

keratinocytes. No significant release of LDH was observed, suggesting good integrity of the 

cell membrane. Many mitochondrial proteins are found in plasma membrane such as ATP 

synthase complex which are able to generate extracellular ATP in cell environment (Kim et 

al., 2004; Zhao et al., 2004). Kim et al. (2004) have also demonstrated that plasma membrane 

lipid rafts do contain ATP synthase complex. One possible explanation could be that the 

disruption of lipid rafts by MCD causes the activation of ATP synthase. On the other hand, 

Feranchak et al. (2010) have reported the vesicular localisation of ATP in a model of liver cell 

line, suggesting that exocytosis could be involved in ATP release.  

Once released, ATP can be rapidly degraded or interacts and activates in an autocrine or 

paracrine manner the P2 purinergic receptors (Schwiebert and Zsembery, 2003). Among P2 

purinergic receptors, P2Y1 and P2Y2 receptors were identified in the basal layer of the 

epidermis and implicated in keratinocytes proliferation (Dixon et al., 1999; Greig et al., 2003). 

After cholesterol depletion, the released ATP acts as an extracellular mediator by interacting 

with P2 purinergic receptors, leading to HB-EGF synthesis. Indeed, when keratinocytes are 

incubated with suramin, an antagonist of P2 purinergic receptors, followed by MCD 

treatment, the HB-EGF synthesis was abolished as well as the phosphorylation of EGFR and 

ERK1/2.  

The release of extracellular ATP is therefore an early signal after cholesterol depletion, 

identified to be at least partially upstream of the EGFR activation. Recently, Liu et al. have 

suggested a mechanism for the transactivation of the EGFR by the P2Y2 receptor. They have 

identified two SH3-binding domains in the P2Y2 receptor that are necessary for the G-

protein-coupled receptor (GPCR) to bind directly and activate the Src nonreceptor tyrosine 

kinase, leading to Src-dependent transactivation of several receptor tyrosine kinases, 

including the EGFR (Liu et al., 2004). Similarly, Buzzi et al. have suggested that in human 



colon cancer Caco-2 cells stimulated by ATP, GPCR may transactivate the EGFR via 

activation of tyrosine kinases such as Src, or via activation of metalloproteinases to generate 

EGFR ligands (Buzzi et al., 2009). 

 

ERK1/2 is known to be implicated in cell survival and proliferation (Seger and Krebs, 1995). 

Recently, Satoh et al. demonstrated that ERK2 can contribute to wound healing after a partial-

thickness burn (Satoh et al., 2009). Thus we investigated whether the activation of ERK1/2 

could be involved in HB-EGF expression. Although previous data had indicated that HB-EGF 

synthesis was dependent on p38 activation, ERK inhibition appears to partially impair the 

early HB-EGF expression in keratinocytes. These findings provide new insight into the 

signalling pathway by which HB-EGF is expressed after lipid rafts disruption. Our data 

suggest that after p38 and ERK1/2 activation, both MAPKs are involved together or 

independently in the regulation of HB-EGF gene expression. This concurs with studies 

showing that inhibition of one of these two MAPKs impairs wound healing (Satoh et al., 

2009; Sharma et al., 2003). 

 

In conclusion, after lipid raft disruption by cholesterol extraction, keratinocytes respond to 

this cellular stress by release large amounts of extracellular ATP. This release, by interacting 

with the P2 purinergic receptor, induces HB-EGF synthesis and shedding (Figure 8). This 

growth factor is considered as a good marker of the keratinocyte’s response to a challenging 

environment and could even be involved in atopic dermatitis (Mathay et al., 2008). Thus our 

data suggest that the release of extracellular ATP acts as an early stress response in 

cholesterol-depleted keratinocytes. 
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FIGURE LEGENDS 

 

Figure 1: HB-EGF is synthesized and released after cholesterol depletion in human 

keratinocytes cultures. 

a. Confluent keratinocytes were left untreated (Ctl 1h and Ctl 18h) or were treated 1h 

with MCD (7.5 mM) then followed by several recovery periods in culture medium 

(0, 1h, 2h, 4h, 8h and 18h). After each treatment, proteins were extracted and analysed 

by Western blotting using specific antibodies (EGFR, p38, ERK, their phosphorylated 

forms and HB-EGF). b. The culture media were harvested and analysed by enzyme-

linked immunosorbent assay (ELISA) to measure the concentration of HB-EGF 

released after cholesterol depletion. The results shown are representative data obtained 



in three experiments and were analysed by ANOVA 1 after testing the homogeneity of 

variance (Bartlett). Post hoc comparisons were performed by pairwise Scheffe’s test 

(**p<0.01). c. Confluent keratinocytes were left untreated (Ctl 1h and Ctl 18h) or 

treated 1h with MCD (7.5 mM) following by several recovering periods in culture 

medium (2h, 4h, 8h and 18h) in the presence of CRM197 (10 g/ml). After each 

treatment, proteins were extracted and analysed by Western blotting using specific 

antibodies against EGFR and its phosphorylated form.  

 

 



Figure 2: HB-EGF is synthesized and released after scratch wound in human keratinocytes 

cultures. 

a. Confluent keratinocytes were left untreated (Ctl 1h and Ctl 18h) or cultures were wounded 

followed by several recovery periods in culture medium (0, 1h, 2h, 4h, 8h, 18h and 24h). 

Proteins were then extracted and analysed by Western blotting using specific antibodies 

(EGFR, p38, ERK, their phosphorylated forms and HB-EGF). b. The culture media were 

harvested and analysed by enzyme-linked immunosorbent assay (ELISA) to measure the 

concentration of HB-EGF released after cholesterol depletion. The results shown are 

representative data obtained in three experiments and were analysed by ANOVA 1 after 

testing the homogeneity of variance (Bartlett) (*p<0.05, **p<0.01, ***p<0.001). Post hoc 

comparisons were performed by pairwise Scheffe’s test. c. Scratch-wounded keratinocytes 

were incubated in the presence or in absence (Ctl) of CRM197 (10ng/ml). Cells were 

photographed by phase contrast microscopy immediately after the scratch-wound (0h) or after 

18h of recovery period. 

 

 

 



Figure 3: ATP--S treatment induces HB-EGF expression. 

a. Confluent keratinocytes were left untreated (Ctl 30 min and Ctl 8h) or were treated with 

ATP--S (50 µM) during 30 min, 1h, 2h, 4h and 8h and cells lysates were analysed by 

Western blotting using specific antibodies against EGFR, ERK, their phosphorylated forms 

and HB-EGF. b. Confluent keratinocytes were left untreated (Ctl 1h) or treated with several 

concentrations of ATP--S (12.5, 25, 50 or 100 µM) during 1h. Cells lysates were then 

analysed by Western blotting using specific antibodies against EGFR, pEGFR and HB-EGF. 

 

 

 



Figure 4: Cholesterol depletion induces the released of ATP in the culture media. 

Confluent keratinocyte were treated 1 h with MCD (7.5 mM) followed by recovery time (0h, 

1h, 2h, 4h, 8h or 18h). The culture media were harvested for each condition and the 

concentrations of extracellular ATP were analysed using an ATP Bioluminescent Assay Kit. 

The results shown are representative data obtained in four experiments and were analysed by 

ANOVA I after testing the homogeneity of variance (Bartlett). Post Hoc comparisons were 

performed by pairwise Scheffe’s test (*p<0.05, **p<0.01, ***p<0.001). 

 

 

                 



Figure 5: The integrity of plasma membrane is not affected after 1h of MCD treatment. 

Confluent keratinocytes were left untreated (Ctl 1h or Ctl 18h) or were treated 1h with MCD 

(7.5 mM) followed by recovery periods varying from 1 hour to 18 hours in normal autocrine 

culture.  a. Culture media were analysed and the results are expressed as percentages of the 

maximum LDH release and represent the mean absorbance ± SD (n = 3). b. Cholesterol 

content was extracted and quantified with Amplex Red Cholesterol Assay kit. After testing 

the homogeneity of variance (Bartlett), data were analysed by ANOVA 1 and Post Hoc 

comparisons were performed by pairwise Scheffe’s test (*p<0.05, ***p<0.001). 

 

 

 



Figure 6: HB-EGF synthesis after lipid raft disruption is dependent on extracellular ATP 

released in keratinocytes. 

a. Confluent keratinocyte cultures were pretreated 1h with suramin (200 µM) followed by 1h 

of MCD treatment (7.5mM). Then cells were incubated in autocrine culture medium during 

several recovering periods (0, 1h, 2h, 4h, 8h and 18h). After each treatment, proteins were 

extracted and analysed by Western blotting using specific antibodies against EGFR, p38, 

ERK, HSP27 and their phosphorylated forms and HB-EGF. 

b. Confluent keratinocyte cultures were treated 1h with 1h MCD (7.5mM) in the presence of 

apyrase (10U/ml) or the vehicle. Then cells were incubated in autocrine culture medium 

during several recovering periods (0, 1h, 2h, 4h, 8h and 18h) in the presence of apyrase 

(10U/ml) or the vehicle. After each treatment, proteins were extracted and analysed by 

Western blotting using specific antibodies against EGFR, p38, ERK, and their phosphorylated 

forms and HB-EGF. 

 

 

 



Figure 7: Early HB-EGF protein expression induced by disruption of lipid rafts is dependent 

on ERK and p38 MAPK activity. 

a.  Confluent keratinocyte cultures were left untreated or were pretreated 1h with the ERK 

inhibitor, the PD98069 (2 µM) then left untreated or treated with MCD (7.5mM) for 1h in 

the presence of PD98069 (2 µM) or the vehicle. Then cells were incubated in autocrine 

culture medium during several recovering periods (0, 1h, 2h, 4h, 8h and 18h) in the presence 

of PD98069 (2 µM) or the vehicle. Cells lysates were then analysed by Western blotting using 

specific antibodies against EGFR, ERK, their phosphorylated forms and HB-EGF.  

b. Confluent keratinocyte cultures were pretreated 1h with PD98069 (2 µM) and PD169316 

(15 µM). Then cultures were treated 1h with MCD (7.5mM) in the presence of both 

inhibitors which were also part of the recovery medium (0, 1h, 2h, 4h, 8h and 18h). Cells 

lysates were then analysed by Western blotting. 

 

 



Figure 8: HB-EGF synthesis and release induced by MCD treatment is controlled by 

extracellular ATP and involves both p38 and ERK1/2 signaling pathways in keratinocytes. 

After cholesterol depletion, keratinocytes release large amounts of extracellular ATP. By 

interaction with P2 purinergic receptors, ATP induces EGFR phosphorylation, HB-EGF 

synthesis and release through signaling pathways involving p38 and ERK1/2. Once released, 

HB-EGF further activates EGFR. 

 

 

 


