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Long-range interactions between substitutional nitrogen dopants in graphene:
Electronic properties calculations
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2Laboratoire d’ Etude des Microstructures, ONERA-CNRS, BP 72, 92322 Chdtillon Cedex, France
(Received 16 May 2012; published 27 July 2012)

Being a true two-dimensional crystal, graphene has special properties. In particular, a pointlike defect in
graphene may induce perturbations in the long range. This characteristic questions the validity of using a
supercell geometry in an attempt to explore the properties of an isolated defect. Still, this approach is often used
in ab initio electronic structure calculations, for instance. How does this approach converge with the size of the
supercell is generally not tackled for the obvious reason of keeping the computational load to an affordable level.
The present paper addresses the problem of substitutional nitrogen doping of graphene. DFT calculations have
been performed for 9 x 9 and 10 x 10 supercells. Although these calculations correspond to N concentrations
that differ by ~10%, the local densities of states on and around the defects are found to depend significantly on
the supercell size. Fitting the DFT results by a tight-binding Hamiltonian makes it possible to explore the effects
of a random distribution of the substitutional N atoms, in the case of finite concentrations, and to approach the
case of an isolated impurity when the concentration vanishes. The tight-binding Hamiltonian is used to calculate
the STM image of graphene around an isolated N atom. STM images are also calculated for graphene doped
with 0.5 at% concentration of nitrogen. The results are discussed in the light of recent experimental data and the

conclusions of the calculations are extended to other point defects in graphene.

DOI: 10.1103/PhysRevB.86.045448

I. INTRODUCTION

Local defects and chemical doping is a well-documented
way to tune the electronic properties of graphene.! More
specifically, the benefits of doping have been underlined in the
context of (bio)sensing,” lithium incorporation battery,** and
in other fields. Nitrogen (N) is a natural substitute for carbon
in the honeycomb structure due to both its ability to form sp?
bonds and its pentavalent character. It is not a surprise, then,
that many publications deal with the production of N-doped
graphene realized either by direct growth of modified layers>°
or by postsynthesis treatments.”® Doping single-wall carbon
nanotubes has also been considered.”!!

Recent STM-STS experiments of N-doped graphene’?
have demonstrated the occurrence of chemical substitution.
These experiments provide us with a detailed and local
analysis with subatomic resolution of the electronic properties
of the doped material. The STM images display a pattern
having threefold symmetry around the N atoms and having a
strong signal on the C atoms bonded to the dopant, which
ab initio simulations reproduce well.'> STS measurements
have revealed a broad resonant electronic state around the
dopant position and located at an energy of 0.5 eV above the
Fermi level.®

It is important to understand the effects of local defects
and chemical doping on the global electronic properties of
graphene, on its quantum transport properties and on its
local chemical reactivity. It is the reason why the electronic
properties of graphene doped with nitrogen have been inves-
tigated by several groups, mainly on the basis of ab initio
DFT techniques.>'?>"!7 The central advantage of the ab initio
approach is to be parameter free. A disadvantage is to be
restricted to periodic systems as long as fast Fourier transforms
need to be used to link direct and reciprocal spaces. In
most instances, doping is therefore addressed in a supercell
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geometry that precludes the study of low doping concentration
or disorder. In the case of single-wall carbon nanotubes,
however, the electronic properties of isolated defects have
been studied by first-principle methods based on scattering
theory.'"® For a nitrogen impurity in the (10,10) armchair
nanotube, the local density of states on the N atom shows
a broad peak centered at 0.53 eV above the Fermi level. The
charge density associated with that quasibound state (donor
level in the language of semiconductor physics) extends up to
~1 nm away from the defect. This means that N atoms located
~72 nm apart can interact, which requires examining with care
the intrinsic validity of a supercell method.

The present work, based on both ab initio DFT and
semiempirical tight-binding electronic structure calculations,
aims at looking for interference effects generated by a
distribution of N dopants in graphene as compared to the case
of an individual impurity. We resort to different tight-binding
parametrization strategies. The simplest one, based on just one
adjustable parameter related to the defect, permits analytical
calculations of the impurity levels. This model is described
in Appendix A. We favor a more realistic approach, in which
the perturbation induced by the defect is allowed to extend
on the neighboring sites. This latter model is used to study the
effects of disorder on the local and global electronic properties
of doped graphene and to calculate STM images that we
compare with available experimental data. The calculations
and discussions are developed here for substitutional nitrogen.
The conclusions would be qualitatively the same for boron
doping and for other types of pointlike defects.

II. METHODOLOGY

The SIESTA package'® was used for the ab initio DFT calcu-
lations. The description of the valence electrons was based on
localized pseudoatomic orbitals with a double-¢ polarization

©2012 American Physical Society
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(DZP).?° Exchange-correlation effects were handled within
local density approximation (LDA) as proposed by Perdew
and Zunger.?! Core electrons were replaced by nonlocal norm-
conserving pseudopotentials.?? Following previous studies,!?
the first Brillouin zone (BZ) was sampled with a 15 x 15 grid
generated according to the Monkhorst-Pack scheme?®® in order
to ensure a good convergence of the self-consistent electronic
density calculations. Real-space integration was performed on
a regular grid corresponding to a plane-wave cutoff around
300 Ry. All the atomic structures of self-supported doped
graphene have been relaxed.

As mentioned above, the DFT calculations are based on
a code that requires a periodic system. As a consequence, a
supercell scheme was adopted to handle substitutionaly doped
graphene. The atomic concentration of dopants is then directly
related to the size of the supercell: 0.6 at% for a9 x 9 supercell
and 0.5 at% for a 10 x 10 supercell.

For the tight-binding parametrization, the following, well-
established procedure was followed.'>"!> The Hamiltonian
included the 7 electrons only, the hopping parameter between
nearest-neighbor atoms was set to the ab initio DFT value
yo = —2.72 eV. The same hopping was used between the
N atom and its C first neighbors, which is not a severe
approximation. It is indeed shown in Appendix A that a
nondiagonal perturbation of the Hamiltonian can be offset by
a renormalization of the N on-site energy, and this energy is
a free parameter to be adjusted to the results of the ab initio
calculations. The C on-site energies were assumed to vary with
the distance d to the impurity according to a Gaussian law:

e(d) = ec — |U| exp(—0.5d%/o?), (1)
where |U| is the depth of the potential well induced by the
nitrogen (boron induces a potential hump, instead'>?*) and &
is the asymptotic bulk value of the on-site parameter of carbon.
&c defines the Dirac energy of pure graphene and has no other
influence on the density of states (DOS) than a systematic shift
of all the electronic levels. The standard deviation o in Eq. (1)
was set to 0.15 nm, according to data of Ref. 24, whereas U
was chosen so as to best fit DFT local DOS calculated on the
N atom in the 9 x 9 supercell (see below).

In order to avoid the constraints of a periodic tight-binding
Hamiltonian, the local DOS have been computed with the
recursion method.?> 150 pairs of recursion coefficients were
calculated and extrapolated to their asymptotic values related
to the edges e¢ &£ 3y of the 7 bands of pure graphene. It is
worth emphasizing that this procedure avoids to introduce any
broadening of the energy levels. A drawback is the presence
of wiggles that may be observed in some densities of states.
They are sorts of Gibbs oscillations generated by the Van Hove
singularities, in particular by the abrupt discontinuities of the
graphene w DOS at both band edges.

III. PERIODIC DISTRIBUTION OF N

Figure 1(a) shows DFT local densities of states on the N
atom, on the first-neighbor atoms (C1) and on carbons located
farther (0.5-0.7 nm) away (bulk), in a 9 x 9 supercell. A
broadening of 0.05 eV on a 45 x 45 grid was used for the
calculations. The important observation is the existence of
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FIG. 1. (Color online) (a) DFT and (b) & tight-binding local
densities of states (LDOS) of graphene doped with nitrogen at a
concentration of one impurity per 9 x 9 supercell (162 atoms). The
different curves represent the local DOS on the N atom, on the
first-neighbor carbons (C1), and on a few distant carbons (bulk).
(c) Labels assigned to the nitrogen dopant (N) and its first, second,
third, and fourth neighbors (C1, C2, C3, and C4). (d) Tight-binding
LDOS of the 9 x 9 superstructure (same as in panel b) without
energy broadening. (e) DFT and (f) tight-binding LDOS on and
around a substitutional N atom in graphene with 10 x 10 periodic
distribution (200 atoms per cell). The curves, shifted vertically for
clarity, correspond to the atomic sites N, C1, C2, and C3 shown in
panel (c). For all LDOS curve plotted in this figure, the zero energy
corresponds to the Fermi level.

two peaks, located at 0.55 and 0.92 eV above the minimum of
the density of states in the N local DOS.®

The present DFT calculations are in overall good agreement
with results published for 4 x 4,'%1©5 x 5,177 x 7,5 and 10 x
10 supercells.'? The double-peak structure in the unoccupied
part of the local N DOS plotted in Fig. 1(a) was not observed in
previous calculations due to the large energy broadening that
was used there,>'? except in Ref. 8. It will be demonstrated
below that the observed double-peak structure is a consequence
of long-range interactions between the N impurities that were
reproduced periodically in the graphene sheet because of the
supercell geometry.

Figure 1(b) shows tight-binding densities of states of the
same 9 x 9 supercell after Lorentzian broadening aimed at
facilitating the comparison with the DFT results. The latter are
qualitatively well reproduced by the w-electron tight-binding
Hamiltonian by taking |U| =4 eV in Eq. (1). The present
work aims at tailoring a simple tool for exploring the effects
of the defect configurations. For that reason, achieving the
best possible fit of DFT calculations for a specific supercell
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is superfluous. By comparison, the on-site energies in Ref. 14
can be approximated by a sum of two Gaussians, e(d) = e¢ —
2.95 exp(—O.Sdz/of) —0.59 exp(—0.5d2/022) (in eV), with
o1 = 0.10 nm and o, = 0.39 nm. The second term has a
longer range than the single Gaussian law used in the present
calculations, and the potential well at the N location is about
10% shallower than here.

The tight-binding densities of states of the same 9 x 9
superstructure, now calculated without energy broadening,
are displayed in Fig. 1(d). A substructure clearly emerges
where the broadened local DOS only showed the double-peak
feature discussed here above. In addition, Fig. 1(d) reveals that
there are much less electronic states in the region between 0
and 1.5 eV on the second-neighbor atoms (C2) than on the
first- (C1) and third-neighbor (C3) carbons [see Fig. 1(c) for
the notations]. The same observation as for C2 can be made
for the local DOS on the fourth neighbors (not shown). This
alternation between lower and higher densities of states brings
out the fact that the two sublattices of graphene are differently
affected by a substitutional defect (see Appendix A).

The reliability of the tight-binding calculations compared
to DFT can be appreciated from Figs. 1(e) and 1(f) obtained
fora 10 x 10 supercell (0.5 at% concentration of N). The good
agreement between the two approaches reinforces the fact that
the parametrization of the tight-binding on-site energies used
for the 9 x 9 supercell describes well the doped graphene
systems and does not require further adjustment depending
on the actual concentration. Electronic states localized on and
near the N dopant are observed within 1.5 eV from the Dirac
energy, as for the 9 x 9 supercell. However, the multipeak
structure in the local N DOS of 10 x 10 [see Fig. 1(f)] is totally
different from that of 9 x 9 [see Fig. 1(d)], despite similar
N concentrations (0.5 at% and 0.6 at%, respectively). This
finding is a clear indication of the importance of interference
effects among the supercells.

The band structures of the DFT calculations shown in
Fig. 2 provide us with another difference between the two
superstructures: the 10 x 10 N-doped superstructure has a
direct band gap of ~0.05 eV at the K point of its Brillouin
zone, whereas the 9 x 9 N-doped superstructure has no gap.
Symmetry considerations and arguments from perturbation
theory developed in Appendix B explain why it is so. The
K and K’ points of graphene move to the K and K’ points
of the folded Brillouin zone of a p x p supercell when p is
not divisible by 3, whereas they are both mapped onto the
I' point when p is an integer multiple of 3.2 In the latter
case, the fourfold degeneracy of the Dirac energy at the I
point of a supercell of pure graphene is partly lifted by the
perturbation brought about by the N atoms. As demonstrated
in Appendix B, there remain 7w and 7* bands that cross
the Dirac energy at I'. This crossing is clearly visible in
Fig. 2(a) for the 9 x 9 superstructure, which therefore has
no gap. In direct space, a doped superstructure has point
group symmetry Ds,. The symmetry of the I' point of the
superstructure, D3j,, which is the same as that of the K and K’
points of pure graphene,”’-?® has irreducible representations
of dimension one and two. A twofold degeneracy of some
electron energy bands is therefore allowed at the zone center
of a doped superstructure. By contrast, this degeneracy is
forbidden at the K and K’ points of the folded zone because
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FIG. 2. DFT band structures of the 9 x 9 (top) and 10 x 10
(bottom) N-doped superstructures shown along the high-symmetry
lines of their first Brillouin zone. The zero of energy coincides with
the Fermi level.

the symmetry of theses points, from D3, in pure graphene, is
reduced to C3;, in the doped superstructure. The latter point
group has only one-dimensional irreducible representations.
As a consequence, the crossing of w and 7 * bands is symmetry
forbidden at K and K’. A periodic substitution of N for C
therefore opens a gap in these p x p supercells for which p
is not divisible by 3, as shown in Fig. 2(b) for the 10 x 10
superstructure. It is demonstrated in Appendix B that the band
gap in those superstructures scales with p like E, ~ V/ 28
where V is of the order of 10 eV. Other local gaps of the order of
V/ p? appear in the band structures of Figs. 2(a) and 2(b) at the
edges of the folded Brillouin zone. They produce pseudogaps
and subpeaks in the densities of states clearly discernible in
Fig. 1 for both the 9 x 9 and 10 x 10 superstructures. As
a result, supercells of the order of 30 x 30 at least would be
necessary to reproduce the characteristic features of an isolated
impurity with an energy resolution better than 0.01 eV.

In the tight-binding calculations, the band gap of the
10 x 10 superstructure is located 0.14 eV below the Dirac
point of pure graphene (¢¢). The Fermi level E of the doped
superstructures was found to lie 0.27 and 0.25 eV above
ec for the 9 x 9 and 10 x 10 systems, respectively, which
means 0.43 and 0.39 eV above the minimum of the DOS (the
corresponding DFT values are 0.42 and 0.36 eV, respectively).
The o bands below the Fermi energy are completely filled, the
7 bands of the supercell must accommodate an extra electron
brought about by the nitrogen. The occupied local & DOS of
the N atom contains 1.36 electroninboththe 9 x 9and 10 x 10
supercells. The remaining 0.64 excess electron is distributed
on the surrounding carbons, of which a total of 0.56 sits on
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the three first neighbors (C1), which are therefore negatively
charged.

For both 9 x 9 and 10 x 10 doped supercells, there is a
localized state expelled from the 7 band and located 9.35 eV
below E, to be compared with 8.65 eV in DFT calculations.
This localized state weights more than 25% (0.57 state of the N
local DOS, which can accommodate two electrons including
the spin degeneracy). The large value of the weight can be
understood from the arguments developed in Appendix A for
a simplified tight-binding Hamiltonian.

We conclude here that the supercell technique would require
very large supercells (up to 30 x 30) if it were desired to
describe the electronic states of an isolated defect. In other
words, the supercell technique is badly convergent when the
size of the cell increases, particularly in low dimensions. The
corresponding long range of a local perturbation produces
interferences between the images of the defect generated by
the periodic boundary conditions (see also Ref. 29).

IV. ISOLATED N IMPURITY

We now turn our attention to the case of an isolated N
impurity studied by tight-binding method. The local DOS on
and around an isolated N impurity are presented in Fig. 3.
The calculations were performed on a 150 x 150 cell of
graphene (45000 atoms) with periodic boundary conditions.
By restricting the number of pairs of recursion coefficients to
150, the impurities located in adjacent cells do not feel each
other, which means that the N atoms are virtually isolated. In
the N local DOS, there is a tall asymmetric peak located 0.5 eV
above the Dirac energy (g¢) of graphene, which coincides here

| | |
—1 1 3
E (eV)

FIG. 3. Tight-binding local 7 densities of states on and around
an isolated impurity in graphene. The labels correspond to the defect
site (N), the first, second, and third neighbors (C1, C2, and C3). The
curves have been shifted vertically for clarity. The zero of energy
1S &c.
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with the Fermi level. The peak broadens and shifts to 1 eV on
the first neighbors and moves up further to 1.5 eV on the
second neighbors. The local DOS on the third-neighbor atoms
reproduces the resonance peak of the impurity, with a smaller
amplitude. The local DOS on the fourth neighbors (not shown)
bears resemblance with that of pure graphene. It is interesting
to observe in Fig. 3 that there remains almost nothing of the
Van Hove singularities of graphene at e¢ £ yy on the N and
CI sites.

The problem of an isolated impurity in graphene can be
addressed analytically if one simplifies the Hamiltonian to a
pointlike defect by ignoring the Gaussian delocalization of
the perturbation [0 — 0 in Eq. (1)]. Details are presented
in Appendix A. If this simple model captures the essential
physics of the problem, it fails in producing all the details set
up by the delocalized nature of the perturbation. As shown in
Appendix A, perturbing the first-neighbor C atoms, in addition
of course to the substitution site, leads to a better picture.

V. RANDOMLY DISTRIBUTED N ATOMS

Experimentally, nitrogen doping of graphene leads to
randomly distributed substitutional sites,>® with perhaps some
preference of the dopant atoms to sit on the same sublattice,
at least locally.’ The calculations illustrated in the present
section were performed for nitrogen distributed randomly with
an atomic concentration of 0.5%, identical to that realized with
the 10 x 10 superstructure. The selection of the substitutional
sites was constrained by the requirement that the distance
between two nitrogens remains larger than 120 = 1.8 nm [see
Eq. (1)]. The reason for that was to avoid any overlapping of
the potential wells generated by the dopants.

Figure 4 shows a configurational averaging of the local
densities of states when the N atoms have equal probabilities to
siton one or the other of the graphene sublattices. This case will
be referred to as “unpolarized” (or “uncompensated”).’* By
configurational averaging, it is meant the arithmetic average of
local DOS on 50 nitrogens selected randomly—among the 225
dopant atoms that the 150 x 150 sample box contains—and
the arithmetic average of local DOS on 150 randomly selected
Cl1, C2, and C3 sites. The N, C1, C2, and C3 average local
DOS for the unpolarized disordered distribution all have a
remarkable similarity with the ones obtained for an isolated
impurity (see Fig. 3). The results are in agreement with N local
DOS for randomly distributed impurities obtained by Lherbier
et al." with a small broadening.

When the N atoms are put, still randomly, on the same
sublattice (“polarized” case), the multipeak structure charac-
teristics of the superlattice [see Figs. 1(e) and 1(f)] reappear on
the average local DOS shown in Fig. 5. Interestingly, the local
DOS on the second-neighbor atoms (C2), which belongs to
the same sublattice as the N atom they surround, are virtually
the same in Figs. 4 and 5, insensitive to the polarization of the
N distribution. It is also interesting to remark that, like with
the 10 x 10 superstructure, there is a tiny gap of states 0.1 eV
below the Dirac energy. The gap looks narrower in case of
the unpolarized distribution compared to the polarized one. In
the polarized case, the appearance of a gap is natural since the
average diagonal potential breaks the symmetry between the
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FIG. 4. Configurational average of the local 7 densities of states
on and around substitutional N atoms in a graphene sheet containing
0.5 at% of nitrogen atoms randomly distributed on the two sublattices.
The labels correspond to the nitrogen dopant (N), the first, second,
and third neighbors (C1, C2, and C3). The curves have been shifted
vertically for clarity. The zero of energy is ec.

two sublattices. Similar effects have been observed in the case
of vacancies.*

Averaging the local densities of states makes visible the
distinction between unpolarized and polarized distributions of
N. However, for a given configuration of the dopant atoms, the
local DOS varies from site to site. How much that variation
can be is illustrated in Fig. 6, which compares local DOS
calculated on three different N atoms for both the unpolarized
and the polarized distributions. The variations from site to site
are so important that the local DOS is not a reliable indicator
of the global distribution of the nitrogen atoms among the
two sublattices. If it is true that the N local DOS displayed in
Fig. 6 are less peaked that the N local DOS of the 10 x 10
superstructure [see Figs. 1(e) and 1(f)], identifying which is
which would be difficult on the experimental side if one had
only STS spectra to deal with.

Finally, it may be important to remark that the minimum of
the 7 density of states around the N dopants does not coincide
with the atomic level ec of carbon in graphene (the Dirac
point energy; see also Refs. 30, 31, and 32). Depending on
the concentration, the DOS minimum shifts slightly below e¢
(see, e.g., Figs. 4 and 5).

VI. STM IMAGES

A reliable information on the electronic structure of
doped graphene can be obtained by STM imaging. A tip
polarized negatively compared to the graphene layer probes
the unoccupied states where a N substitutional impurity and
the adjacent carbon atoms have peaks in their local DOS. The
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FIG. 5. Configurational average of the local 7 densities of
states on and around substitutional N atoms in a graphene sheet
containing 0.5 at% of nitrogen atoms randomly distributed on the
same sublattice. The labels correspond to the nitrogen dopant (N),
the first, second, and third neighbors (C1, C2, and C3). The curves
have been shifted vertically for clarity. The zero of energy is ec.

increase of electronic density of states, compared to graphene,
in this energy region gives rise to a bright triangular spot in the
STM image,>®!%!7 with two possible orientations with respect
to the honeycomb lattice depending on the sublattice on which
the N dopant sits. These two orientations are rotated by 180°
from each other, as observed experimentally.>®

Figure 7 is a tight-binding STM image*® computed for
graphene with a single N impurity. The prominent triangular

unpolarized, local polarized, local

E (eV) E (eV)

FIG. 6. Local DOS on three N atoms randomly selected in
graphene doped at concentration 0.5 at%. The unpolarized case (left)
refers to dopants located on the two sublattices, whereas the dopants
all sit on the same sublattice in the polarized case (right). The zero of
energy is ec.
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FIG. 7. (Color online) Tight-binding STM constant-current im-
age of graphene with an isolated N impurity located near the center,
computed for a negatively polarized tip (Vi = —0.5 V). The vertical
scale is the tip height (A) above sample. The image size is 2 nm along
both sides.

arrow head at the center of the image is located on the N, C1,
and C3 sites. The second-neighbor carbons (C2) atoms do not
participate much to the STM signature of the dopant. This is

FIG. 8. (Color online) Constant-current STM images computed
for two configurations of graphene doped with 0.5 at% N. The
distribution of the N atoms is random. The two nitrogen atoms visible
in image (a) lie on the same sublattice, which is not the case in image
(b). In both cases, the STM tip is polarized at —0.5 V with respect to
the sample. Each image is a square of 4 nm edge.

PHYSICAL REVIEW B 86, 045448 (2012)

so because the local DOS in the energy window probed by the
STM current (0 to 0.5 eV) is smaller on the C2 atoms than on
the N, C1, and C3 atoms (see Fig. 3).

Figure 8 shows two STM images computed for graphene
doped with N at 0.5 at% concentration, the dopants being
randomly distributed on the two sublattices. In the configu-
ration shown in image (a), there are two impurities located
1.9 nm apart sitting on the same sublattice. The two nitrogens
captured in images (b) do not sit on the same sublattice, which
explains why the related triangular STM patterns are oriented
differently. The scale used for the STM signal (tip height at
constant current) is identical for both images. For improving
the contrast, the scale has been saturated below 4.0 A and
above 5.8 A. Two dopants interfere more when they are
located on the two sublattices than when they sit on the same
sublattice.

In tight-binding STM theory,>® there is an empirical
parameter coupling the tip apex to the sample atoms, which
was chosen independent of the chemical nature of the probed
atoms. In other words, the STM calculations differentiate a N
atom from the C atoms only through intrinsic effects that the
former has on the electronic structure of the doped graphene.

14
(a)
12
)
0.8
0.6
0.4
0.2
0
3
(b)
2.8
26
2.4
2.2
2

FIG. 9. (Color online) DFT calculation of constant-current STM
images of 10 x 10 N-doped graphene for two levels of the tunnel
current: (a) high and (b) low (see text). The tip bias polarization is
—0.5 V, the vertical scale is the tip height (A) above sample. Each
image represents a square of 4 nm edge centered on a N dopant.
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In DFT calculations, the standard way to generate an STM
image is via Tersoff-Hamann’s theory.** In addition to local
variations of the DOS, the tunnel current depends on the spatial
extension of the  orbitals in the direction perpendicular to
the atomic plane. For doped graphene, the 2p, orbital of N
decreases more rapidly than the C 2p. orbital does,'” which
means that the contrast of the computed image depends on the
tip-sample distance. This dependence is illustrated in Figs. 9(a)
and 9(b) that represent DFT constant-current STM images
computed for a small current (large tip-sample distance) and
for a large current (small tip-sample distance), respectively.
The local DOS is larger on top of the N atom than on the
top of all the other atoms, but it decreases much more rapidly
in the normal direction. This explains the small brightness of
the N site for the large tip-sample distance. Experimentally,
variations of the STM contrast have also been observed as a
function of the current/voltage conditions,® where image of
the dopant atom protrudes in some occasions and does not in
other occasions. It is tempting to attribute this observation to
variations of the tip-sample distances depending on the current
set point, as in Fig. 9. However, the experimental distance is
much larger than the one that can be achieved numerically
in DFT, due to the fast decay of the localized basis set when
moving away from the sample surface.

VII. CONCLUSIONS

Tight-binding and DFT electronic calculations reveal that
the perturbation induced by N dopants in graphene is long
ranged. This is not a surprise when one remembers that the
Green function of the free-electron problem in two dimensions
is the Bessel-Hankel function of zeroth order (i /4)Hél)(k|17 —
7'|), which slowly decreases like 1/+/kd with the distance

d = |F —'|, where k = \/h?/2mE. For the m-electron tight-
binding Hamiltonian on the honeycomb lattice, the Green
function elements G°, can also be approximated, at low
energy, by Hankel functions of k|7, — 7, |, now of order zero
or one, depending on whether they refer to sites m and n located
on the same sublattice or not.* In this regime, the energy E
is linearly related to §k by the dispersion relation E = hvpgdk,
where v is the Fermi velocity, and the Hankel functions
are also multiplied by the energy and by periodic functions
describing /3 x /3 modulations related to the Dirac wave
vectors K and K'. For large separation distances, the Green
function elements decay slowly, like 1/\/E |F,, — Fy|/hvp,
except for very small excitation energies where the Hankel
functions diverge. A more detailed discussion will be given
elsewhere.

The scattering formalism developed in Appendix A for
the case of a pointlike defect emphasizes the central role of
the Green function in the understanding of the perturbation
induced by the defect. Hence the long-range interaction
between dopants in graphene. It is important to realize that
this long-range interaction is not the consequence of using
an extended perturbation of the on-site energies around the
defect [see Eq. (1)]. Things actually go the other way round:
a defect perturbs the crystal potential far away, because of the
slow decay of the scattering it produces. As a consequence,
the parameters of the tight-binding Hamiltonian that mimic
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ab initio calculations are affected in a sizable neighborhood of
the defect.!*

This long-range interaction has several effects. First, it
produces interferences between the duplicates of the defect
generated by periodic boundary conditions when a supercell
approach is used. The latter must therefore be used with
caution. Second, substitutional impurities dispersed in
graphene cannot be treated as independent defects as soon
as the distance between two of them becomes too small, about
2 nm in the case of nitrogen. Increasing the strength of the
local potential also increases the range of the perturbation
it produces. This unusual behavior is actually related to
the properties of the Green functions at low energy (see
Appendix A and Refs. 31, 37, and 38). As mentioned in
Appendix A, the deepest defect is the vacancy. Nitrogen, with
its 10 eV effective perturbation parameter, is not a shallow
defect. Boron would not be a shallow impurity either. B
substitution can be described by a potential hump, instead of
a well, with a similar |U| as nitrogen and a similar long-range
perturbation.'*?* In the case of more complex defects, such
as N plus vacancy,® P plus N,* or 03,*' it would be more
difficult to define local parameters and to assess the importance
of long-range interactions along the same way as in this paper.

As demonstrated experimentally, the partition of the hon-
eycomb network in two sublattices has subtle effects on
STM image of graphene with substitutional impurities, as
exemplified by Fig. 8. The STM image of a dopant in graphene
may be influenced by the proximity of another dopant. This
is a direct consequence of the defect interactions mediated by
graphene. What happens when two impurities come very close
to each other remains to be clarified. A new parametrization of
the tight-binding Hamiltonian would be required if one had to
obtain, from calculations, the STM topography of neighboring
N dopants.
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APPENDIX A: THE IMPURITY PROBLEM IN GRAPHENE

In this appendix, a simple but illustrative perturbation model
is developed. It is assumed that the on-site energies all take the
unperturbed bulk value - = 0, except on the nitrogen atom
where ¢y = U. The tight-binding Hamiltonian can be set in
the form

H=H'+V==>"|n)imiml+00U(0].

n,m

(AD)

The states |n) denote  orbitals centered on sites n: @, (r —
n) = (r|n). H® is the usual tight-binding Hamiltonian where
only hopping integrals #,,, = Yy between first neighbors n and
m are kept, and V is the localized potential of the N atom at
site 0. The local density of states n(r, E) is given by

n(r,E) =Y nun(E)px(r — )gn(r —m)

n,m

(A2)
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where n,,,,(E) is obtained from the Green function or resolvent
G()=@—-H)™"
-1
Ny (E) = — lirr(l) Im (n|G(E +ig)\m) . (A3)
T £—
G(z) can then be calculated in terms of the unperturbed
Green function G°(z) = (z — H®)™'; this is the so-called

Koster-Slater-Lifshitz problem. If the matrix elements
(n|G(E + ig)|m) are written G ,,(z), we have

U

=——— . (A4
1-UGY), A

G”m = Ggm + GSOIGgm ’ T
In particular, on the impurity site, we have Gog = Ggo /(1=
U Ggo),“’43 and the local density of states on the N site,
ny(E) = ng(E) is given by

n’(E)
[1 — UF%E))? + n2U?n%E)?’

where FO(E) is the real part of the Green function GgO(E +
ie), i.e., the Hilbert transform of the unperturbed density of
states of graphene n’(E).

Close to the Dirac point, n%E) ~ |E| and FO(E)~
En|E|, and provided U is large enough, ny(E) shows
a resonant behavior around the energy E, such that [1 —
UF%E,)] = 0 (see the open-circle symbol in Fig. 10). This
has been discussed in many places.33%33374446 It turns out
that a value for U of the order of —10 eV reproduces a
resonance at the position obtained with the previous model

ny(E) = (A5)

0.6
0.5
0.4
0.3 .
0.2 r :
0.1 .
0.0 : — — :

0
n(E)*7,]

0.8 - -

0.4+ -

0.0

0
FUE)

—0.4

-0.8

E/7

FIG. 10. (Color online) Real [F*(E)] and imaginary [n°(E)] parts
of the Green function of the graphene 7 tight-binding Hamiltonian
along the real axis, in units of |y,|. The intersection of FO(E) with
the reciprocal of the perturbed level 1/ U (dashed line) in the vicinity
of the Dirac point gives the energy E, at which the local DOS of
the impurity has a resonance (open circle symbol). There is another
intersection (filled symbol) giving rise to a localized state below the
m-electron density of states.
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0.25 T T T T T

0.20 a

0.00
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FIG. 11. (Color online) Local densities of states deduced from
the simple tight-binding model for an isolated nitrogen impurity in
graphene. (a) On-site perturbation energy U = —10 eV on the N site
only, (b) on-site perturbation on the N (—4 eV), and the three C1 sites
(=2.57 eV).

[compare Fig. 11(a) with Fig. 3] instead of the value U =
—4 eV in the previous approach. However, the shapes of the
local DOS differ to some extent between the local-perturbation
model developed in this appendix and the more delocalized
potential well considered throughout this paper. The resonance
here [see Fig. 11(a)] is weaker on the N site than on the
sites C1 and C3 located on the other sublattice, which can be
explained from the symmetry properties of the unperturbed
Green functions: G,,,(z) is and odd or even function of
z depending on whether the sites n and m belonging to
the same sublattice of the graphene structure or not. As a
consequence, for example, Ggo(z = 0) = 0 whereas the real
part of ng(z = 0) does not vanish when # is a first neighbor,
which has a big impact on the local densities of states [see
Eq. (A4)].%% Also the Van Hove singularities at 2.7 eV are still
present here.

In addition to the resonant state located above the Dirac
point, Fig. 10 reveals the existence of a localized state lying
below the m-electron DOS, where the on-site perturbation
level 1/U intersects the curve FO(E) at —4.5|y| (solid
square symbol). The weight (residue) of this localized state is
inversely proportional to the slope of FO(E) at the intersection.
This is the localized state found at 9.35 eV below E in tight
binding and 8.65 eV below Er in DFT calculations for the
doped superstructures (see Sec. III).

This one-parameter model can be generalized to other type
of local defects or chemical doping. B doping, with a positive
U, will yield results symmetrical to those obtained for N: it can
indeed be anticipated from Fig. 10 that the resonance state will
now appear near the top of the occupied states, as confirmed by
DFT calculations.'?!32* The limit U — oo corresponds to the
introduction of a vacancy instead of a substitutional impurity.
Because of the vanishing of the density of states and of the
logarithmic divergence of FO(E), this limit is singular and
must been studied with special care.’%3>%-47 The resonant
state becomes a genuine bound and the perturbation of the
electronic density is concentrated on the first neighbors and on
the sites belonging to the sublattice different from that of the
vacancy.’®
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LONG-RANGE INTERACTIONS BETWEEN . ..

The simple model developed here above allows one to
address the question of the role of N-C hopping interactions on
the local DOS on the impurity. When the N-C hopping takes
a value y different from the one ), between the C atoms, the
Green function element on the perturbed site can be set in the
form

1
:—=U— (/) =)

Goo(2) = (A6)

where X0(z) is the self-energy of the unperturbed graphene.
In the notations of the above formalism, the self-energy can be
identified to £%(z) = z — 1/GY(z). Inserting this expression
in the right-hand side of Eq. (A6) leads to a generalization
of Eq. (AS) valid for y # yp. In particular, the resonance
condition in the vicinity of E = 0 becomes

7/2

viU + (v2 = v3)Er

By comparison with the situation depicted in Fig. 10, the
intersection of FY(E) needs now to be search for with a
curve whose ordinate and slope at the origin are —y2/ ()/02 |U)
and )/2()/02 - yz)/(yOzU)z, respectively. If |y| < |yo|, which
should be the case here since the N atom is smaller than
the C one, the ordinate at the origin of the curve moves up
and its slopes becomes positive. These two effects pull the
resonant energy E, closer to the origin compared with the
simplest situation where |y | = |yy|. However, if the hopping
perturbation is small, renormalizing the on-site level U to a
larger absolute value U.s would produce the same effect. This
conclusion validates the approach used so far to not modifying
the N-C hopping.

We have finally considered an intermediate model between
the Gaussian distribution of the on-site energies and the one-
parameter model just described. We took Uy on the N site and
a second perturbation potential U; on the first neighbors, with
values fixed by Eq. (1), Uy = —4 eV and U, = —2.57 eV.
The agreement with the full Gaussian model is much better
than with the one-parameter model [see Fig. 11(b)]. It is fairly
remarkable to realize that the intensity of the resonance state
on the N site increases when the potential is delocalized on the
first neighbors.

= FY%E,). (A7)

APPENDIX B: BAND GAP OPENING IN DOPED
SUPERSTRUCTURES

The following perturbation theory is based on the same
model Hamiltonian as in Eq. (A1), except that the potential
V refers now to the perturbation brought about by the
periodic array of nitrogen atoms in substitution for C in
a p x p supercell of graphene. These atoms occupy one
among the 2N = 2p? sublattices of the supercell, here denoted
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sublattice 1:

H=H'+V=— Z|ntnmm|+2|n (n|. (B1)

nel

When V = 0, there are four states with zero energy (Dirac
energy of the unperturbed graphene): |[K?) and |K"'), where
i = A, B denote the sublattices of the graphene structure and
|K?), |K") are the corresponding Bloch functions:

|KA(B) \/— Z etKn (B2)

neA(B)

where K -n in the exponential represents the dot product of
the wave vector of the K point of graphene and the position
vector of the site » in real space.

It will be assumed that the sublattice 1 is an A sublattice.
Then, the states |K?) and |K'®), having no amplitude on
sublattice 1, are eigenstates of zero energy for any value of the
on-site perturbation U. Very close to zero energy, furthermore,
only the ((|K*4),|K '4Y)) subspace needs to be considered. In
particular,

(KA VIK?Y) = (K| VIK'™) = Z 1=U/p*, (B3
nel
1
(KAVIK™) = - ;exp[iu« —K)-nl=U/p*8kk.c »
(B4)

where the Kronecker symbol imposes that K’ — K be a vector
of the reciprocal lattice of the supercell, i.e., it is one when
p = 3q is a multiple integer of 3 and is O if p is not divisible
by 3.

As a consequence, in the case p = 3¢, the four states with
zero energy are mapped onto the zone center. Two of them,
with nonzero amplitudes on the B sites, remain degenerate
with zero energy; the other two states have energy £ = 0 and
E = —2|U|/ p? to lowest order in perturbation. There are then
two plus one states at zero energy, but this is an accidental
degeneracy due to the simplified tight-binding model. When
p is not divisible by 3, the degeneracy at the K and K’ points
of the folded zone is lifted: at each point, one state remains
at zero energy (|K®) or |K’B), respectively), whereas the
other state moves down at energy —|U|/p? to lowest order
in perturbation.

All these features are clearly visible in the band structures
of the 9 x 9 and 10 x 10 superlattices shown in Fig. 2. Since
a realistic value for |U]| is about 10 eV, the gap for the
10 x 10 case should be of the order of 10/p> = 0.1 eV,
not far from the actual value (see Sec. III). For the 9 x 9
superstructure, the expected crossing between the two linear
m and 7 * bands is observed at the I" point close to two parabolic
branches separated from each other by a gap about twice this
value.
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