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ABSTRACT
We study the dynamics of the 3D three-body problem of a small body moving under the
attractions of a star and a giant planet which orbits the star on a much wider and elliptic orbit. In
particular, we focus on the influence of an eccentric orbit of the outer perturber on the dynamics
of a small highly inclined inner body. Our analytical study of the secular perturbations relies on
the classical octupole Hamiltonian expansion (third-order theory in the ratio of the semimajor
axes), as third-order terms are needed to consider the secular variations of the outer perturber
and potential secular resonances between the arguments of the pericentre and/or longitudes of
the node of both bodies. Short-period averaging and node reduction (by adoption of the Laplace
plane reference frame) reduce the problem to two degrees of freedom. The 4D dynamics is
analysed through representative planes which identify the main equilibria of the problem. As
in the circular problem (i.e. perturber on a circular orbit), the ‘Kozai-bifurcated’ equilibria
play a major role in the dynamics of an inner body on a quasi-circular orbit: its eccentricity
variations are very limited for mutual inclination between the orbital planes smaller than
∼40◦, while they become large and chaotic for higher mutual inclination. Particular attention
is also given to a region around 35◦ of mutual inclination, detected numerically by Funk et al.
and consisting of long-time stable and particularly low-eccentricity orbits of the small body.
Using a 12th-order Hamiltonian expansion in eccentricities and inclinations, in particular its
action-angle formulation obtained by Lie transforms from Libert & Henrard, we show that this
region presents an equality of two fundamental frequencies and can be regarded as a secular
resonance. Our results also apply to binary star systems where a planet is revolving around
one of the two stars.

Key words: methods: analytical – celestial mechanics – planets and satellites: dynamical
evolution and stability – binaries: general – planetary systems.

1 IN T RO D U C T I O N

The (inner) Lidov–Kozai mechanism (Kozai 1962; Lidov 1962) is a
well-known secular resonance of the restricted three-body problem,
which can be reduced to two degrees of freedom after short-period
averaging and node reduction (see for instance Malige, Robutel &
Laskar 2002). Kozai (1962) showed that a highly inclined aster-
oid perturbated by Jupiter periodically exchanges its eccentricity
and inclination. Its analytical theory relied on the assumption that
Jupiter’s orbit is circular, so that the problem is integrable. Since its
discovery, the Kozai resonance has found numerous applications in
studies of planetary and stellar systems.

�E-mail: anne-sophie.libert@fundp.ac.be (ASL); nicolas.delsate@fundp.
ac.be (ND)

Recently, analytical studies (e.g. Michtchenko, Ferraz-Mello &
Beaugé 2006; Libert & Henrard 2007) have shown the possibil-
ity that extrasolar planetary systems can be in a long-term sta-
ble highly non-coplanar configuration, sometimes due to a secular
Kozai-type phase-protection mechanism. For instance, Libert &
Tsiganis (2009) found that υ Andromedae, HD 12661, HD 169830
and HD 74156 extrasolar two-planet systems have orbital param-
eters compatible with a Kozai-resonant state, if their (unknown)
mutual inclination is at least 45◦.

The Kozai dynamical phenomenon is also well known in the
studies of binary systems (e.g. Innanen et al. 1997; Wu & Murray
2003; Fabrycky & Tremaine 2007), in particular in the S-type con-
figuration (a planet revolves around one of the primaries) where the
orbit of a highly inclined planet can undergo large amplitude oscil-
lations of its eccentricity. A similar Kozai-resonant evolution can
be observed in the C-type configuration, where the planet is in the
orbit around the binary (e.g. Migaszewski & Goździewski 2011).
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2726 A.-S. Libert and N. Delsate

Concerning the planetary three-body problem, the discovery of
giant extrasolar planets on an eccentric orbit raises the question of
the influence of their eccentricity on potential asteroids and Earth-
mass companions on an inclined orbit. In a preliminary numerical
study of Funk et al. (2011), the long-term stability of inclined fic-
titious Earth-mass planets in the habitable zone of extrasolar giant
planets discovered so far is analysed. They have realized a paramet-
ric analysis, where several giant planet’s eccentricities are consid-
ered, while the Earth-like body is initially on a circular orbit, closer
to the star than the gas giant. Their simulations show that, for distant
orbits, test planets below a critical inclination of approximately 40◦

are in a stable configuration with gas giants on either a circular (i.e.
the well-known result associated with the Kozai mechanism) or el-
liptic orbit. Furthermore, for the gas giant on an eccentric orbit, the
small companion exhibits non-negligible variations in eccentricity,
except for a region around 35◦ of mutual inclination of the orbital
planes, consisting of long-time stable and low-eccentricity orbits of
the Earth-like body. So the influence of the eccentricity of the per-
turber on the dynamics of inclined Earth-mass planets seems to be
significant and deserve to be studied in more detail with dynamical
tools. This is the goal of the present contribution.

In this work, we focus on the 3D three-body problem of a small
body moving under the attractions of a star and a giant planet
which orbits the star on a much wider and elliptic orbit. Our an-
alytical study of the secular perturbations relies on the classical
octupole Hamiltonian expansion (third-order theory in the ratio of
the semimajor axes), widely used in planetary and stellar systems
(e.g. Ford, Kozinski & Rasio 2000; Lee & Peale 2003; Migaszewski
& Goździewski 2011). Actually, third-order terms are needed to in-
troduce the secular variations of the eccentricity of the perturber.
Indeed, the second-order quadrupole approximation does not de-
pend on the argument of the pericentre of the perturber, whose
eccentricity is thus an integral of motion (e.g. Harrington 1969;
Lidov & Ziglin 1976; Ferrer & Osácar 1994; Farago & Laskar
2010). The third-order terms introduce qualitative changes in the
dynamics and can explain the aforementioned dynamical features
observed by Funk et al. (2011), as we will show in this work. Let
us note that, even if the octupole development is an analytical ex-
pansion of the three-body problem whatever their masses, we only
focus on planetary systems with a small value of the inner body’s
mass hereafter. This problem is sometimes called the reduced spatial
three-body problem. Since we consider the (very limited) effect of
the small mass on its companion, the secular evolution of the outer
body is considered, and so are the potential secular resonances be-
tween the arguments of the pericentre and/or longitudes of the node
of both bodies.

The paper is organized as follows. In Section 2, the octupole
Hamiltonian formulation is recalled. Section 3 analyses the 4D sec-
ular dynamics of the elliptic spatial three-body problem, by means
of 2D geometric representations called representative planes. Sec-
tion 4 focuses on the dynamical feature around 35◦ of mutual incli-
nation of the orbital planes, described in Funk et al. (2011). Finally
our results are summarized in Section 5.

2 O C T U P O L E H A M I LTO N I A N F O R M U L AT I O N

Let us consider a system consisting of an inner small body (m1)
and an outer giant planet (m2) orbiting a star (m0) (also called the
inner three-body problem; see Farago & Laskar 2010). Due to their
masses, the inner body will be named the perturbed body and the
outer one the perturber in the following. We focus on the spatial (or
3D) problem where both planetary orbits are mutually inclined. In

the Solar system, this configuration corresponds for instance to an
asteroid perturbated by Jupiter. Let us note that studies on the secular
evolution of asteroids are mostly realized under the assumption that
Jupiter’s orbit is circular (e.g. Kozai 1962). Since the discovery of
extrasolar systems, inclined test particles, representing Earth-mass
planets with weak gravitational effects on a system composed of a
star and a gas giant, are another application of the spatial problem.
However, as many giant extrasolar planets have an eccentric orbit,
one may wonder the influence of the eccentricity of such a Jupiter-
like planet on its Earth-mass companion(s). To address this question,
we consider in the following that perturber is on an eccentric orbit.

The spatial model of the three-body problem can be described
using the canonical heliocentric formulation (see Poincaré 1896;
Laskar & Robutel 1995):

H =
2∑

j=1

{
p2

j

2m′
j

− G(m0 + mj )m′
j

rj

}
− G

m1m2

‖r1 − r2‖ + p1· p2

m0
,

(1)

where r i are the position vectors of mi relative to the star, pi are
their conjugate momenta relative to the barycentre of the three-
body system and m′

j = (1/m0 + 1/mj )−1 are the reduced masses.
Let us recall that the heliocentric velocities ṙ i will not follow the
direction given by pi , and thus the ellipses are not tangent to the real
trajectory. The first term of the expansion is the sum of the Keplerian
motions of the two planets. The perturbation of this integrable part,
representing the mutual interactions between the planets, consists
of the direct part and the indirect part, respectively.

A set of canonical variables is formed by the use of the classical
Delaunay’s elements:

lj = Mj, Lj = m′
j

√
G(m0 + mj )aj ,

gj = ωj , Gj = Lj

√
1 − ej

2,

hj = �j , Hj = Gj cos ij ,

(2)

where aj denote the semimajor axes of the planets, ej eccentrici-
ties, ij inclinations, ωj arguments of the pericentre, �j longitudes
of ascending nodes and Mj mean anomalies, all being canonical
heliocentric elements.

As we are interested in the long-term dynamics and assuming
that we are not close to a mean motion resonance, we can average
(to first order in the mass ratio) the Hamiltonian function over
the fast angles, namely the mean anomalies Mi (Deprit 1969). It
means that the averaged Hamiltonian K does not depend on the
mean anomalies; then the conjugate momenta Li are constants in
the secular problem and so are the semimajor axes. So it results in
a four-degree-of-freedom formulation of the Hamiltonian function.

To average the indirect part of the disturbing function, we com-
pute 1

(2π)2

∫ 2π

0

∫ 2π

0 ṗi · ṗj dMidMj = δij a
2
i n

2
i , where pi , pj are

canonical heliocentric velocities related to the canonical heliocen-
tric elements.

Concerning the direct part, we use the traditional expansion in
Legendre polynomials, assuming that r1 � r2:

HDP = −G m1 m2
1

r2

∞∑
n≥0

(
r1

r2

)n

Pn(cos S), (3)

where S is the angle between vectors r1 and r2. We choose to
perform the development for all Pn with n ≤ 3. This well-known
development, limited to order 3 in the semimajor axis ratio α =
a1/a2, is called octupole theory (see e.g. Ford et al. 2000; Lee
& Peale 2003; Migaszewski & Goździewski 2011). For the sake
of completeness, we present hereafter the technical details of the
calculations.
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Kozai problem with an eccentric perturber 2727

Practically, the term cos S = r1 · r2/(r1r2) can be expressed in
the following way – see Prado (2005) for a similar 2D calculation:

cos S =

⎛
⎜⎜⎝R1

⎛
⎜⎜⎝

cos f1

sin f1

0

⎞
⎟⎟⎠

⎞
⎟⎟⎠

T

· R2

⎛
⎜⎜⎝

cos f2

sin f2

0

⎞
⎟⎟⎠ (4)

R=RT
1R2= (cos f1 sin f1 0) R

⎛
⎜⎜⎝

cos f2

sin f2

0

⎞
⎟⎟⎠ (5)

= α̃ cos f1 + β̃ sin f1, (6)

where R1(i1, ω1, �1) and R2(i2, ω2, �2) are Eulerian rotations of
the orbital reference frames of the masses m1 and m2, respectively,
and α̃ and β̃ have rather simple expressions:

α̃ = R1,1 cos f2 + R1,2 sin f2, β̃ = R2,1 cos f2 + R2,2 sin f2, (7)

Ri,j being the element in the ith row and jth column of the ma-
trix R. The averaging of the Hamiltonian (3) over the short-period
terms,

〈HDP〉M1,M2 = 1

(2π )2

∫ 2π

0

∫ 2π

0
HDP dM1dM2, (8)

is realized, in practice, over the eccentric anomaly E1 of the per-
turbed body and over the true anomaly f 2 of the outer perturbing
body. The intermediate results after the first averaging are as fol-
lows:

〈HDP0〉M1 = −G m1 m2

r2
, (9)

〈HDP1〉M1 = 3G m1 m2

2a2
2

(
a2

r2

)2

a1e1α̃, (10)

〈HDP2〉M1 = −G m1 m2

4a3
2

(
a2

r2

)3

a2
1

[
(12α̃2 − 3β̃2 − 3) e2

1

+3(α̃2 + β̃2) − 2
]
,

(11)

〈HDP3〉M1 = 5G m1 m2

16a4
2

(
a2

r2

)4

a3
1e1α̃

[
(20α̃2 − 15β̃2 − 9) e2

1

+15(α̃2 + β̃2) − 12
]
,

(12)

where HDPi means the term of the direct part (3) associated with the
ith Legendre polynomial. For the averaging over the true anomaly
of the outer body, we first replace α̃ and β̃ by their values (see
equation 7) and obtain the following first terms of the secondly
averaged Hamiltonian:

〈HDP0〉M1,M2 = −G m1 m2

a2
, (13)

〈HDP1〉M1,M2 = 0, (14)

the terms 〈HDP2〉M1,M2 and 〈HDP3〉M1,M2 being too long to be exposed
here. As we can see, the first two terms are constant in the secular
problem and do not contribute to the averaged Hamiltonian K. Let
us note that an alternative development of the secular expansion
using Hansen coefficients can be found in Laskar & Boué (2010).

To simplify the formulation of the averaged Hamiltonian, Jacobi’s
reduction, also known as the elimination of the nodes (Jacobi 1842),

allows us to reduce the expansion to a two-degree-of-freedom func-
tion only. The reduction is based on the existence of additional
integrals of motion, namely the invariance of the total angular mo-
mentum, C, both in norm and in direction. The constant direction
of the vector C defines an invariant plane perpendicular to it. This
plane is known as the invariant Laplace plane. The choice of this
plane as a reference plane implies the following relations:

�1 − �2 = ±180◦ (15)

G1 cos i1 + G2 cos i2 = C (16)

G1 sin i1 − G2 sin i2 = 0, (17)

with C being the norm of the total angular momentum. Let us note
that, in our study, the invariant Laplace plane coincides almost with
the Jupiter-like planet’s orbital plane, since its inclination relative
to the invariant plane, i2, is of the order of m′

1/m
′
2 by relation (17).

Another quantity, related to the total angular momentum, is
frequently used. This is known as the angular momentum deficit
(Laskar 1997):

AMD =
2∑

j=1

Lj (1 −
√

1 − e2
j cos ij ) = L1 + L2 − C. (18)

Finally, we present the octupole expansion of the Hamiltonian (1)
averaged over the short-period terms and expressed in the invariant
Laplace plane, using the succinct formulation introduced by Ford
et al. (2000):

K = − α2 Gm1m2L
3
2

16a2G
3
2

[(
2 + 3

(
1 −

(
G1

L1

)2
))(

3 cos2 i − 1
)

+ 15

(
1 −

(
G1

L1

)2
) (

1 − cos2 i
)

cos 2g1

]

+ α3 15 Gm1m2L
5
2

64a2G
5
2

√
1 −

(
G1

L1

)2
√

1 −
(

G2

L2

)2

[A(− cos g1 cos g2 − cos i sin g1 sin g2)

+ 10

(
G1

L1

)2

cos i(1 − cos2 i) sin g1 sin g2

]
, (19)

where

cos i = C2 − G2
1 − G2

2

2G1G2

B = 7 − 5

(
G1

L1

)2

− 7

(
1 −

(
G1

L1

)2
)

cos 2g1

A = 7 − 3

(
G1

L1

)2

− 5

2
(1 − cos2 i)B,

i = i1 + i2 being the mutual inclination. The equations of motion
associated with Hamiltonian (19) are

ġi = ∂K
∂Gi

, Ġi = −∂K
∂gi

. (20)

One has to keep in mind that such an approach is limited to small
values of the semimajor axis ratio, namely α < 0.1. To consider
larger values of the ratio, a development to higher order is needed,
as done by Kozai (1962).

For a Jupiter-like planet on a circular orbit (G2 = L2), the for-
mulation (19) simplifies to the quadrupole approximation (second-
order terms in α). Then the secular Hamiltonian does not depend
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2728 A.-S. Libert and N. Delsate

on g2, and the norm of the associated momentum G2 is an integral
of motion, which means that the eccentricity of the outer body is
constant in this formulation. As a result, the problem is integrable
and this approximation is studied in many papers (e.g. Harrington
1969; Lidov & Ziglin 1976; Ferrer & Osácar 1994; Farago & Laskar
2010, or in the artificial satellite context e.g. Lidov 1962; Russell &
Brinckerhoff 2009; Delsate et al. 2010).

In the present work, no assumption on the eccentricity of the
Jupiter-like planet is considered. The variation of the eccentricity
of the perturber is introduced through the octupole terms (third-
order terms in α). As these terms depend on the variable g2, the
problem cannot be reduced to one degree of freedom, and it induces
qualitative changes in its dynamics, as shown in the next section.

3 G E O M E T R I C R E P R E S E N TAT I O N O F T H E
DY NA MIC S

In this section, we study the dynamics of the two-degree-of-freedom
Hamiltonian (19) by means of 2D geometric representations, called
representative planes (see Michtchenko et al. 2006; Libert &
Henrard 2007). The idea is to choose a 2D plane of initial con-
ditions which is suitable for the analysis of the stationary solutions
of the secular two-degree-of-freedom problem. This plane should
be representative in the sense that we aim to find a plane such that it
contains the initial conditions of orbits representative of each class
of orbits.

Such a plane can be obtained by fixing g1 and g2 to values that
verify the conditions

Ġ1 = ∂K
∂g1

= 0 and Ġ2 = − ∂K
∂g2

= 0, (21)

i.e. according to the symmetries of the secular 3D problem, (2g1,

ω = g1 − g2) = (0, 0), (0, π ), (π , 0) and (π , π ). Indeed, the
secular Hamiltonian function can be developed in Fourier series of
cosinus terms, whose generic argument is

φ = j1g1 + j2g2 + k
�, (22)

where j1 and j2 are of the same parity (j1, j2, k are integers) and

� = π after node reduction. As a result, conditions (21) are
verified when sin φ = 0, i.e. (2g1, 
ω) = (0, 0), (0, π ), (π , 0) and
(π , π ). These four pairs of angles define four distinct quarters of
the representative plane.

In the following, we choose the geometric representation intro-
duced by Migaszewski & Goździewski (2011), and defined as x =
e1cos 2g1 and y = e2cos 
ω with sin 2g1 = sin 
ω = 0. On this
representative plane, the level curves of constant Hamiltonian are
plotted for given values of AMD, α = a1/a2 and μ = m1/m2. The
boundary of permitted motion is defined as i = 0, 180◦ hereafter.
Let us recall that the eccentricities and mutual inclination are related
through the integral of AMD.

We insist on the fact that the representative plane is not a phase
space or a surface of section. However, all orbits have to cross
the representative plane (i.e. pass through the conditions sin 2g1 =
sin 
ω = 0 whatever the behaviour of the angles 2g1 and 
ω),
and the points of intersection have to follow a constant energy
curve. As the extremal values of the eccentricities are reached when
sin 2g1 = sin 
ω = 0 (Michtchenko et al. 2006; Libert & Henrard
2008; Libert & Tsiganis 2009), a quasi-periodic solution intersects
the representative plane at four points on the same energy level.
A stationary solution, fulfilling the two additional conditions ġi =
∂K/∂Gi = 0 (i = 1, 2), appears as a fixed point on the plane,
while a periodic solution for which an angle is fixed has only two

points of intersection. Orbits of chaotic motion intersect it at an
arbitrary number of points. Depending on the location of these
intersection points on the four quadrants of the plane, the behaviour
of the angles can also be deduced, as well as an estimation of the
ranges of eccentricity variations, as will be shown in the following
examples.

The mass ratio μ is fixed to 10−4 in the following. Concerning
the semimajor axis ratio, the use of the octupole terms limits the
width of semimajor axis ratios that can be considered; to ensure the
validity of our approach, we choose α = 0.05. Indeed, Migaszewski
& Goździewski (2011) have shown that, for hierarchical systems,
the octupole formulation is very precise and higher order contribu-
tions do not distort the structure of the Hamiltonian curves of the
representative plane.

Two initial configurations of the three-planet system are exam-
ined in this work. In Section 3.1, the outer giant perturber is con-
sidered on a nearly circular orbit, while the influence of a highly
elliptic orbit of the perturber is analysed in Section 3.2.

3.1 Nearly circular orbit of the perturber

When the perturbing body is on a circular orbit, the octupole for-
mulation coincides with the quadrupole approximation. Since the
quadrupole approach Kquad(e1, ω1) is integrable, its dynamics can
be represented on the phase space (e1cos ω1, e1sin ω1) (see e.g.
Thomas & Morbidelli 1996 for more details). However, for a nearly
circular orbit of the perturber, the expansion (19) is four dimen-
sional and a first picture of the dynamics consists of the plot of the
level curves of constant Hamiltonian in the aforementioned repre-
sentative plane. This representation is given in Fig. 1 for several
values of AMD: 8.09 × 10−9, 4.79 × 10−8, 1.11 × 10−7, 1.80 ×
10−7, 2.683 × 10−7 and 2.7 × 10−7. For all these values expect the
last one, the maximal mutual inclination between the two orbital
planes, imax, is reached at the origin (e1 = e2 = 0), while the bor-
der enclosing the possible dynamics of the problem represents the
coplanar case (i = 0). The first five AMD values considered here
correspond to imax of 20◦, 50◦, 80◦, 110◦ and 180◦, respectively.
In the bottom-right panel of Fig. 1, the region of permitted motion
separates into two parts which are bordered by the curves i = 0◦

(higher absolute values of e2) and i = 180◦ (smaller absolute values
of e2).

As explained hereinabove, the structure of the geometric repre-
sentation reveals the equilibria of the problem. For small mutual
inclination (imax = 20◦, see Fig. 1, top-left), the circular orbit of
the inner body corresponds to a stable equilibrium and no varia-
tion in eccentricity is possible. For larger inclinations (imax = 50◦

and 80◦, top-right and middle-left panels, respectively), the point
e1 = 0 becomes an unstable equilibrium, and a separatrix divides
the left-hand panel of the representative plane (where 2g1 = π ):
the closed region is characterized by the libration of g1 around 90◦

or 270◦ and the region outside the separatrix by the circulation of
this angle. The two stable equilibria (at g1 = 90◦ and g1 = 270◦)
created by bifurcation of the equilibrium at a circular orbit are re-
ferred to as Kozai equilibria, by analogy to the restricted problem
(Kozai 1962; Lidov 1962). This change of stability of the central
equilibrium induces large variation in eccentricity for an inner body
initially on a nearly circular orbit, since its real motion (short periods
included) will stay close to the separatrix of the reduced problem.
The maximal mutual inclination corresponding to the change of sta-
bility of the central equilibrium, called critical mutual inclination,
has been calculated by Kozai (1962): it drops from the well-known
value 39.◦23 to 32◦, as the semimajor axis ratio increases from 0
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Monthly Notices of the Royal Astronomical Society C© 2012 RAS

Downloaded from https://academic.oup.com/mnras/article-abstract/422/3/2725/1050116
by guest
on 31 January 2018



Kozai problem with an eccentric perturber 2729

Figure 1. Level curves of constant Hamiltonian (19) in the representative plane (e1cos 2g1, e2cos 
ω) for different values of AMD such that the mutual
inclination at the origin is 20◦ (top-left), 50◦ (top-right), 80◦ (middle-left), 110◦ (middle-right), 180◦ (bottom-left). In the bottom-right panel, the origin e1 =
e2 = 0 does not belong to the region of permitted motion. Other parameters are α = 0.05 and m1/m2 = 10−4.

to 0.5. For the parameters of Fig. 1, the critical mutual inclination
is 39.◦1.

Additional bifurcations of these equilibria occur for higher val-
ues of mutual inclination (see the middle-right panel of Fig. 1). For
more details, we refer to the complete study of these equilibria and
their stability realized by Migaszewski & Goździewski (2009) for
the three-body problem. For increasing values of AMD, the equi-
librium at the origin vanishes and the region of permitted motion
is divided into two islands. The dynamics is then governed by two
families of equilibria: the equilibria related to the bifurcation of

the Kozai equilibria and located at the border of permitted motion
(called solution IVa by Migaszewski & Goździewski 2009), and
those related to the bifurcation of the central equilibrium and ap-
pearing close to the e1 = 0 axis (called solution IIIa by Migaszewski
& Goździewski 2009). Let us note that these last ones are unstable.

In the Laplace plane reference frame, Libert & Henrard (2008)
have shown that, when the orbit is outside the Kozai-resonant area,
the global extrema of the eccentricities are reached when sin 
ω =
0 (see also Michtchenko et al. 2006), while their local extrema
are reached when sin 2g1 = 0. An example of such a behaviour
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2730 A.-S. Libert and N. Delsate

is illustrated in Fig. 1 (top-right panel) where the four points of
intersection of a given orbit are symbolized by ‘*’ signs. As they
are located in the four quadrants, the dynamics of this orbit is
characterized by the circulation of both angles 2g1 and 
ω. For a
Kozai-resonant system considered in the Laplace plane reference
frame, Libert & Tsiganis (2009) have shown that the eccentricities
of both planets are not coupled, the eccentricity of the inner planet
being extremal when sin 2g1 = 0, and the one of the outer planet
when sin 
ω = 0. The ‘+’ signs in Fig. 1 (top-right panel) show a
Kozai-resonant orbit: all the intersection points are located on the
left-hand part of the representation, indicating the libration of the
resonant angle g1.

For the reasons given above, a particular interest of such a geomet-
ric view of the dynamics is to give an estimation of the variation in
eccentricity of each body. Let us note that, due to our choice of mass
ratio μ, the eccentricity of the outer massive body is only weakly af-
fected by its small inner companion. Indeed, the long-term variation
in eccentricity is described by the Hamiltonian equation (20):

ėi =
√

1 − e2
i

Liei

∂K
∂gi

. (23)

Thus the variation of the outer eccentricity is of the order of m1,
which is very small in this work, while the variation of the small
body’s eccentricity is quite important, as it is of the order of m2. As a
result, the eccentricity of the perturbing body is nearly constant and
it explains that all the intersection points of an orbit seem to have
the same ordinate (in absolute value) in Fig. 1 (top-right panel). On
the contrary, the variation in eccentricity of the inner body can be
very significant. For instance, the eccentricity of the orbit denoted
by ‘*’ in Fig. 1 (top-right panel) varies roughly from 0.28 (positive
abscissa) to 0.5 (negative abscissa).

The representations of Fig. 1 give information on the dynamics
of a system with nearly circular orbit of the perturber (e2 smaller
than 0.01). In the next section, dynamics with higher initial values
of e2 will be considered.

3.2 Elliptic orbit of the perturber

In this section we assume an elliptic orbit of the perturber and study
the dynamical evolution of the system by means of the representative
plane. While the dynamics of Fig. 1 focus on a nearly circular
orbit of m2, we keep increasing the AMD values to reach higher
eccentricities of this body. First let us consider e2 close to 0.1.
Three different values of AMD are displayed in Fig. 2: they are
chosen such that the mutual inclination of the orbits with initial
eccentricities e1 = 0 and e2 = 0.1 is 20◦ (left), 50◦ (middle) and 80◦

(right). Our first observation is the similarity to the dynamics of the
bottom-right panel of Fig. 1. So the 3D elliptic three-body problem
is affected by two kinds of equilibria only: the ‘Kozai-bifurcated’
equilibria at a very high value of e1 and the equilibria at a circular
orbit of the inner body.

Although the dynamics is very similar for the three values of
AMD displayed in Fig. 2, the shifting on the y-axis is obvious and
explains the different dynamics observed for a given system consid-
ered at various mutual inclinations. In order to explain analytically
the results of Funk et al. (2011) (behaviour of an Earth-like body
initially on an inner circular orbit in a gas-giant system), let us
consider the evolution of a two-planet system whose initial eccen-
tricities are e1 = 10−6 and e2 = 0.1. The intersection points of the
evolution of the system with the representative plane are denoted
by ‘*’ signs in Fig. 2.

For a small mutual inclination (i = 20◦), g1 and 
ω circulate and
both variations in e1 and e2 are so limited that the four expected
intersection points seem gathered at two points only (see the left-
hand panel of Fig. 2). For a mutual inclination of the orbits of 50◦

(middle panel), the system is destabilized by the unstable equilibria:
g1 vacillates between libration and circulation and e1 reaches values
as high as 0.55. The same instability is present for the orbit of the
third panel of Fig. 2 (i = 80◦), where e1 reaches a value close to
1. If we had extended the integration time, the intersection points
would not be regular anymore, showing the chaotic evolution of

Figure 2. Level curves of constant Hamiltonian (19) in the representative plane (e1cos 2g1, e2cos 
ω) for different values of AMD such that the mutual
inclination of the orbits with initial eccentricities e1 = 0 and e2 = 0.1 is 20◦ (left), 50◦ (middle) and 80◦ (right). Other parameters are α = 0.05 and m1/m2 =
10−4.
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Kozai problem with an eccentric perturber 2731

Figure 3. Long-term evolution of a system consisting of a small body initially on a nearly circular orbit (e1 = 10−6) and an outer body whose initial eccentricity
is e1 = 0.1. Arguments of pericentre are fixed to gi = 0◦. The initial mutual inclination between both orbital planes is i = 20◦ (left-hand panel) and i = 50◦
(right-hand panel). The change of dynamics is obvious.

highly inclined systems due to the closeness to the ‘separatrix’.
These two different long-term evolutions (i = 20◦ and 50◦) are
illustrated in Fig. 3, by means of a numerical integration of the
octupole Hamiltonian equations (20).

This change of dynamical behaviour can be easily deduced from
the shape of the Hamiltonian curves on the representative plane, as
can be seen in Fig. 4. For a small mutual inclination (i.e. close to the

borders of higher absolute values of e2), the systems whose inner
orbit is circular correspond to the extrema of the Hamiltonian curve
(left-hand panel of Fig. 4). On the other hand, for mutual inclinations
higher than a value close to 40◦, there exists another intersection
point, belonging to the same curve of constant Hamiltonian, and of
the same eccentricity e2 (right-hand panel of Fig. 4); the abscissa
of these intersection points represent the secular variation of the

Figure 4. Detailed views of Fig. 2.
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2732 A.-S. Libert and N. Delsate

Figure 5. Same representation as Fig. 2 for AMD values such that the mutual inclination of the orbits with initial eccentricities e1 = 0 and e2 = 0.5 is 20◦
(left), 50◦ (middle) and 80◦ (right).

eccentricity of m1. For a higher eccentricity of the outer body, the
dynamics is similar, as shown in Fig. 5 (e2 = 0.5).

So we conclude that an inner small body on a quasi-circular orbit
attracted by a giant companion on an elliptic orbit behaves secu-
larly in a similar way as in the circular three-body problem: small
periodic variation of its eccentricity when the mutual inclination of
the orbital planes is small, on the contrary to the large chaotic vari-
ation observed for mutual inclinations higher than a critical value
of ∼40◦. These analytical results are consistent with the numerical
study of Funk et al. (2011).

However, it is interesting to note that, even if the representative
planes of Figs 1, 2 and 5 precisely depict the dynamics around the
central and Kozai families of equilibria, some additional dynamical
features can be ‘hidden’. For instance, the ‘�’ symbols in Fig. 1
(top-right panel) identify an orbit characterized by a libration of
the angle 
ω around 180◦ (and the simultaneous circulation of g1).
This kind of behaviour is classified as mode 2 by Michtchenko
et al. (2006) and its existence cannot be deduced from the analysis
of our representative plane. In the same way, no particular dynamics
associated with ∼35◦ of mutual inclination, as the one reported by
Funk et al. (2011) and described in the next section, is visible on
the representative planes of Fig. 2.

4 IN T E R E S T I N G DY NA M I C S A RO U N D 3 5 ◦ O F
M U T UA L I N C L I NATI O N

Funk et al. (2011) have realized a numerical study of the long-term
stability of inclined fictitious Earth-mass planets moving under the
attraction of an eccentric giant planet. The small body is initially on
a quasi-circular orbit. Although the massless companion exhibits
limited variation in eccentricity for a mutual inclination smaller
than ∼40◦ (observation in agreement with our analytic study of
the previous section), their simulations have identified a dynamical
region around 35◦ of mutual inclination consisting of long-time
stable and particularly low-eccentricity orbits.

This feature is well described by our octupole approximation, as
is shown in Fig. 6, where numerical integrations of the Hamiltonian
equations (20) are used to deduce the maximal eccentricity variation
of the inner body on the initially quasi-circular orbit (e1 = 10−6),
and for the mutual inclination of the orbital planes up to 50◦. The
left-hand panel shows that, for small values of i, the variation of e1

is negligible when the orbit of the perturber is quasi-circular (due
to the presence of the central equilibrium of Fig. 1), while for the
eccentric orbit of the perturber, the higher the value of e2 the wider
the secular variation of e1. This variation is even wider for high
semimajor axis ratios, as shown in the right-hand panel of Fig. 6.
For mutual inclinations higher than ∼38◦, the instability related
to the Kozai bifurcations and described in the previous section
produces the important increase of the secular variations of e1 (see
the right-hand sides of the graphs). The main new feature of Fig. 6
is the sudden decrease of the maximal e1 variation around a value
close to 35◦ for all semimajor axis ratios and eccentricities of the gas
giant, as observed in the numerical study of Funk et al. (2011). Let
us note that this region around 35◦ is not present for a circular orbit
of the perturber and is much in evidence for high semimajor axis
ratios, so that the change of dynamics is due to the third-order terms
of the octupole expansion. The aforementioned behaviour is also
illustrated, in Fig. 7, by means of long-term evolutions of systems
with mutual inclination of 34◦, 35.◦55 and 38◦ (numerical integration
of the octupole Hamiltonian equations 20). In the following, this
feature is analysed in more detail.

To understand this particular behaviour, we decide to realize an
analytical study of the frequencies of the system, similar to the
one of Libert & Henrard (2008). Using a 12th-order expansion of
the perturbative potential in powers of the eccentricities and the
inclinations, they have performed Lie transformations to introduce
an action-angle formulation of the Hamiltonian and identify the
analytical expressions of the four fundamental frequencies of the
3D secular (non-resonant) three-body problem. This study has been
realized in two reference frames: a general one and the Laplace
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Kozai problem with an eccentric perturber 2733

Figure 6. Maximal eccentricity variation of the inner small planet on a quasi-circular orbit (e1 = 10−6) reached during its secular evolution, for the mutual
inclination of the orbital planes up to 50◦. The integration time is fixed to 107 yr.

Figure 7. Long-term evolution of systems with mutual inclination of 34◦, 35.◦55 and 38◦. Other initial orbital elements are a1 = 0.05, a2 = 1, e1 = 10−6, e2 =
0.3, g1 = 0◦ and g2 = 0◦. The masses are m1 = 10−4MJup and m2 = 1MJup.

plane reference frame. Our aim in this section is to wonder whether
the dynamics around 35◦ pointed out in Figs 6 and 7 corresponds
to a commensurability between the fundamental frequencies. For
the sake of completeness, their analytical study is briefly described
here.

The Hamiltonian function expanded in powers of the eccentrici-
ties and the inclinations and averaged over the mean anomalies Mi

reads

K = −Gm1m2

a2∑
k,j1,j2,il ,l∈4

B
k,j1,j2
il

E
|j1|+2i1
1 E

|j2|+2i2
2 S

|k+j1|+2i3
1 S

|k+j2|+2i4
2 cos �,

(24)

with � = [j1p1 − j2p2 − (k + j1)q1 + (k + j2)q2], Ei = √
2Pi/Li

and Si = √
2Qi/Li . The canonical variables in formula (24) are
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the classical modified Delaunay’s elements:

λi = mean longitude Li = mi

√
Gm0ai

pi = −longitude of the pericentre Pi = Li

[
1 −

√
1 − ei

2
]

qi = −longitude of the node Qi = Li

√
1 − e2

1 [1 − cos ii] .

(25)

The indices (k, il, l ∈ 4) are positive integers. The coefficients
B

k,j1,j2
il

depend only on the ratio a1/a2 of the semimajor axes. The
secular Hamiltonian is a four-degree-of-freedom problem. Let us
note that it only depends on three angles, as

� = j1(p1 − q1) − j2(p2 − q2) − k(q1 − q2). (26)

As shown in Libert & Henrard (2007), the numerical convergence
of the secular series (24) is very good for a large set of parameters,
even for moderate values of the eccentricities and the inclinations.
The development is limited to order 12 in the eccentricities and the
inclinations, which means that the terms for which the sum of the
exponents of E1, E2, S1 and S2 is lower or equal to 12 are kept in
the Hamiltonian.

In order to obtain the analytic expressions of the four fundamen-
tal frequencies, they have used a Lie transform perturbation scheme
(Deprit 1969) to average the Hamiltonian (24) over the secular vari-
ables p′

i and q ′
i (i.e. the secular variables after a ‘reducing rotation’;

Henrard 1988). After a second Lie transform on the combination
p̄′

1 + p̄′
2 + q̄ ′

1 −3q̄ ′
2, they get the following action-angle formulation

of the Hamiltonian – we refer to Libert & Henrard (2008) for more
details:

K̄′ =
∑

l1+l2+l3≤12

Cl1,l2,l3 Ē′
1

2l1
Ē′

2
2l2

S̄ ′
1

2l3
. (27)

The associated Hamiltonian equations lead to the expression of the
four frequencies:

˙̄p1
′ = − (1 − μ)√

α

∑
li ,i∈3

2l1Cl1,l2,l3 Ē
′
1

2(l1−1)
Ē′

2
2l2

S̄ ′
1

2l3

˙̄p2
′ = −μ

∑
li ,i∈3

2l2Cl1,l2,l3 Ē
′
1

2l1
Ē′

2
2(l2−1)

S̄ ′
1

2l3

˙̄q1
′ = − (1 − μ)√

α

∑
li ,i∈3

2l3Cl1,l2,l3 Ē
′
1

2l1
Ē′

2
2l2

S̄ ′
1

2(l3−1)

˙̄q2
′ = 0, (28)

μ being the mass ratio m1/(m1 + m2). The unit of frequency is the
Keplerian frequency n2 =

√
Gm0/a

3
2 of the mass m2 multiplied by

the mass ratio (m1 + m2) / m0. Let us note that, in the Laplace plane
reference frame, the long-term evolution of the orbital elements can
be described by only two frequencies and their linear combinations:
f1 = − ˙̄p′

1 + ˙̄q ′
1 and f2 = − ˙̄p′

2 + ˙̄q ′
1.

In the following, we study the evolution of these frequencies
with increasing values of the mutual inclination between the orbital
planes. By resorting to a frequency analysis (Laskar 1993) of the
data sets obtained with the octupole approximation, Table 1 identi-
fies the main combinations of the fundamental frequencies common
to the evolutions of the orbital elements for i = 30◦. The frequencies
are listed by the decreasing amplitude of the trigonometric term and
denoted as c1 (highest amplitude) to c5. Bold type c1 corresponds
to the precession rate of an angular variable in circulation. The last
columns display the identifications of the different combinations in
terms of the fundamental frequencies ( ˙̄p′

1, ˙̄p′
2 and ˙̄q ′

1) and the two
frequencies f 1 and f 2, respectively.

Table 1. Long-term evolution of a system with i = 30◦, obtained by
decompositions of frequencies on the data sets of the octupole approxi-
mation. Periods are expressed in years. Initial parameters of the system
are e1 = 10−6, e2 = 0.3, α = 0.05 and m1/m2 = 10−4.

Periods e ω1 ω2 
ω

301 753 c1 c2 c4 c1, c2 − ˙̄p′
1 + ˙̄p′

2 f 1 − f 2

51 826 c2 c3 − ˙̄p′
1 − ˙̄p′

2 + 2 ˙̄q ′
1 f 1 + f 2

44 229 c3 c5 c2 c5 −2 ˙̄p′
1 + 2 ˙̄q ′

1 2f 1

150 876 c4 c3 c3 −2 ˙̄p′
1 + 2 ˙̄p′

2 2f 1 − 2f 2

38 575 c5 −3 ˙̄p′
1 + ˙̄p′

2 + 2 ˙̄q ′
1 3f 1 − f 2

88 459 c1 − ˙̄p′
1 + ˙̄q ′

1 f 1

100 584 c4 c4 −3 ˙̄p′
1 + 3 ˙̄p′

2 3f 1 − 3f 2

125 146 c1 − ˙̄p′
2 + ˙̄q ′

1 f 2

62 573 c5 −2 ˙̄p′
2 + 2 ˙̄q ′

1 2f 2

As can be observed in Table 1, the two frequencies, f 1 = 0.011 84
and f 2 = 0.008 37 (values calculated from equation 28 of the ana-
lytical 12th-order expansion, in their unit of frequency), correspond
to the precession rates of the arguments of the pericentre ω1 and
ω2, respectively. The last column shows that all the frequencies of
the orbital evolutions are linear combinations of these two frequen-
cies. In particular, the main frequency of the eccentricities is the
precession rate of 
ω and corresponds to f 1 − f 2. Let us note that
the analytical frequencies given by equation (28) are very close to
the ones identified by the frequency analysis of the octupole ap-
proximation: f1oct = 0.011 92 and f2oct = 0.008 39. This small
shift in the periods (less than 103 yr) is due to the limitations of
both approximations with respect to the semimajor axis ratio or the
eccentricities and inclinations.

To analyse the dynamics around a mutual inclination of 35◦ in
more detail, we examine the evolution of the two frequencies for
increasing mutual inclination values. Fig. 8 shows the evolution of
the periods associated with f 1 and f 2 for mutual inclination up to
38◦. The two curves intersect when i = ∼36◦, namely 35.◦55 in the
octupole formulation and 35.◦9 in the development of eccentricities
and inclinations.

As a result, the coupling between the frequencies of the orbital
elements is different for this particular value of the mutual incli-
nation, as shown in Table 2 (frequency analysis of the octupole
approximation). Indeed, all the frequencies are combinations of

Figure 8. Evolution of the frequencies f 1 (solid line) and f 2 (dot–dashed
line) for increasing values of the mutual inclination.
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Table 2. Same as Table 1 for i = 35.◦55.

Periods e ω1 ω2 
ω

66 491 c1 c2 c3 c1 2f
4 881 857 c2 c4 c2 c3 g

67 409 c3 c4 2f−g
33 245 c4 c3 c2 3f
65 597 c5 c5 c4 2f+g

132 982 c1 c1 f
2 440 933 c5 2g

33 020 c5 4f +g

Figure 9. Long-term evolution of a system with mutual inclination of 35.◦55
in a frame where the reference plane is the plane of the giant planet. Note
that the resonant angle is ω1 − �1.

f = f 1 = f 2 and a very small frequency g. The change of dynamics
induced by the commensurability f 1 = f 2 is obvious when looking
at the 
ω’s evolution in Fig. 7: the angle is in libration for the
very low-eccentricity orbit at i = 35.◦55. As it corresponds to a be-
haviour modification of an angle, this particular dynamics can thus
be regarded as a secular resonance.

All this study is realized in the Laplace plane reference frame.
If we consider the orbital plane of the giant planet as a reference
plane (i2 = 0), the evolution of the eccentricities is similar and the
resonant angle becomes ω1 − �1, as illustrated in Fig. 9.

5 C O N C L U S I O N

In this work, we focused on the study of the 3D elliptic three-body
problem of a small mass under the attraction of an outer giant body.
The influence of an eccentric orbit of the perturber on the dynamics
of a small inclined inner body has, to our knowledge, not yet been
investigated in the literature. Particular attention has been given to

a region around 35◦ of mutual inclination detected numerically by
Funk et al. (2011).

Our analytical study relies on the octupole expansion, which is
a compact formulation of the Hamiltonian suitable for hierarchi-
cal planetary systems. Short-period averaging and node reduction
(by adoption of the Laplace plane reference frame) enable us to
reduce the problem to two degrees of freedom. The 4D dynamics
is analysed through representative planes which identify the main
equilibria of the problem. It has been shown that an inner body
on a quasi-circular orbit behaves secularly in a similar way as in
the circular three-body problem: its eccentricity variations are very
limited for mutual inclination between the orbital planes smaller
than ∼40◦, while they become large and chaotic for higher mutual
inclination.

As shown by Funk et al. (2011), there exists a dynamical region
around 35◦ of mutual inclination consisting of long-time stable and
particularly low-eccentricity orbits of the small body. Using a 12th-
order Hamiltonian expansion in eccentricities and inclinations, in
particular its action-angle formulation obtained by Lie transforms
in Libert & Henrard (2008), we have shown that this region corre-
sponds to a commensurability of the two frequencies that are the
precession rates of the arguments of the pericentre ω1 and ω2. It
explains the change of dynamics of the angle 
ω which starts to
evolve in libration. This particular dynamics can thus be regarded
as a secular resonance. The same analysis can be realized with the
orbital plane of the giant planet as the reference plane (i.e. no adop-
tion of the Laplace plane) to identify ω1 − �1 as the resonant angle
of this reference frame.

This study also applies to binary star systems, where a planet is
revolving around one of the two stars (inner problem), since the
mass ratio between the bodies is of the same order (μ ∼ 10−4).

The region around 35◦ could belong to the habitable zone of
the system and be of particular interest for the research of life
in extrasolar systems, as it consists of stable orbits with limited
eccentricity variation of the planet, which means a constant distance
between the planet and the host star.
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N OT E A D D E D IN PRO O F

Recent papers have shown in detail that the octupole level approxi-
mation for an eccentric perturber introduces qualitative different dy-
namical evolution of the Kozai-Lidov problem when 40◦<i<140◦,
namely Kozai-Lidov cycles generating extremely high eccentric-
ities and retrograde orbits (“orbit flipping”, see Katz et al. 2011;
Lithwick and Naoz 2011; Naoz et al. 2011).
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