
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Deriving Configuration Interfaces from Feature Models : A Vision Paper

Boucher, Quentin; Perrouin, Gilles; Heymans, Patrick

Published in:
Proceedings of the Sixth International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS'12), Leipzig, Germany, January 25-27,

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Boucher, Q, Perrouin, G & Heymans, P 2012, Deriving Configuration Interfaces from Feature Models : A Vision
Paper. in Proceedings of the Sixth International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS'12), Leipzig, Germany, January 25-27,. pp. 37-44.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198261346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/deriving-configuration-interfaces-from-feature-models--a-vision-paper(1fc033eb-13d3-402a-a6a5-0bc1eb86e623).html

Deriving Configuration Interfaces from Feature Models :
A Vision Paper

Quentin Boucher, Gilles Perrouin
PReCISE Research Centre

Faculty of Computer Science
University of Namur, Belgium

{qbo,gpe}@info.fundp.ac.be

Patrick Heymans
PReCISE Research Centre

Faculty of Computer Science
University of Namur, Belgium

INRIA Lille-Nord Europe
Université Lille 1 – LIFL – CNRS , France

phe@info.fundp.ac.be

ABSTRACT
In software product lines, feature models are the de-facto
standard for representing variability as well as for configur-
ing products. Yet, configuration relying on feature models
faces two issues: i) it assumes knowledge of the underly-
ing formalism, which may not be true for end users and
ii) it does not take advantage of advanced user-interface
controls, leading to usability and integration problems with
other parts of the user interface. To address these issues,
our research focuses on the generation of configuration inter-
faces based on variability models, both from the visual and
behavioral perspectives. We tackle visual issues by gener-
ating abstract user-interfaces from feature models. Regard-
ing configuration behavior, in particular the configuration
sequence, we plan to use feature configuration workflows,
variability-aware models that exhibit similar characteristics
as of task, user, discourse and business models found in the
in the human-computer interaction community. This pa-
per discusses the main challenges and possible solutions to
realize our vision.

Keywords
Software Product Lines, Feature Configuration Workflows,
Configuration Interfaces

1. INTRODUCTION
Along with the development of e-commerce, mass cus-

tomization [29] which was formerly performed by software
engineers is now realized by product customers through an
adequate configuration interface. These configuration ap-
plications have permeated a number of markets such as car
manufacturers, clothing or computer hardware. Software
products are also configurable, service-based applications
being one of the most well-known example. The software
product line (SPL) community has addressed the design of
such configurators [7] by relying on feature models (FMs).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VaMoS ’12, January 25-27, 2012 Leipzig, Germany
Copyright 2012 ACM 978-1-4503-1058-1 ...$10.00.

Indeed, selecting options of a particular product within a
given configurator amounts to perform interactive configu-
ration of a feature model where features correspond to op-
tions and decisions propagated throughout the configuration
interface enabling or disabling specific options according to
constraints.

Therefore, several SPL tools such as SPLOT [30] or Pure:-
:Variants [6] offer configuration facilities based on visual rep-
resentations of FMs, mostly adopting a “tree-based” rep-
resentation of the features’ hierarchy. However, there are
many ways to graphically represent FMs [35, 14] and these
ways should be tailored to the usage needs. For example, a
preliminary survey [23] has questioned the suitability of the
FODA-like notation for editing FMs in practice, resulting in
the definition of a textual feature modelling language [8, 10]
targeted at SPL engineers and developers. Industrial feed-
back was promising [21]. Additional evidence is provided by
Pleuss et al. [35] while comparing different graphical repre-
sentations of FMs; tailoring the representations to the task
is an important aspect. In this paper, we focus on the config-
uration needs of end users who will configure their products
through an appropriate interface. Thus, it is interesting to
look at the human-computer interaction community to fur-
ther investigate the problem. Configuration interfaces can
be thought as plastic user interfaces [45], which adapt them-
selves due to interactive configuration and can be deployed
on a variety of devices. Therefore, for configuration pur-
poses, plasticity may involve omitting the feature hierarchy
or break it into smaller parts [24] either to support a delib-
erate design or to accommodate hardware constraints. This
hence discards configurators that are too rigid with respect
to the FM’s hierarchy representation. There are also lessons
to be learned from the database community, where the gen-
eration of form-based interfaces has been addressed [26].

As a result, our vision combines ideas coming from model-
based and data-based graphical user interfaces (GUIs) gen-
eration with our previous research feature-based configura-
tion [25, 22]. We sketch in this paper the main elements of
this vision as well as related research challenges.

The paper is organized as follows. Section 2 sketches
our model-based vision for configuration interfaces gener-
ation, illustrated through examples. Research challenges to
be solved to realize this vision are discussed in Section 3.
Related work is surveyed in Section 4. Finally, Section 5
wraps up the paper and presents some on-going and future
developments.

1

Feature
Model

Concrete
User

Interface
Abstract User

Interface

Feature
Configuration

Workflows
Views

Property Sheet

Figure 1: Interface Generation Process

2. APPROACH OVERVIEW
As we mentioned above, direct configuration from the FM

may not suit every user need. Therefore, our vision is based
on the decoupling of the FM and the configuration user in-
terface (UI) by combining separation of concerns [43] and
generative techniques [39]. The base process is sketched in
Figure 1.

Our approach relies on the notion of Abstract User Inter-
face (AUI) [9]. According to Coutaz et al. [9], an AUI is “a
canonical expression of the rendering of the domain concepts
and functions in a way that is independent of the interac-
tors available on the targets”. In other words, an AUI is
a language and target platform independent description of
the UI, which allows considering mappings from the feature
model, configuration process and its interaction with the UI
in an unique and reusable manner. This AUI can be directly
generated from the FM with the possibility to use Views [24]
or Feature Configuration Workflows [22] to tweak configu-
ration interface decomposition and sequencing logic. The
layout of the elements composing the UI can be guided by
a Property sheet containing beautifying information. Once
created, the AUI can be then transformed in a Concrete User
Interface (CUI). CUI’s look and feel could also be driven by
information contained in the Property sheet. Depending on
the required sophistication level of the interface, different
combinations of views, configuration workflows and prop-
erty sheets are envisioned, as explained in the subsequent
paragraphs.

Thus, this architecture exhibits the following benefits:

• Seamless integration with existing approaches.
The explicit distinction between variability and inter-
face modelling aspects ease the connection of the ap-
proach with state of the art research. For example, at
the feature modelling level, we can take advantage of
modularity techniques [1, 25, 24, 3] but also automated
analyses [5, 30]. Regarding interfaces, the approach
can be integrated with existing frameworks and CUI
generation tools [9].

• Inconsistent configuration analysis and evolu-
tion. Since the configuration logic is not implemented
directly in the CUI, it is easy to use the analysis tools
above to detect conflicting situations. Also, evolution
is managed at the abstract level and can be enacted
via reapplication of the process.

• Platform Independence With the development of
different devices, it is not rare that the same con-
figuration interface needs to be deployed on various
computing environments (OS, Screen, etc). Thanks
to its MDA-like architecture [46], we can reuse con-
figuration logic across languages and platforms. Some
parts of the framework can be made even more generic,
if we devise transformation patterns such as the ones
sketched in [39].

In the following, we detail how the various models can be
employed for the generation of UIs of growing complexity.

2.1 Form-like Interfaces
Forms“are a structured means of displaying and collecting

information for further processing” [38]. They have become
a natural part of a wide variety of applications and websites.
In the database domain, generating forms from data models
is a common task. There, forms to query or insert informa-
tion into a database are generated from data models, using
their meta-data for example [20]. FMs being interpreted as
class models with a containment hierarchy [15], a similar
approach could be applied in SPL engineering.

Forms are the simplest kind of configuration interfaces tar-
geted by our approach. Thus, using only an FM one would
be able to generate a basic form. To make this transforma-
tion possible, a set of rules for mapping FM constructs to UI
widgets is required. For example, TVL bool attributes could
be translated to checkboxes, enum attributes to drop-down
lists or list boxes, depending on the numbers of available val-
ues, etc. Even if this translation is technically feasible, the
result would be rough as it is relies only on information con-
tained in TVL models (and FMs in general) which is rather
technical. For example, using feature and attribute names

2

as label for the input fields might not be expressive enough
to understand their meaning. To tackle this problem we
propose to add a so-called Property Sheet. This document
is meant to store display information to beautify the UI, by
attaching a display name, help text, etc. to features and
attributes.

Based on the FM and the associated Property sheet, an
AUI can be defined for the form. AUI languages describe UIs
in terms of Abstract Interaction Objects (AIOs). Those AIOs
present the advantage of being independent of any platform
and any modality of interaction (graphical, vocal, virtual
reality and so on). In this way, we keep our approach as
generic as possible. This AUI will finally be translated into
a CUI which is the implementation of the UI in a given lan-
guage for a specific platform. For example, Figure 2 sketches
a concrete UI corresponding to a form for the following TVL
model representing the variability of a motherboard:

root Motherboard {
group oneOf {

Asus {ifIn: parent.socket == LGA1156;},
Aopen {ifIn: parent.socket ==ASB1;}

}
enum socket in {LGA1156 , ASB1};
int price in [0..500];
struct dimension {

int height;
int width;

}
}

There, labels for the different input fields, like Manufac-
turer, come from the Property sheet. Feature decomposition
and enumerated attributes both have been represented using
drop-down lists. Integers have been implemented in two dif-
ferent manners: the dimension structure and its width and
height attributes with a stepper field, and the price with
two fields associated to Min and Max values. Such a repre-
sentation of the price attribute has to be defined using the
Property sheet. One can also notice that the Socket option
is greyed as the choice of this attribute has been determined
by the Manufacturer selection. Integration of the UI with
solvers will be discussed in Section 3. Question marks on the
right side of the input fields correspond to help information.
This information has to be defined in the Property sheet.

Computer Configurator

Socket

Done

Manufacturer Asus

LGA1156

Price
Min Max

Dimensions

100Width 200Height

Figure 2: Sketch of a Form UI

2.2 View-based Interfaces
Forms are suitable for relatively small FMs but once their

size increases, managing all the variability in a single form
becomes a non trivial task. The user might be overwhelmed
by all this information displayed in a single monolithic screen.
To manage this complexity, we propose to divide FMs de-
pending on the different concerns they include using multi-
view FMs [25].

A view is “a simplified representation of an FM that has
been tailored for a specific stakeholder, role, task, or, to
generalize, a particular combination of these elements which
we call a concern” [25] and corresponds to a subset of the
features of the FM. Several views allow to divide the FM
into smaller, more manageable parts.

Computer Configurator

Socket

Done

Manufacturer Asus

LGA1156

Price
Min Max

Dimensions

100Width 200Height

AccessoriesGraphicsCPUMotherboard

Figure 3: Sketch of a View-based UI

Developers now have to define Views corresponding to
the FM (see Figure 1). Hubaux et al. identified two ways
of defining views: through extensional definitions, i.e. by
enumerating all features appearing in a view, or through in-
tentional definitions, i.e. by providing a language that takes
advantage of the tree structure and avoids lengthy enumer-
ations [25]. Once views have been defined, views-related
beautifying information similar to FM-related one can be
defined in the Property sheet. It is meant to beautify the UI
with views-related information like their display name, their
display order, etc.

The illustrative TVL model of previous section restricted
the configuration of a computer to its motherboard. But
in actual configuration, other concerns like CPU, graphics
or accessories could also be included in the FM. To avoid
displaying all the information in the same window one could
define four views corresponding to the different concerns of a
computer configuration. Figure 3 sketches an interface illus-
trating this separation of concern. There, the different views
have been implemented by four tabs but one could think
about different implementation approaches which could be
influenced by information contained in the Property sheet.

2.3 Workflow-based Interfaces
Views might not be sufficient in some cases where more

complex constructs like ordered or user-determined sequences
of views are required. We identified two distinct families
of UIs belonging to this category: wizards and eclipse-like
applications. A wizard is a UI where the user is guided
through a succession of screens, eventually influenced by her

3

T1

T21 T22

T4

T32

T31

T33

C1

Legend

Start
 condition

End
 condition

Condition XOR split XOR join

No

Yes

T5T34

Figure 4: Illustrative YAWL workflow of a complex
UI

choices. This kind of UI is generally used at compilation
time. Eclipse-like interfaces are UIs where the user deter-
mines her task ordering by selecting the different options
available in the interface (toolbar, menubar, etc.). Contrar-
ily to wizards, this kind of UI is generally used to manage
configuration at runtime.

To describe the behaviour of those high-level UIs, we sug-
gest to use Feature Configuration Workflows (FCWs) pro-
posed by Hubaux et al. [22]. There, the authors extend their
work on views by proposing to use workflows to drive their
configuration. Their research was inspired by the concept of
multi-level staged configuration of Czarnecki et al. [13]. The
workflow defines the configuration process and each view on
the FM is assigned to a task in the workflow. A view is con-
figured when the corresponding workflow task is executed.
An FCW is thus a combination of views on the FM, workflow
and the mapping between them. Up to now, FCWs focused
on distributed configuration among several stakeholders but
one might easily adapt it to other purposes like the dynamic
behaviour of a UI in our case.

While the link between wizards and FCWs is direct (a wiz-
ard is a predefined sequence of screens where user’s choices
will determine the path between a start and an end), it re-
quires more explanation for eclipse-like UIs. Even if the use
of such complex UIs seems non-linear, we claim it can still be
represented using workflows. Figure 4 is an example of such
workflow expressed in the YAWL formalism [44]. There, T*
labels correspond to tasks and C1 label refers to a condition.
Our complex UI is composed of a home screen (T1) where
the user has three options (T21, T31, T4). Once she has cho-
sen one, she enters a “sub-workflow” which can be composed
of a single task (T4) , a sequence of tasks (T21-T22) or more
complex (T31, T32, T33, T34). Once tasks of the selected
path are complete, task T5 is reached. It corresponds to a
“dummy” join task. Then comes condition C1 which is used
to determine if the configuration is finished. If the condition
is not satisfied, the workflow goes back to task T1, so creat-
ing a loop. On the other side, a positive answer would mean
that the configuration is finished. This condition could ei-
ther be automatic (the workflow loops until there is no more
variability to be configured) or manual (the user clicks on a
button to indicate that she has completed her configuration
task).

After having defined views, the workflow representing the
dynamic aspect of the UI thus has to be modelled and its

tasks attached to the different views to create a so-called
FCW. FCW-related beautifying information can also be stored
in the Property sheet along with information related to the
FM and views.

3. CHALLENGES
As previously mentioned, Section 2 is an overview of the

proposed approach to be implemented. In this section, we
will discuss some of the remaining challenges and leads to
explore.

User Interface Description Language. Different languages,
so called User Interface Description Languages (UIDLs),
have been proposed in the literature to express AUIs. They
consist of languages which describe various aspects of an
UI in an abstract manner, like e.g. AIOs. UsiXML [46],
UIML [2] or XUL [49] are some examples of such languages.
Each UIDL has its own characteristics like supported plat-
forms, target languages, device-independence or available
tools. Guerrero-Garćıa and González-Calleros [19], and Sou-
chon and Vanderdonckt [41] surveyed some of those lan-
guages based on their criteria. We will also have to con-
duct a similar survey to select the most appropriate UIDL
according to our own requirements.

AIO mapping. Once the UIDL has been selected, a map-
ping between FM constructs and AIOs will have to be de-
fined. It includes low-level as well as “pattern” mappings.
By low-level we mean direct mappings between FM con-
structs and AIOs like checkboxes for Boolean attributes, for
example. Most mappings will not be one-to-one but one-
to-many based either on properties of the FM constructs or
on user preferences. An enumerated attribute can, for ex-
ample, be represented either by a list box or a drop-down
list, depending on the number of elements in the enumera-
tion. Additionally, some patterns in FMs might also be as-
sociated to specific AIOs. For example, an or -decomposed
feature whose sub-features are leaf nodes could be mapped
to a list box allowing selection of multiple values. For this
task, we can rely on guidelines commonly accepted in the
human-computer interaction (HCI) community [48].

Objects placement. Another aspect which we will have to
take into consideration is the placement of the identified
AIOs on the screen. Following the HCI literature, this task
is non-trivial and there have been successes in limited do-
mains such as dialogue box design and remote controls [32].
An alternative solution would be to provide the UI designer
with a set of automatically generated atomic AIOs which
she can place in the layout structure she has defined, so en-
suring the clarity of the layout. Schramm et al., for example,
implemented this second option [40].

Property sheet. A language influencing the beautification
of the UI will have to be defined. Our first intention is to
extend TVL with some UI-specific tags. We have to evalu-
ate the feasibility of this approach, especially the integration
of TVL annotations with views and FCWs. Thanks to the
structuring mechanism of TVL (include construct), beautify-
ing annotations could be defined either in the same file as
the FM or in a specific file, so not interfering with the read-
ing of the FM. Supported tags should at least include label

4

(the label of an UI element), group (to define a group of
features logically linked), group element (to attach a feature
to a group), ordering (to define the order of the features),
hide (to not display a feature in the UI) and default (to de-
fine the default value in the UI) constructs. View definition
instructions could also be part of those constructs.

Views. In their research on views, Hubaux et al. focused
on three main aspects: view specification, view coverage and
view visualisation [25]. There are two ways of specifying
views: extensional definition (enumerate each feature ap-
pearing in a view) and intentional definition (take advan-
tage of the tree structure) using a subset of XPath1. In
our case, we could implement the extensional definition us-
ing TVL tags, as mentioned in previous challenge. A drag-
and-drop tool is another solution which could be explored.
The second aspect, view coverage, should also be verified
for UIs as it guarantees that all configuration questions be
eventually answered. The conditions defined by the authors
should be sufficient for our UI generation approach and re-
quire no modification. Finally, the three view visualisations
presented in [25], such as displaying only features that are
relevant for the view are of little interest in UI generation.
However, we might go through the same process to identify
different ways of displaying views in a UI (tabs, etc.).

Feature Configuration Workflows. As previously mention-
ed, an FCW is a workflow such that tasks are associated to
FM-views. A view will have to be configured during the
execution of its associated task [22]. Thanks to inter-views
links, choices made in a task will automatically be prop-
agated to other parts of the FM. Even if the work of the
authors focused on the configuration of an FM split among
several stakeholders, it should only require slight changes
to support the dynamic aspect of UIs. FCWs in the con-
text of UI generation would even be less restrictive. In
FCWs, a variability point cannot be left undecided unless
one can ensure that it will be configured later in the work-
flow. Otherwise, deadlock could appear in the configuration
process [11]. This property is still valid for wizard genera-
tion (except if default values are available for all variation
points) but not for other UIs. Indeed, the workflow will ei-
ther loop until there is no variability left (“automatic” con-
dition of Section 2.3) or signal to the user that she still has
some variability left when she validates her configuration
(“manual” condition of Section 2.3). Constraints related to
parallel configuration will also be relaxed in UI generation.
In FCWs, conflicts might appear during the reification of
FM-views which were configured in parallel tasks. We do
not expect to run up against the same problem in UI where
tasks should not be conducted in parallel. We will thus have
to analyse FCWs in further detail to check if some other con-
straints can be relaxed or, contrarily, should be added.

Solver Integration. A crucial part of the approach which
has not been mentioned yet is the link between the gener-
ated UI and a solver, this last being the core component of
variability configuration. This involves a two-way commu-
nication. Each time the user makes a choice in the UI it
has to be forwarded to the solver which will compute a new
set of valid configurations. This set must then be sent back

1http://www.w3.org/TR/xpath/

to the UI in order to update options available to the user.
Being able to give an explanation for automatically select-
ed/disabled UI options would also be a nice-to-have. The
solution should be as generic as possible (i.e. require slight
modification) to support different solvers (SAT, CSP, BDD,
SMT,. . .), depending on the targeted configuration task.

Application Integration. Similarly, for interactive applica-
tions, we will have to propose a mechanism to easily link the
generated UI with the functions of the application. Man-
ually mapping UI buttons to application functions is still
possible but is a time consuming and error-prone task. Our
ultimate goal is thus to also use the list of functions of the
application as input of our generation process.

Beautification. Despite their efficiency, model-based gen-
eration of UIs have often suffered from a lack of usability
and flexibility [12, 34] of resulting UIs. Mechanisms to im-
prove the quality of generated UIs will thus have to be pro-
posed. This concern is still an open question in the HCI
community. An option would be to define tags in the prop-
erty sheet, additionally to those aimed at beautifying FM-,
views- and FCW-related information. Providing UI tem-
plates as input of the UI generation process is another alter-
native. This would especially allow to comply with existing
in-house visual guidelines. This option requires the defini-
tion of a linking mechanism between templates and other
inputs. Alternative solutions as well as their combination
will have to be considered.

Round Tripping. Another consequence of the failure to
generate good UIs is that they are generally customized by
graphical designers. A new kind of problem might arise
when the underlying model (FM in our case) is modified
(new configuration rules, new options): the designer will
have to customize the UI each time it is generated. To min-
imize this recurring manual task, we intend to define a way
to send enough information back to the configuration UI
generator to take designer’s modifications into account each
time the UI is generated.

4. RELATED WORK
In the HCI research domain, automation of UIs develop-

ment is an important topic. A whole spectrum of approaches
ranging from purely manual design to completely automated
approaches have been proposed. Manual design is of no in-
terest to us as we seek to automatize the generation of in-
terfaces. On the other hand, fully automated approaches
generally fail to generate good UIs, except for domain spe-
cific applications [31].

Most approaches propose a partially automated process
which uses extra information about the UI stored in models.
They are all grouped under the Model-based User Interface
Development (MBUID) denomination. They are generally
supported by a MBUID environment (MBUIDE) which is “a
suite of software tools that support designing and developing
UIs by creating interface models” [17]. Among them we can
mention ADEPT [27], Teallach [33], MASTERMIND [42]
or GENIUS [26] which also uses the notions of views on
entity-relationships models and sequence between them to
generate UIs. Each MBUIDE defines its own set of models
to describe the interface. The different MBUIDEs and the

5

associated models have been surveyed by Gomaa et al. [17].
Most approaches rely on the same principle: starting from
a task model, domain model and/or user model, an abstract
presentation model is derived, which will be implemented
by a concrete interface model. The task model describes the
task that the user can perform, including sub-tasks, their
goals as well as the procedures used to achieve them. The
domain model is a high level representation of the objects
and their associated functions in a given model. Other mod-
els, like discourse or application models, are implemented in
some approaches. Our approach is related to MBUID in
that it is also based on models and follows a similar process.
But, in our case, the models are different as variability and
workflow models are used as input.

Pleuss et al. combine SPLs and the concepts from the
MBUID domain to integrate automated product derivation
and individual UI design [34]. An AUI is defined in the
domain engineering phase and the product-specific AUI is
calculated during the application engineering. The final UI
is derived using semi automatic-approaches from MBUID.
Some elements like the links between UI elements and ap-
plication can be fully automatically generated while others
like the visual appearance are also generated automatically,
but can be influenced by the user. While we share similar
views regarding MBUID, our overall goals differ. Pleuss et
al. aims at generating the UI of products derived from the
product line while our interest is on generating the interface
of a configurator allowing end users to derive product ac-
cording to their needs. We are therefore not concerned with
product derivation but rather on the link between feature
model configuration and UIs.

Schlee and Vanderdonckt [39] also combined FMs with
graphical UI generation. Relying on the generative program-
ming paradigm, the authors represent the UI options with an
FM which will be used to generate the corresponding inter-
face. Their work illustrates a few transformations between
FM and GUI constructs which can be seen as patterns. Yet,
they do not consider sequencing aspects which be believe to
be a critical concern for complex UIs.

In most variability-related tools, FMs are represented and
configured using tree-views. We can, for example, men-
tion pure::variants [6], FeatureIDE [28] or Feature Mod-
eling Plug-in [4]. Those tools have a graphical interface
in which users can select/deselect features in a directory-
tree like interface where constraints are automatically prop-
agated. Several visualization techniques have been proposed
to represent FMs [36], but they are not dedicated to end
users which are more accustomed to standard interfaces such
as widgets, screens etc. Generating such user-friendly and
intuitive interfaces is the main goal of our work.

An exception is the AHEAD tool suite of Batory et al. [18].
Simple Java configuration interfaces including checkboxes,
radio buttons, etc. are generated using beautifying anno-
tations supported by the GUIDSL syntax used in the tool
suite. Examples of annotations are disp which corresponds
to the displayed name of a feature, help which stores help
information for a feature, tab which defines a new tab rooted
by the associated feature in the UI, hidden which allows to
hide a feature, etc. We are studying those annotations as
well as their syntax to implement similar tags into TVL.

Automatically selecting AIOs on the basis of data types
has already been solved in the HCI community. For exam-
ple, MECANO [37] selects interactors depending a.o. on the

type, cardinality and the number of allowed values, TRI-
DENT [47] and MOBI-D [16] select AIOs using decision
trees. Since TVL supports complex types, these techniques
can be of interest for UI generation, provided we adapt them
to the target UIDL.

Botterweck et al. developed a feature configuration tool
called S2T 2 Configurator [7]. It includes a visual interac-
tive representation of the FM and a formal reasoning engine
that calculates consequences of the user’s actions and pro-
vides formal explanation. This feedback mechanism is of
importance to end users. Yet, S2T 2 also presents a tree-like
view on the configuration that we believe not be suited to
all kinds of end users.

5. CONCLUSION
The exploding dissemination of e-commerce and the need

for customized products tailoring user needs make the devel-
opment of configurators a concern for a variety of domains.
The SPL community has developed all the conceptual mod-
els and concrete tools to perform configuration through FMs.
However, the graphical representation of configurations in-
terfaces has been much less addressed. In this paper, we tar-
get the generation of user-friendly configuration interfaces
through model-based development. In particular, we shown
how a combination of rich feature (TVL) models with views
and feature configuration workflows can be used to generate
a variety of configuration interfaces of different complexity.

Obviously, the first step of our future work is to reify our
vision through a concrete implementation. As we have al-
ready the main components (views, FCWs, TVL), the main
challenge is to orchestrate them in our model-driven ap-
proach through transformations. We intend to develop the
approach starting from the lowest level (form-based UIs)
to the highest one (workflow-based UIs). A prototype al-
lowing to generate forms will be proposed first. It will be
composed of a “basic” version of components. Then, the dif-
ferent building blocks will have to be enhanced to support
the generation of higher level configuration UIs. The sec-
ond main step is to validate the approach on various case
studies. Each prototype will have to be evaluated on FMs
corresponding to the level of targeted UI.

Acknowledgements
This work was partially funded by the Walloon Region under
the NAPLES project, the IAP Programme, Belgian State,
Belgian Science Policy under the MoVES project, the BNB
and the FNRS.

6. REFERENCES
[1] E. K. Abbasi, A. Hubaux, and P. Heymans. An

interactive multi-perspective toolset for non-linear
product configuration processes. In Proceedings of
SPLC’11 Workshops, pages 50–55, 2011.

[2] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster. Uiml: an
appliance-independent xml user interface language.
Computer Networks, 31:1695–1708, 1999.

[3] M. Acher, P. Collet, P. Lahire, and R. France. Slicing
Feature Models. In 26th IEEE/ACM International
Conference On Automated Software Engineering
(ASE’11), short paper, , Lawrence, USA, Nov. 2011.
IEEE/ACM.

6

[4] M. Antkiewicz and K. Czarnecki. Featureplugin:
feature modeling plug-in for eclipse. In Proceedings of
OOPSLA’04 Eclipse Workshop, pages 67–72, 2004.

[5] D. Benavides, S. Segura, and A. Ruiz-Cortés.
Automated analysis of feature models 20 years later:
A literature review. Information Systems,
35(6):615–636, Sept. 2010.

[6] D. Beuche. Modeling and building software product
lines with pure::variants. In Proceedings of SPLC’08,
page 358, 2008.

[7] G. Botterweck, M. Janota, and D. Schneeweiss. A
design of a configurable feature model configurator. In
Proceedings of VaMoS’09, pages 165–168, 2009.

[8] Q. Boucher, A. Classen, P. Faber, and P. Heymans.
Introducing tvl, a text-based feature modelling. In
Proceedings of VaMoS’10, pages 159–162, 2010.

[9] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg,
L. Bouillon, and J. Vanderdonckt. A unifying
reference framework for multi-target user interfaces.
Interacting with Computers, 15:289–308, 2003.

[10] A. Classen, Q. Boucher, and P. Heymans. A
text-based approach to feature modelling: Syntax and
semantics of tvl. Science of Computer Programming,
76:1130–1143, 2011.

[11] A. Classen, A. Hubaux, and P. Heymans. Analysis of
feature configuration workflows. In Proceedings of
RE’09, pages 381–382, 2009.

[12] J. Coutaz. User interface plasticity: model driven
engineering to the limit! In Proceedings of the 2nd
ACM SIGCHI Symposium on Engineering interactive
Computing Systems, pages 1–8, 2010.

[13] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
configuration through specialization and multilevel
configuration of feature models. Software Process:
Improvement and Practice, 10:143–169, 2005.

[14] K. Czarnecki, C. Hwan, P. Kim, and K. Kalleberg.
Feature models are views on ontologies. In Software
Product Line Conference, 2006 10th International,
pages 41–51, 2006.

[15] K. Czarnecki and C. H. P. Kim. Cardinality-based
feature modeling and constraints: A progress report.
In Proceedings of OOPSLA’05, 2005.

[16] J. Eisenstein and A. Puerta. Adaptation in automated
user-interface design. In Proceedings of the 5th
international conference on Intelligent user interfaces,
IUI ’00, pages 74–81, New York, NY, USA, 2000.
ACM.

[17] M. Gomaa, A. Salah, and S. Rahman. Towards a
better model based user interface development
environment : A comprehensive survey. In Proceedings
of MICS’05, 2005.

[18] M. Grechanik, D. S. Batory, and D. E. Perry. Design
of large-scale polylingual systems. In Proceedings of
ICSE’04, pages 357–366, 2004.

[19] J. Guerrero-Garcia, J. M. Gonzalez-Calleros,
J. Vanderdonckt, and J. Munoz-Arteaga. A theoretical
survey of user interface description languages:
Preliminary results. In Proceedings of La-Web’09,
pages 36–43, 2009.

[20] D. J. Helm and B. W. Thompson. An approach for
totally dynamic forms processing in web-based
applications. In Proceedings of ICEIS’01, pages

974–977, 2001.

[21] A. Hubaux, Q. Boucher, H. Hartmann, R. Michel, and
P. Heymans. Evaluating a textual feature modelling
language: Four industrial case studies. In Proceedings
of SLE’10, pages 337–356, 2010.

[22] A. Hubaux, A. Classen, and P. Heymans. Formal
modelling of feature configuration workflows. In
Proceedings of SPLC’09, pages 221–230, 2009.

[23] A. Hubaux, A. Classen, M. Mendonça, and
P. Heymans. A preliminary review on the application
of feature diagrams in practice. In Proceedings of
VaMoS’10, pages 53–59, 2010.

[24] A. Hubaux, P. Heymans, P.-Y. Schobbens, and
D. Deridder. Towards multi-view feature-based
configuration. In Proceedings of REFSQ’10, pages
106–112, 2010.

[25] A. Hubaux, P. Heymans, P.-Y. Schobbens,
D. Deridder, and E. K. Abbasi. Supporting multiple
perspectives in feature-based configuration (to
appear). Software and Systems Modeling, 2011.

[26] C. Janssen, A. Weisbecker, and J. Ziegler. Generating
user interfaces from data models and dialogue net
specifications. In Proceedings of INTERCHI’93, pages
418–423, 1993.

[27] P. Johnson, S. Wilson, P. Markopoulos, and
J. Pycock. Adept: Advanced design environment for
prototyping with task models. In Proceedings of
INTERACT ’93, page 56, 1993.

[28] C. Kastner, T. Thum, G. Saake, J. Feigenspan,
T. Leich, F. Wielgorz, and S. Apel. Featureide: A tool
framework for feature-oriented software development.
In Proceedings of ICSE’09, pages 611–614, 2009.

[29] C. Krueger. Easing the transition to software mass
customization. In F. Linden, editor, Software
Product-Family Engineering, volume 2290, pages
282–293. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001.

[30] M. Mendonca, M. Branco, and D. Cowan. S.p.l.o.t.:
Software product lines online tools. In Proceeding of
OOPSLA’09, 2009.

[31] B. A. Myers, S. E. Hudson, and R. F. Pausch. Past,
present, and future of user interface software tools.
ACM Transactions on Computer-Human Interaction,
7:3–28, 2000.

[32] J. Nichols and A. Faulring. Automatic interface
generation and future user interface tools. In Tools
ACM CHI 2005 Workshop on The Future of User
Interface Design Tools, 2005.

[33] P. Pinheiro da Silva, T. Griffiths, and N. W. Paton.
Generating user interface code in a model based user
interface development environment. In Proceedings of
AVI’09, pages 155–160, 2000.

[34] A. Pleuss, G. Botterweck, and D. Dhungana.
Integrating automated product derivation and
individual user interface design. In VaMoS, pages
69–76, 2010.

[35] A. Pleuss, R. Rabiser, and G. Botterweck.
Visualization techniques for application in interactive
product configuration. In Proceedings of the 15th
International Software Product Line Conference,
Volume 2, SPLC ’11, pages 22:1–22:8, New York, NY,
USA, 2011. ACM.

7

[36] A. Pleuss, R. Rabiser, and G. Botterweck.
Visualization techniques for application in interactive
product configuration. In Proceedings of SPLC’11
Workshops, page 22, 2011.

[37] A. Puerta. The mecano project: Comprehensive and
integrated support for model-based interface
development. In In Computer-Aided Design of User
Interfaces, pages 5–7, 1996.

[38] R. Ramdoyal. Reverse Engineering User-Drawn
Form-Based Interfaces for Interactive Database
Conceptual Analysis. PhD thesis, University of
Namur, Belgium, 2010.

[39] M. Schlee and J. Vanderdonckt. Generative
programming of graphical user interfaces. In AVI,
pages 403–406, 2004.

[40] A. Schramm, A. Preussner, M. Heinrich, and L. Vogel.
Rapid ui development for enterprise applications:
combining manual and model-driven techniques. In
Proceedings of MODELS’10, pages 271–285, 2010.

[41] N. Souchon and J. Vanderdonckt. A review of
xml-compliant user interface description languages. In
Proceedings of DSV-IS’08, pages 377–391, 2003.

[42] R. E. K. Stirewalt. Automatic generation of interactive
systems from declarative models. PhD thesis, Georgia

Institute of Technology, 1997.

[43] P. Tarr, H. Ossher, W. Harrison, and S. M. J. Sutton.
N degrees of separation: multi-dimensional separation
of concerns. In Proceedings of ICSE’99, pages 107–119,
1999.

[44] A. H. M. ter Hofstede, W. M. P. van der Aalst,
M. Adams, and N. Russell. Modern Business Process
Automation - YAWL and its Support Environment.
Springer, 2010.

[45] D. Thevenin and J. Coutaz. Plasticity of user
interfaces: Framework and research agenda. In HCI /
INTERACT, pages 110–117, 1999.

[46] J. Vanderdonckt. A mda-compliant environment for
developing user interfaces of information systems. In
Proceedings of CAiSE’05, pages 16–31, 2005.

[47] J. Vanderdonckt and F. Bodart. Encapsulating
knowledge for intelligent automatic interaction objects
selection. In INTERCHI, pages 424–429, 1993.

[48] J. Vanderdonckt and F. Bodart. The corpus
ergonomicus: A comprehensive and unique source for
human-machine interface. In ICAE, pages 162–169,
1996.

[49] XUL. https://developer.mozilla.org/en/xul, October
2011.

8

