
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Towards Conceptual Foundations of Requirements Engineering for Services

Verlaine, Bertrand; Jureta, Ivan; Faulkner, Stephane

Published in:
Proceedings of the Fifth IEEE International Conference on Research Challenges in Information Science (RCIS
2011), Gosier, Guadeloupe

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Verlaine, B, Jureta, I & Faulkner, S 2011, Towards Conceptual Foundations of Requirements Engineering for
Services. in IEEE Computer (ed.), Proceedings of the Fifth IEEE International Conference on Research
Challenges in Information Science (RCIS 2011), Gosier, Guadeloupe: RCIS 2011. IEEE Computer society, pp.
147-157.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198260604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/towards-conceptual-foundations-of-requirements-engineering-for-services(d5391b70-c7eb-4978-85ae-24277819fee0).html

Towards Conceptual Foundations of
Requirements Engineering for Services

Bertrand Verlaine∗, Ivan J. Jureta∗ and Stéphane Faulkner∗
∗PReCISE Research Center

University of Namur
{bertrand.verlaine,ivan.jureta,stephane.faulkner}@fundp.ac.be

Abstract—A service-oriented system should be engineered to
satisfy the requirements of its stakeholders. Requirements are
understood in terms of stakeholder goals, softgoals, quality
constraints, preferences, tasks, and domain assumptions. The
service-oriented system is viewed in terms of services, mediators,
choreographies, and orchestrations, among others. To engineer
the system according to requirements, it is necessary to translate
the requirements into the model of the service-oriented system. To
do so, we must know the relations between the conceptualization
of requirements and the conceptualization of services. Towards
this aim, we propose and discuss relations between the Core
Ontology for Requirements and the Web Service Modeling
Ontology. We formalize both ontologies in a description logic
and relate them via bridge rules in a distributed description
logic. The two ontologies and the bridge rules together form
conceptual foundations on which to build methodologies for the
requirements engineering of service-oriented systems.

Index Terms—Requirements Engineering for Service-oriented
Systems, Ontology Mapping

I. INTRODUCTION

Liu, Yu & Mei recently argued that “there is a dire need
for systematic methods and automated facilities to handle
requirements for services” [1]. In the context described by Liu
and colleagues, a service is a self-describing and self-contained
modular application designed to execute a well-delimited task,
and that can be described, published, located, and invoked over
a network [2], [3]. Raising this challenge was expected: to
engineer a service-oriented system which satisfies the needs
of its stakeholders, it is necessary to know their requirements.
Hence the importance to follow a Requirements Engineering
(RE) process by which the consumers of a services-oriented
system are identified, their requirements are elicited, modeled
and specified [4], [5], [6]. Once the consumers’ requirements
are known and specified, the technologies able to satisfy them
can be mobilized, including those for, e.g., service discovery,
selection, invocation, composition, interoperability, and so on.
Considerable attention is being invested in those technical
solutions for making service-oriented systems, less so in the
RE of such systems [1], [7], [8], [9].

To enable what Liu and colleagues call the systematic
handling of requirements [1], a methodology for RE is needed.
It usually includes four components: (1) an ontology of
requirements stating the information to elicit, and which
relevantly describes the properties and behaviors expected of
the system-to-be and its operational environment, (2) modeling
primitives for the concepts and relations of the ontology, the

instances of which together form models to record the elicited
information, (3) often automated methods that could be applied
to the models in order to answer questions of methodological
interest, such as if a model is consistent, or if the properties
and behaviors it attributes to the system-to-be will satisfy the
requirements, and (4) guidelines on what steps to take when
applying the said sets of tools. The first three components define
a Requirements Modeling Language (an RML), the fourth says
how the language ought to be used.

Service-orientation needs its own RE methodologies, i.e.,
Service-oriented RE (SRE) methodologies. Before efforts are
invested in making them, it is crucial to answer the following
question: does service-orientation need new RE methodologies,
or would the specialization of existing ones be enough? The
features that distinguish the service-oriented paradigm from
other paradigms for software systems engineering may suggest
that novelty of service-orientation requires novelty in its RE
methodologies. A more cautious view is to consider that new
RE methodologies are needed only if models of the service-
oriented system include information about requirements which
cannot be elicited using current RE methodologies. If so, then
the ontology for requirements — the first component of an RE
methodology — would need to incorporate new concepts and
relations, and as a consequence, changes would need to be made
to the remaining three parts of a methodology: new modeling
primitives for requirements models would be necessary, as well
as new reasoning means over requirements models, and new
guidelines for the use of the new components together with
established ones. Whether service-oriented systems warrant
new RE methodologies is not a settled question. It will remain
open as long as significant new advances are being made in
service-oriented computing. Even though an once-and-for-all
answer is elusive, more specific, but still useful ones can, once
we chose a particular ontology for service-oriented systems
modeling and an ontology for requirements.

This paper takes the Core Ontology for REquirements (CORE)
[10] and the Web Service Modeling Ontology (WSMO) [11],
and establishes how the information contained in instances
of the concepts and relations of CORE is transferred into the
instances of the concepts and relations of WSMO. To do so,
we formalize both ontologies in a description logic and relate
them via bridge rules in a distributed description logic. The
results are three contributions:

1) We establish that if a service-oriented system-to-be

is to be modeled via the concepts and relations of
WSMO (so that the models are written using the Web
Service Modeling Language (WSML) [12]), then every
RE methodology based on CORE can be used as-is for
the RE of the system-to-be.

2) The bridge rules from CORE to WSMO state how infor-
mation gets translated from models of requirements to
models of the service-oriented system. Given an instance
of a CORE concept, the bridge rules tell us what WSML
concepts are to be instantiated to capture the information
from the CORE concept instance.

3) The two ontologies and the bridge rules form conceptual
foundations for the design of RE methodologies for
service-oriented systems. A SRE methodology should
support the elicitation, modeling, and analysis of require-
ments, and then the translation of a requirements model
into a model of the service-oriented system. CORE states
what information ought to be elicited and represented in
the model of requirements, WSMO says what information
should be found in the model of the service-oriented
system, and the bridge rules indicate how the information
from a requirements model translates into the model of
the service-oriented system. Starting from CORE, WSMO
and the bridge rules, the designer of the methodology
can focus on making the remaining parts, that is to say
the choice of the modeling primitives for requirements,
the reasoning methods, and the guidelines for use.

The rest of the paper is organized as follows. We sketch the
CORE ontology (§II) and the WSMO ontology (§III), along with
their formalizations. We then present and discuss the bridge
rules between those two ontologies (§IV). After a survey of
related work (§V), conclusions and directions for future work
are given (§VI).

II. THE REQUIREMENTS ONTOLOGY

First, we briefly explain the choice of CORE as the require-
ments ontology (§II-A). Then, we introduce CORE (§II-B) and
formalize it (§II-C).

A. Choice of a Requirements Ontology

The concept of requirement as well as some of its subcon-
cepts, i.a., the notion of goal, softgoal or assumption, have been
discussed at length in the research on RE (e.g., [4], [6], [13],
[14], [15], [16], [17]). However, none of those works propose
a simple but complete description of all types of requirements
along with the relations between them. The CORE ontology
offers this set of essential concepts for RE, by covering the
main notions that were previously identified and described, and
by defining them within a single and comprehensive ontology.

B. Outline of the Core Ontology for Requirements

The root concept of CORE is Communicated information1,
specialized as follows:

1A CORE concept is denoted as Class and an instance thereof is denoted
instance.

• Goal, specialized on Functional goal, Quality constraint

and Softgoal;
• Plan;
• Domain assumption, specialized on Functional domain

assumption, Quality domain assumption and Soft domain

assumption;
• Evaluation, specialized on Individual evaluation and Com-

parative evaluation.

A basic idea of CORE is that requirements are communicated
by the stakeholders to the requirements engineer, so that the
latter classifies requirements based on how and what was
communicated [10], [18]. The Communicated information class
is a catchall one, the instances of which are propositions
communicated by the stakeholders. Once a communicated

information is available, the question to ask is what mode
was that proposition communicated in. The notion of mode (or
modus in linguistics) reflects the idea that we can distinguish
between the content of a communication and the intentional
state it was communicated in, whereby different kinds of mode
correspond to different intentional states of the stakeholder.
If the stakeholder tells the engineer that she believes that
some condition holds in the operating environment of the
system-to-be, then the proposition stating the condition is an
instance of the Domain assumption class. If she instead desires
that the condition be made to hold by the system-to-be, then
the proposition is an instance of the Goal class. In case an
intention to perform particular actions is conveyed, which may
then be delegated to the system-to-be, the engineer classifies
the propositions describing these actions as instances of the
Plan class. Since stakeholders can also indicate that they prefer
some goals to be satisfied than others, or that some of them
must be satisfied, while others are optional, CORE includes the
class of Evaluation.

CORE distinguishes three kinds of goals. Functional goal

refers to a desired condition the satisfaction of which is
verifiable and is binary, i.e., it is either satisfied or not.
Functional goal always represents either an event, a state
or a process. The Quality constraint class defines desired
values of non-binary measurable properties of the system-
to-be (e.g., how many seconds it takes to answer a query).
It has thus a quality space with a shared structure. As
functional goals and quality constraints are not necessarily
known at the very start of the RE process, the Softgoal class
is instantiated to capture requirements that refer to vague
properties of the system-to-be (e.g., that it is “fast”). Same
specialization applies to the Domain assumption class, which
has its functional variant (which refers to binary properties of
the system-to-be and/or its environment), its quality variant,
Quality domain assumption, and its soft variant, Soft domain

assumption. Finally, evaluations can qualify positively or
negatively individual requirements (as instances of Individual

evaluation) or via instances of Comparative evaluation which
compare goals, domain assumptions, and/or plans.

TABLE I
CORE WRITTEN IN DESCRIPTION LOGIC SIN

1 : COMMUNICATED INFORMATION ≡ GOAL t PLAN t DOMAIN ASSUMPTION t EVALUATION
2 : ⊥ v GOAL u PLAN u DOMAIN ASSUMPTION u EVALUATION
3 : refine ≡ refined-by−
4 : refined-by ≡ refine−
5 : > v ∀ refine.COMMUNICATED INFORMATION
6 : ∀ refine.GOAL ≡ FUNCTIONAL GOAL t QUALITY CONSTRAINT t SOFTGOAL
7 : ⊥ v FUNCTIONAL GOAL u QUALITY CONSTRAINT u SOFTGOAL
8 : approximate ≡ approximated-by−
9 : approximated-by ≡ approximate−
10: SOFTGOAL v ∃ approximate.QUALITY CONSTRAINT

11: ∀ refine.DOMAIN ASSUMPTION ≡ FUNCTIONAL DOMAIN ASSUMPTION t QUALITY DOMAIN ASSUMPTION t
SOFT DOMAIN ASSUMPTION

12: ⊥ v FUNCTIONAL DOMAIN ASSUMPTION u QUALITY DOMAIN ASSUMPTION u
SOFT DOMAIN ASSUMPTION

13: SOFT DOMAIN ASSUMPTION v ∃ approximate.QUALITY DOMAIN ASSUMPTION
14: ∀ refine.EVALUATION ≡ COMPARATIVE EVALUATION t INDIVIDUAL EVALUATION
15: ⊥ v COMPARATIVE EVALUATION u INDIVIDUAL EVALUATION

C. The CORE Ontology in Description Logic

We use the Description Logic (DL) SIN [19] to rewrite
each ontology. This rewriting is needed to map the CORE and
WSMO concepts (see §IV) with the Distributed Description
Logic (DDL) [20] (see §IV-C).
Brief overview of the DL rationale. The DL languages are
used to represent and to structure the knowledge of a domain of
interest. In the scope of this work, these are the requirements
and the service domains. The basic DL language is AL. It
allows us to specify, i.a., the intersection of two concepts
(A uB), the universal restriction (∀r.A: all instances having
the relation r with at least one instance of A) and the limited
existential quantification (∃r.>: it exists instances having the
relation r). In addition to these constructors, we use for
formalizing CORE and WSMO the union (A t B), the full
existential quantification (∃r.B: instances of B having the
relation r), the equivalence (A ≡ B: each instance of A has
a corresponding instance in B, and inversely), the subsume
relation (A v B: each instance of A has a corresponding
instance in B), the inverse relation (r−: a relation r has the
opposite meaning of r−) and the number restriction (≤ n r.A:
each instance of A has at most n relation r; ≥ n r.B: each
instance of B has at least n relation r). All these constructors
are part of the SIN logic.

Line 1 of Table I defines the root concept of the CORE
ontology. Requirements expressed during RE are categorized
into the four main classes of CORE, i.e., Goal defined by
Line 6, Plan which has no subclasses, Domain assumption

defined by Line 11 and Evaluation defined by Line 14. This
specialization enables to classify requirements in the end-leaves
of the CORE ontology, i.e., Quality constraint, Soft domain

assumption, Comparative evaluation, and so on. Detailed
informal definitions of the CORE concepts are not repeated
here. Unchanged softgoals and soft domain assumptions cannot
be propagated to the level of service descriptions because of

their vagueness. They need to be replaced by more precise
requirements. Just as, say, imprecise goals are refined, so
are softgoals and soft domain assumptions approximated [18],
[10], whereby their approximations involve the identification
of quality constraints and quality domain assumptions, while
comparative evaluations may indicate how alternative quality

constraints or quality domain assumptions may rate in terms
of relative desirability. Lines 10 and 13 capture these ideas.

III. THE SERVICE MODELING ONTOLOGY

This section has the same structure as §II: we first explain
the choice of WSMO as the service ontology (§III-A), then we
sketch (§III-B) and formalize it (§III-C).

A. Choice of a Service Ontology

We have chosen between two ontologies: the WSMO on-
tology and the Semantic Markup for Web Services (OWL-S)
ontology [21], [22], previously called DAML-S.

Here are the main arguments which lead us to choose the
WSMO ontology:

1) In constrast to OWL-S, WSMO separate the service con-
sumer view from the service provider view. Research has
mainly focused on the service provider perspective [8].
It is relevant to separate the two viewpoints in order to
propose a SRE methodology which can accommodate
the two perspectives and thereby ensure a separation of
concerns.

2) From a practical point of view, the ESSI working
group2 proposes several languages, technologies and tools
specifically built to support the use of the WSMO ontology.
These are mainly the WSML language [12], [27] which
allows to specify the instances of the WSMO concepts,
and the Web Service Execution Environment (WSMX)

2The European Seamntic Systems Initiative (ESSI) is now part of the
community of the Semantic Technology Institute International. See respectively
http://www.essi-cluster.org/ and http://community.sti2.org/.

TABLE II
THE SUBCLASSES OF THE WSMO CLASS

WSMO concept Purpose
NonFunctionalProperties Specification of the service aspects which are not directly related to its core functionality [23], among

others: Accuracy, Financial, Network-related QoS, Reliability, Scalability and Security. The other properties
are mainly related to the characteristics of the service description itself and do not add any constraints
over what a service can or cannot do, or how it can do it [24].

Ontology Used to import other ontologies.
__Mediator Used to resolve the heterogeneity problems between the linked elements in the service specification, i.e.,

ontologies or goals.
Capability Specification of the service functionality which is unique. Capability is specialized on Shared variables,

Precondition, Assumption, Postcondition and Effect.
Shared variables Specification of the variables shared by the other Capability’s subclasses.
Precondition Specification of the required state of the data space, i.e., the input data, before the execution of the service

in order to enable the service to provide its value.
Assumption Specification of ”the [required] state of the world before the execution of the service. Otherwise, the

successful provision of the service is not guaranteed” [23].
Postcondition Specification of the guaranteed state of the data space, i.e., the output data, after the successful execution

of the service.
Effect Specification of the guaranteed state of the world after the successful execution of the service.

Interface Description of how the capability of the service can be fulfilled.
Interface is specialized on Choreography and Orchestration.

Choreography Specification of the communication process to follow in order to use the service. To describe these
interactions between the service and its user, WSMO uses the notion of Abstract State Machine (ASM) [25].
In our case, a choreography is a state machine having its states described in terms of concepts, their
relations and functions as well as its transition rules from one state to the other [23], [26].

Orchestration Specification of possible functionalities used statically of dynamically by the service from other services
in order to achieve its capability.

tool [28], [29] which supports the description of offers
and requests of semantic services. It also supports the
service publishing, discovering and selection processes.
Working with WSMO along with the technical solutions
supporting its use opens more perspectives than OWL-S
for the future work.

3) WSMO allows to describe each of its elements with non-
functional properties while OWL-S restricts the use of non-
functional properties to the description of the profiles.

B. Outline of the WSMO Ontology

The WSMO ontology ”provides the conceptual underpinning
[...] for semantically describing all relevant aspects of [...]
services in order to facilitate the automatization of discovering,
combining and invoking electronic service over the Web” [11].
In other words, WSMO aims at describing all the relevant aspects
of a service, i.e., its concepts and their relations [11], [23],
[24]. Its model layer is composed of four classes: Ontology3,
Service, Goal and Mediator, which are specified through the
Meta Object Facility (MOF) notation [30].

The Ontology class ”provides the [agreed] terminology used
by other WMSO [top-level classes] to describe the relevant
aspects of the domain of discourse” [24]. An Ontology consists
of non-functional properties (i.a., the creator name, the language
used, the unique identifier of the service, the version of the
service being described, and so on [23]), imported ontologies,
ontology mediator, and the definition of concept, relation,

3A WSMO concept is denoted as Class and an instance thereof is denoted
instance.

function, instance and axiom. For further details, see [11],
[23], [24].

The Goal class models the service consumer view of the
service she is looking for by representing her needs in terms
of functionality, behavior and QoS [11]. The MOF model of
Goal is as follows4:

Class goal
hasNonFunctionalProperties type

nonFunctionalProperties
importsOntology type ontology
usesMediator type ooMediator, ggMediator
requestsCapability type capability multiplicity =
single-valued

requestsInterface type interface

Table II gives the definitions of the Goal subclasses. Note the
attributes Precondition, Assumption, Postcondition and Effect
are all axioms, i.e., logical expressions. The Capability and
the Interface classes have three others subclasses than those
underlined in Table II: nonFunctionalProperties, ontology and
__Mediator. Seeing that they have no significance in the scope
of this work –they are only used for intra-service relations–,
they are ignored.

The third class of the model layer of WSMO is Service.
This class describes the computational entity exposing a
service through a Web-based interface (e.g., a Web Service

4Note each attribute has a default implicit multiplicity set to multi-valued.
Otherwise, the multiplicity is explicit.

TABLE III
WSMO WRITTEN IN DESCRIPTION LOGIC SIN

16: GOAL ≡ NON FUNCTIONAL PROPERTY u CAPABILITY u INTERFACE
17: GOAL v SERVICE USER NEEDS
18: GOAL v =1 composed-by.CAPABILITY
19: compose ≡ composed-by−
20: composed-by ≡ compose−
21: NON FUNCTIONAL PROPERTY ≡ BEHAVIOURAL SERVICE PROPERTY t NON-RESTRICTIVE SERVICE PROPERTY

22: CAPABILITY ≡ NON FUNCTIONAL PROPERTY u SHARED VARIABLES u PRECONDITION u
ASSUMPTION u POSTCONDITION u EFFECT

23: AXIOM w PRECONDITION t ASSUMPTION t POSTCONDITION t EFFECT
24: AXIOM ≡ LOGICAL EXPRESSION u NON-RESTRICTIVE AXIOM PROPERTY
25: INTERFACE ≡ NON FUNCTIONAL PROPERTY u CHOREOGRAPHY u ORCHESTRATION
26: CHOREOGRAPHY v STATE MACHINE
27: STATE MACHINE ≡ STATE u TRANSITION RULE
28: STATE MACHINE v ≥ 2 sequence.STATE
29: sequence ≡ sequenced-by−
30: sequenced-by ≡ sequence−

(WS) based on the WSDL [31], SOAP [32] and UDDI [33]
technologies) [11], [24]. A service has the same types of
attributes as a goal, i.e., NonFunctionalProperties, Ontology,
__Mediator, Capability and Interface.

The last class, Mediator, ”describes elements that overcome
[data, process and protocol] interoperability problems between
different WSMO elements” [24]. It can help to resolve data,
process, and protocol incompatibilities.

In the scope of our project, i.e., the specification of the
service consumer requirements within the service oriented
paradigm, the relevant class of WSMO to work with is the Goal
class because it allows to specify the requirements of service
consumers. Therefore, this class is formalized in description
logic (see Table III), and mapped with the CORE ontology
(see §IV).

C. The WSMO Goal Concept in Description Logic

For the WSMO formalization, we ignore attributes having
the Ontology type or the Mediator type which are normally
present in each main class, i.e., classes formalized by Lines 16,
22 and 25.

Line 16 defines the root concept of the WSMO ontology. A
goal describes the user’s needs concerning the service use
(Line 17) and it has only one capability (Line 18). Non
functional property (Line 21) is composed of the properties of
the service concerning its behavior as well as properties of the
service description (e.g., creation date, author(s), identifier, and
so on). These do not constrain the service. This distinction is not
expressly made in the WSMO ontology, but the distinction be-
tween two types of non-functional properties is admitted [11].
The Capability class (Line 22) consists of several different
axioms (Line 23) apart from some non-restrictive properties.
An axiom represents a logical expression (Line 24). The
Choreography composing an Interface (Line 25) is a state
machine (Line 26) organizing the transition between several
states (Lines 27 and 28). The Orchestration class is not deeper
detailed in Table III (see §IV-A for the argument).

IV. BRIDGING THE TWO ONTOLOGIES

The objective of this section is to link similar classes of
each ontology representing the same objects, i.e., service
consumer’s requirements concerning a service to select. The
methodology observed is as follows. First, the relevant classes
of the WSMO ontology are highlighted (§IV-A) to be then
mapped to the four main CORE classes (§IV-B). Afterwards, we
refine and formalize the mapping between the two ontologies:
each relevant WSMO class is mapped to the corresponding
class(es) of the CORE ontology (§IV-C).

In this work, we do not care about the specification of the
needs expressed by the service consumer, i.e., with which
language the requirements and the service request can be
specified. Nevertheless, we illustrate the discussion about
our mappings with the WSML language, one of the potential
languages to represent syntactically the WSMO ontology, and
with service consumer’s requirements expressed in natural
language. A hotel booking example is used, for which the
domain ontologies, i.e., the ontology of a hotel, of a booking,
of a credit card, of specific QoS service properties, and so on are
supposed known and shared among the stakeholders. In §IV-B,
requirements expressed by the service consumer are stated in
natural language. Those requirements are classified into one of
the main CORE classes, i.e., Goal, Plan, Domain assumption or
Evaluation. In §IV-C, they are refined and, for some of them,
the corresponding WSML specification is proposed.

A. Relevant WSMO Classes

Relevant WSMO classes selected for the mapping are: Be-
havioural service property, Precondition, Assumption, Post-
condition, Effect and Choreography. The other WSMO classes
are not selected for the following reasons which are related to
the definition of the CORE concept Communicated information:

• Non-restrictive service property: the objectives of the
service user are to set constraints concerning the service
she will use, i.e., what the service does and/or how the

TABLE IV
MAPPING OF THE WSMO CLASSES WITH THE CORE CLASSES 5 .

Behavioural
service property

Precondition Assumption Postcondition Effect Choreography

Goal V X X V V V

Plan X V V X X V

Domain assumption X V V X X X

Evaluation V V V V V V

service does it. This concept cannot be used for that
purpose.

• Shared variable: All shared variables are indirectly used
in at least one of the following classes Precondition,
Assumption, Postcondition and Effect which have been
selected. Moreover, the service consumer cannot evaluate
the definition of a variable but only what he has to give
as input data and what he receives as output data.

• Orchestration: This class referencing the functionalities
provided by other services is indirectly included in
Capability which resume the global functionality of the
service being described. This (global) service can call other
services in order to fulfil its capability; that is specified
by an orchestration.

B. Mapping the WSMO Classes to the Four Main CORE Classes

For each possible association between a WSMO class and
a CORE class, we check if a service consumer can express a
requirement corresponding to the content of the WSMO class.
Table IV summarizes the development of this step; explanations
of the mappings follow.

A goal represents some conditions not yet satisfied that the
service consumer desires6 to see become true in the future
system [10]. Requirements 1 and 2 are examples of goals

related to the hotel booking example.
Requirement 1. goal: The service consumer wants to book a
hotel.

Requirement 2. goal: The service consumer wants that the
service answers quickly.

The service consumer can express a desire, i.e., a goal,
concerning QoS properties which are Behavioural service
properties (e.g., Requirement 2). Goal is not mapped with
Precondition and Assumption. By specifying variables to be
provided in order to use the service or the state of the world
before the service use, preconditions and assumptions do
not correspond to conditions not yet satisfied that the service
consumer wants to see become true after the service use. A
postcondition and an effect respectively describe the state of
some variables or the state of the world after the service

5In Table IV, the sign ” V ” means that the WSMO class is mapped with
the corresponding CORE class. Otherwise, the sign ” X ” is used.

6This informal definition as well as the following ones are about a service
consumer. The CORE ontology can be used to convey requirements of a
stakeholder concerning other types of system-to-be, which can be a software
or not.

use. This corresponds to a goal that the service consumer
wants to see achieved by the service. Requirement 1 captures
these kinds of stakeholders’ needs; this requirement must be
refined (see §IV-C). The service consumer can express desires
concerning the communication process, i.e., which and how
are the messages exchanged between the service consumer
and the service provider. This communication process can be
specified through the Choreography class.

Secondly, a plan can be defined as the specification of the
service consumer’s intentions to perform, conditionally or not,
the action(s) described (e.g., Requirement 3).

Requirement 3. plan: The service consumer intends to pay
for the accommodation.

Plan is not mapped with Behavioural service property be-
cause the service consumer cannot have intentions concerning
elements belonging to Behavioural service property, which
can only be used to describe the QoS level delivered by the
service provider. An intention, i.e., a plan, of the service
consumer can be to provide data to the service which is
specified into a precondition. Similarly, he can promise to
carry out some actions in order to bring the state of the world
in a predetermined shape, i.e., an assumption (Requirement 3
is an example of such intentions). The values of variables
or the state of the world after the service execution do not
concern the service consumer’s intentions; this is why Plan

is not mapped with Postcondition or with Effect. Lastly, the
service consumer can intend to send specific messages and data
during the communication process with the service provider.
This allows us to map Plan to Choreography.

A domain assumption means that the content of the commu-

nicated information expressed is believed true by the service
consumer or, through the speech act expressed by the latter, the
domain assumption makes the content of the communicated

information true (e.g., the service consumer says: ”My Web
server will use a Linux Operating System (OS)”, and then his
computer department actually uses a Linux OS). Requirements 4
and 5 are examples of domain assumptions.

Requirement 4. domain assumption: The service consumer
believes that the provided credit card number is correct.

Requirement 5. domain assumption: The service consumer
believes that he will land the 21st of July.

Domain assumption is not mapped with Behavioural service
property. Because most of the QoS properties are adaptable to

the requirements of the service consumer –the service provider
proposes the same functional service with different levels of
QoS [34]–, the service consumer is not expected to have any
beliefs about the QoS properties of the service she is looking
for. She also cannot make true a QoS property alone seeing
that it must be negotiated –to some extent– with the service
provider. Requirements capturing beliefs expressed by the
service consumer –domain assumptions– can be related to
the value of some variables, i.e., a precondition, or to the
state of the world, i.e., an assumption, that he has to satisfy
before the service use whatever their real state. Requirement 4
and 5 are examples of, respectively, a precondition and of an
assumption. The Domain assumption class is not mapped with
Postcondition and Effect: the values of the output data and the
state of the world after the service use shape the added value
of the service. When the service consumer looks for a specific
service among services fully specified, he is not expected to
express any beliefs about what the service effectively does,
captured in postconditions and effects. A ”belief” concerning
an output should be seen as a constraint on the service sought,
i.e., a goal. Moreover, the results of the service use are carried
out by the service provider. This means that the service
consumer cannot make true the content of a postcondition
or an effect by himself. Lastly, the service consumer is not
expected to express beliefs about the description of how the
data is exchanged with the service provider who (almost)
always sets the communication process. Likewise, the service
consumer cannot make true a specific communication process
which partially depends on the service provider. So, Domain

assumption is not mapped with Choreography.
Finally, the Evaluation class specifies the preferences (or the

appraisal) of the service consumer about a single condition or
between conditions that may hold. Requirements 6, 7 and 8 are
examples of evaluations which are related to the hotel booking
example.

Requirement 6. evaluation: The service consumer prefers a
response time of 500 ms to a response time of 700 ms.

Requirement 7. evaluation: The service consumer does not
appreciate paying the accommodation at its booking time.

Requirement 8. evaluation: The service user appreciates a
large availability.

Evaluation is bridged to the six WSMO concepts seeing that
the service consumer can express a preference between two
WSMO instances, or he can appraise negatively or positively a
specific communicated information.

C. The Mappings Between CORE and WSMO

Table V illustrates the mapping between the CORE and the
WSMO ontologies using the DDL [20]. In that table, the DDL

sign used, A ≡−→ B, means that the mapping is complete, i.e.,
each instance of the concept A can be bridged with one of
the instances of the corresponding concept B. Each concept
used in Table V is prefixed with ’CORE:’ or with ’WSMO:’

respectively to remind that the class belongs to CORE or to
WSMO.

In CORE, a goal is either a functional goal or a quality

constraint. Given that a softgoal is vague, early requirements
classified as softgoals must be approximated to become quality

constraints. For instance, Requirement 2 is a softgoal; it is
approximated by Requirement 9, which is a quality constraint.

The non-functional properties of a service, i.e., its be-
havioural service properties, are not related to an event, a
process or a state, but they describe some measurable quality
aspects of the service. The Behavioural service property
class is thus mapped with the quality constraint class as
formalized through Line 32. Note Specification 1 specifies
a behavioural service property captured by Requirement 9.
The Postcondition class describes the state of the data space.
It can be linked with Functional goal (Line 31) because
the targeted data space, which is a state, is reached or not.
With a similar reasoning, the Effect class can be linked with
Functional goal. The last class to map with a subclass of Goal
is Choreography. The latter is also mapped with Functional

goal (Line 31) because a choreography describes a process
(i.e., the communication process). Requirements 10 and 11
refine Requirement 1 by using, e.g., the “HOW” question [35],
[36]; Requirement 10 is specified in Specification 2.

Requirement 9. quality constraint: The service consumer
wants an answer within 500ms.

Specification 1.
nonFunctionalProperty

performance hasValue ?performance
definedBy

?performance[responseTime hasValue ?responseTime]
memberOf QoSproperty

and ?responseTime[delay hasValue ?time, units
hasValue millisecond]

and lessEqual(?time,500)

Requirement 10. functional goal: The service consumer wants
to receive the booking information.

Specification 2.
postcondition

nonFunctionalProperty
description hasValue ”The output has to be the address

of the hotel, the booking number as well as the arrival
and departure date”

endNonFunctionalProperty
definedBy

?hotelBookingInfo memberOf booking
and ?hotelBookingInfo[hasAddress hasValue ?address,

hasArrivalDate hasValue ?arrivalDate,
hasDepartureDate hasValue ?departureDate,
hasBookingId hasValue ?bookingId]

Requirement 11. functional goal: The service consumer wants
that the nights paid are actually booked for him.

The Plan class does not have subclasses. Line 33 formalizes

TABLE V
THE MAPPING BETWEEN CORE AND THE WSMO CLASSES FORMALIZED WITH DDL

31: CORE :FUNCTIONAL GOAL
≡−→ WSMO :POSTCONDITION t WSMO :EFFECT t WSMO :CHOREOGRAPHY

32: CORE :QUALITY CONSTRAINT
≡−→ WSMO :BEHAVIOURAL SERVICE PROPERTY

33: CORE :PLAN
≡−→ WSMO :PRECONDITION t WSMO :ASSUMPTION t WSMO :CHOREOGRAPHY

34: CORE :FUNCTIONAL DOMAIN ASSUMPTION
≡−→ WSMO :PRECONDITION t WSMO :ASSUMPTION

35: CORE :QUALITY DOMAIN ASSUMPTION
≡−→ WSMO : ⊥

36: CORE :INDIVIDUAL EVALUATION
≡−→

WSMO :BEHAVIOURAL SERVICE PROPERTY t WSMO :PRECONDITION t
WSMO :ASSUMPTION t WSMO :POSTCONDITION t WSMO :EFFECT t
WSMO :CHOREOGRAPHY

37: CORE :COMPARATIVE EVALUATION
≡−→

WSMO :BEHAVIOURAL SERVICE PROPERTY t WSMO :PRECONDITION t
WSMO :ASSUMPTION t WSMO :POSTCONDITION t WSMO :EFFECT t
WSMO :CHOREOGRAPHY

the content of Table IV concerning the Plan class. Require-
ments 12 and 13 refine Requirement 3. The WSML excerpt of
Requirement 13 is given in Specification 3.

Requirement 12. plan: The service consumer promises to
provide his credit card data when booking.

Requirement 13. plan: The service consumer will have enough
money to book the hotel.

Specification 3.
assumption

nonFunctionalProperty
description hasValue ”The credit card balance is

sufficient”
endNonFunctionalProperty
definedBy

?balanceCard memberOf card
and ?bookingPrice memberOf booking
and greaterEqual(?balanceCard,?bookingPrice)

A domain assumption is either a functional domain assump-

tion or a quality domain assumption; potential soft domain

assumptions must be approximated in order to share a common
measurement scale and thus become quality domain assump-

tion. The Precondition class describes the state of the data
space before the service use (e.g., the precondition captured
Requirement 14, which refines Requirement 4, and specified
in Specification 4). As formalized through Line 34, it can be
linked with Functional domain assumption because the targeted
data space before the service use, which is a state, is satisfied
or not. With a similar reasoning, the Assumption class can be
linked with Functional domain assumption. Requirement 15,
refined from Requirement 5, is a functional domain assumption.
Note that there is no mapping between a WSMO class and
Quality domain assumption (formalized by Line 35). This
situation was expected due to the nature of the technologies
used to implement services, e.g., WS technologies. The quality
properties of the environment mainly concern the network
infrastructure which is inherently unreliable. Therefore, the
service consumer cannot believe true or make true the value
of a non-functional characteristic of the environment.

Requirement 14. functional domain assumption: The service
consumer believes that the provided credit card number

coincides with the actual number of his credit card.

Specification 4.
precondition

nonFunctionalProperty
description hasValue ”The credit card number is provided

as input”
endNonFunctionalProperty
definedBy

?cardInfo memberOf card
and ?cardInfo[hasCardNumber hasValue ?cardNumber,

hasValidityDate hasValue ?validityDate]

Requirement 15. functional domain assumption: He believes
that his plane will land the 21st of July.

An evaluation is either specialized on an individual eval-

uation or a comparative evaluation. The Behavioural service
property class is linked with the two subclasses of Evaluation:
the service consumer can compare two behavioural service
properties (e.g., Requirement 16 refining Requirement 6), but
he can also rate negatively of positively a single behavioural
service property (e.g., Requirement 17 refined from Require-
ment 8). With a similar reasoning, we can say that Precondition,
Assumption, Postcondition, Effect and Choreography are all
mapped with Individual evaluation and with Comparative eval-

uation. This is formalized through the Lines 36 and 37. A last
example is Requirement 18, refined from Requirement 7, which
is an individual evaluation of the plan stated in Requirement 12.
Requirement 16. comparative evaluation: The service con-
sumer prefers a response time of 500 ms to a response time
of 700 ms.

Requirement 17. individual evaluation: The service consumer
appreciated an availability of 97%.

Requirement 18. individual evaluation: The service consumer
can negatively assess to pay the booking in advance.

Clearly, the WSML language does not offer the constructors
to specify comparative evaluations and individual evaluations

expressed by the service consumers. If WSML is chosen to
specify the WSMO concept, then some requirements of a service
consumer will not be specified using WSML. This issue is left
for future work.

V. RELATED WORK

Most often, the service engineering field is interested in
the service provider’s point of view (e.g., [37], [38], [39])
or focuses on the monitoring of the service consumer’s
requirements (e.g., [40], [41]). They study languages, models,
methodologies and/or techniques used to (re)engineer a service
which is then exposed through a Web-based interface and
monitored by its provider.

Some research projects address the issue of service selection
based on consumers’ requirements. However, the requirements
elicitation task is rarely well defined, and the links between RE
and the service oriented paradigm are not as clear (e.g., [42],
[43], [44]). Only a few works cover the service engineering
from the customer point of view, i.e., how the elicitation of
her needs can be achieved and then used in order to select the
more accurate service. The targeted goal is clearly to reach an
automation of most tasks of the SRE process (i.e., mainly the
consumer requirements elicitation and specification, the service
selection and eventually the service composition at runtime,
and the service monitoring).

Grandry et all. [45] propose a framework to capture require-
ments related to QoS and manage them. One important feature
of the technique is the traceability of the requirements from
the business level to the software level. However, this work
does not propose a solution to express the elicited requirements
into machine-processable technologies. They only focus on
non-functional requirements.

Rolland et all. [46] introduce a model for Intentional Service
Modelling (ISM). Service providers have to describe their WSs
in an intentional way. Service consumers use an intentional
matching mechanism to select potential WSs. In this work, the
RE process to elicit the service consumer needs is not well
defined and some potential requirements cannot be taken into
account (mainly QoS related requirements). Another relevant
paper [47] uses the ISM approach. The authors improve the
work of Rolland et al. by taking into account the QoS levels of
WSs during the matching and selection steps. The Service-Based
Applications (SBA) must be modeled in terms of stakeholders’
requirements, and not in terms of technical and procedural
aspects. Similar to the work of Rolland and colleagues, the
use of ISM requires that both the service consumers and/or the
requirements engineers, and the service providers learn to use
and work within the ISM approach.

In [48], the authors propose a method and a tool which
allow the service users to express their requirements. The tool
analyzes them in order to help the users during the requirements
refinement process and in discovery of errors and conflicts.
The authors create their own meta-model for the four elements
required in service consumption (i.e., role, goal, process and
service).

The last significant work related to ours is the Service
Centric System Engineering (SeCSE) project [49]. This project
aims at increasing the accuracy of services selected based
on textual requirements expressed by the service consumer.
SeCSE takes into account two main challenges present in all

RE projects: the incompleteness and the ambiguity of the
propositions. UCaRE, based on the VOLERE methodology, is the
application used by requirements engineers to model textual
requirements expressed by service consumers. The service
selection is based on a discovery algorithm, EEDiE, which uses
WordNet and focuses on the disambiguation and completeness
of the requirements [49], [50]. The scope of our work is more
restricted than the whole SeCSE solution. Our main contribution
is the use of comprehensive ontologies, i.e., CORE and WSMO,
covering all main concepts that can be used respectively in
RE and in service requests engineering. Only two types of
requirements can be modeled with the SeCSE system: functional
and quality requirements. Some potential requirements, such
as evaluation or assumption, cannot be differentiated from the
others. Moreover, by using WSMO as the service ontology, we
allow to specify the service proposals and the service requests
with semantics languages such as WSML. SeCSE has been built
to select services expressed with the traditional WS technologies
such as UDDI and WSDL. However, semantic services are more
and more presented as the next significant evolution of the
service oriented paradigm [23], [51].

VI. CONCLUSIONS

The service oriented paradigm has been raising new issues,
including the need for methodologies enabling the elicitation
of the service consumer’s requirements. Because software
consumers often evaluate the system built in comparison
with their needs, a correct elicitation and management of
those requirements are significant issues to solve. An RE
methodology should enable us to solve these issues, while
being adapted to the specifics of service-oriented computing.
This is why we present a conceptual and formal mapping
between a requirements ontology and a service ontology: the
correspondences between the concepts of the requirements
ontology and those of the service ontology enable, on the one
hand, RE engineers to handle concepts and relations they know,
and, one the other hand, to capture and to specify the service
requirements in technologies used in service computing.

The work proposed in this paper allows (i) to consider the
creation or the modification of an RE methodology adapted
to the service oriented paradigm which can now be grounded
on the conceptual mapping between CORE and WSMO, (ii) to
identify how the requirements concerning a service request
can be transferred into the service world in order to select the
more accurate service compared with the service consumer’s
requirements, and (iii) to move a step closer to the use of
requirements expressed by the service consumer in service
requests building.

The formal links between the specifications of the require-
ments and the elements of the service request is also an impor-
tant work for the requirements management at runtime: when
a service request cannot be satisfied any longer, the service
selection system could analyze the problematic requirement(s)
and then compute a new service request still satisfying the
service consumer’s requirements, but which is less preferred by
him. It is impossible to keep all the candidate service requests

and all the consumers’ requirements expressed if the latter
are directly specified within a single service request based on
formalisms such as WSDL or WSML.

A. Future Work
The abstract mapping introduced in this paper need a

syntactical language in order to specify instances belonging to
the concept for each ontology used. Based on the proposed
links, future work will focus on the selection and on the
integration of a language both for the CORE ontology and
the WSMO ontology. The best choice for the service ontology
seems to be WSML [12] despite the possible gaps underlined
in the end of §IV-B. It has been designed especially for the
WSMO meta-model. Concerning the RE ontology, a whole RE
methodology must be chosen among the current possibilities
and eventually adapted to our application domain, i.e., the
service oriented paradigm. This RE methodology might be built
upon Techne [52] which is an abstract requirements modeling
language. By integration of languages we mean the creation
of automatic rules to translate instances of CORE concepts
into instances of the corresponding WSMO concepts; in other
words, the creation of translation rules between, e.g., the future
methodology built upon Techne and the WSML specification.

REFERENCES

[1] L. Liu, E. S. K. Yu, and H. Mei, “Guest Editorial: Special Section on
Requirements Engineering for Services - Challenges and Practices,” IEEE
Transactions on Services Computing, vol. 2, no. 4, pp. 318–319, 2009.

[2] M. P. Papazoglou and D. Georgakopoulos, “Service-oriented Computing,”
Commun. ACM, vol. 46, no. 10, pp. 24–28, 2003.

[3] S. A. McIlraith and D. L. Martin, “Bringing Semantics to Web Services,”
IEEE Intelligent Systems, vol. 18, no. 1, pp. 90–93, 2003.

[4] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, 2009.

[5] B. Nuseibeh and S. M. Easterbrook, “Requirements Engineering: A
Roadmap,” in ICSE - Future of SE Track, 2000, pp. 35–46.

[6] B. H. C. Cheng and J. M. Atlee, “Research Directions in Requirements
Engineering,” in Proceedings of the International Conference on Software
Engineering (ISCE 2007) and Workshop on the Future of Software
Engineering (FOSE 2007). ACM, 2007, pp. 285–303.

[7] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
Oriented Computing: a Research Roadmap,” International Journal of
Cooperative Information Systems, vol. 17, no. 2, pp. 223–255, 2008.

[8] W.-T. Tsai, Z. Jin, P. Wang, and B. Wu, “Requirement Engineering
in Service-Oriented System Engineering,” in Proceedings of ICEBE
2007, IEEE International Conference on e-Business Engineering and the
Workshops SOAIC 2007, SOSE 2007, SOKM 2007. IEEE Computer
Society, 2007, pp. 661–668.

[9] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
Oriented Computing: State of the Art and Research Challenges,” IEEE
Computer, vol. 40, no. 11, pp. 38–45, 2007.

[10] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “A Core Ontology for
Requirements,” Applied Ontology, vol. 4, no. 3-4, pp. 169–244, 2009.

[11] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg,
A. Polleres, C. Feier, C. Bussler, and D. Fensel, “Web Service Modeling
Ontology,” Applied Ontology, vol. 1, no. 1, pp. 77–106, 2005.

[12] J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel, “The Web Service
Modeling Language WSML: An Overview,” in The Semantic Web:
Research and Applications, 3rd European Semantic Web Conference
(ESWC 2006), ser. Lecture Notes in Computer Science, vol. 4011.
Springer, 2006, pp. 590–604.

[13] P. Zave, “Classification of Research Efforts in Requirements Engineering,”
ACM Computing Survey, vol. 29, no. 4, pp. 315–321, 1997.

[14] A. van Lamsweerde, “Goal-Oriented Requirements Engineering: A
Guided Tour,” in Proceedings of the Fifth IEEE International Symposium
on Requirements Engineering (RE 2001). IEEE Computer Society, 2001,
p. 249.

[15] L. Chung and J. C. Sampaio do Prado Leite, “On Non-Functional Require-
ments in Software Engineering,” in Conceptual Modeling: Foundations
and Applications, ser. Lecture Notes in Computer Science, vol. 5600.
Springer, 2009, pp. 363–379.

[16] E. S. K. Yu, “Towards Modelling and Reasoning Support for Early-Phase
Requirements Engineering,” in Proceedings of the 3rd IEEE International
Symposium on Requirements Engineering (RE 1997). IEEE Computer
Society, 1997, pp. 226–235.

[17] G. Regev and A. Wegeman, “Where do Goals Come From: the Underlying
Principles of Goal-Oriented Requirements Engineering,” in Proceedings
of the 13th International Conference on Requirements Engineering (RE
2005). IEEE Computer Society, 2005, pp. 353–362.

[18] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the Core Ontology
and Problem in Requirements Engineering,” in Proceedings of the 16th
IEEE International Requirements Engineering Conference (RE 2008).
IEEE Computer Society, 2008, pp. 71–80.

[19] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, Eds., The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, 2003.

[20] A. Borgida and L. Serafini, “Distributed Description Logics: Assimilating
Information from Peer Sources,” Journal on Data Semantics I, vol. 2800,
pp. 153–184, 2003.

[21] A. Ankolenkar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin,
D. McDermott, S. A. McIlraith, S. Narayanan, M. Paolucci, T. R. Payne,
and K. Sycara, OWL-S: Semantic Markup for Web Services 1.1, D. L.
Martin, Ed. DAML Services Coalition, 2004.

[22] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara, “OWL-S: Semantic Markup for Web
Services,” World Wide Web Consortium (W3C), Tech. Rep., 2004.
[Online]. Available: http://www.w3.org/Submission/OWL-S/

[23] D. Fensel, H. Lausen, A. Polleres, J. d. Bruijn, M. Stollberg, D. Roman,
and J. Domingue, Enabling Semantic Web Services: The Web Service
Modeling Ontology. Springer, 2006.

[24] D. Roman, H. Lausen, and U. Keller, “D2v1.2 Web Service Modeling
Ontology (WSMO),” The ESSI WSMO working group, Tech. Rep.,
April 2005. [Online]. Available: http://www.wsmo.org/TR/d2/v1.2/D2v1-
2 20050414.pdf

[25] Y. Gurevich, “Evolving algebras 1993: Lipari guide,” in Specification
and Validation Methods. Oxford University Press, 1993, pp. 9–36.

[26] D. Roman, J. Scicluna, C. Feier, M. Stollberg, and D. Fensel, “D14v0.1
Ontology-based Choreography and Orchestration of WSMO Services,”
The ESSI WSMO working group, Tech. Rep., March 2005. [Online].
Available: http://www.wsmo.org/TR/d14/v0.1/

[27] The WSML working group members, “D16.1v1.0 WSML Language
Reference,” The ESSI WSML working group, Tech. Rep., 2008.
[Online]. Available: http://www.wsmo.org/TR/d16/d16.1/v1.0/

[28] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler, “WSMX -
A Semantic Service-Oriented Architecture,” in Proceedings of the 2005
IEEE International Conference on Web Services (ICWS 2005). IEEE
Computer Society, 2005, pp. 321–328.

[29] M. Kerrigan, “Web service selection mechanisms in the Web Service
Execution Environment (WSMX),” in Proceedings of the 2006 ACM
Symposium on Applied Computing (SAC 2006). ACM, 2006, pp. 1664–
1668.

[30] Object Management Group, Meta Object Facility (MOF)
Core Specification Version 2.0, 2006. [Online]. Available:
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

[31] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language,”
World Wide Web Consortium (W3C), W3C Recommendation, 26 June
2007. [Online]. Available: http://www.w3.org/TR/wsdl20/

[32] World Wide Web Consortium (W3C), “Simple Object Access
Protocol (SOAP),” Tech. Rep., 2003. [Online]. Available:
http://www.w3.org/TR/soap

[33] OASIS UDDI Specification TC, “UDDI Spec Technical Committee
Draft 3.0.2,” OASIS, OASIS Committee Draft, 2004. [Online]. Available:
http://uddi.org/pubs/uddi v3.htm

[34] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and
managing Web services: issues, solutions, and directions,” VLDB Journal,
vol. 17, no. 3, pp. 537–572, 2008.

[35] A. van Lamsweerde, “Requirements Engineering in the Year 00: A Re-
search Perspective,” in Proceedings of the 22nd International Conference
on Software Engineering (ICSE’2000). ACM Press, 2000, pp. 5–19.

[36] A. van Lamsweerde, R. Darimont, and P. Massonet, “Goal-Directed
Elaboration of Requirements for a Meeting Scheduler: Problems and
Lessons Learnt,” in Proceedings of the Second IEEE International
Symposium on Requirements Engineering (RE’95). IEEE Computer
Society, 1995, pp. 194–203.

[37] G. Agre and I. Dilov, “How to Create a WSMO-Based Semantic Service
Without Knowing WSML,” in Web Information Systems Engineering -
WISE 2007 International Workshops, ser. Lecture Notes in Computer
Science, vol. 4832. Springer, 2007, pp. 217–235.

[38] H. E. Bouhissi, M. Malki, and D. Bouchiha, “Towards WSMO Ontology
Specification From Existing Web Services,” in Proceedings of the
2nd Conférence Internationale sur l’Informatique et ses Applications
(CIIA’09), ser. CEUR Workshop Proceedings, vol. 547. CEUR-WS.org,
2009.

[39] J. Nern, G. Agre, T. Atanasova, Z. Marinova, A. Micsik, L. Kovcs,
J. Saarela, and T. Westkaemper, “INFRAWEBS Semantic Web Service
Development on the Base of Knowledge Management Layer,” Inter-
national Journal on Information Theories & Applications, vol. 13, pp.
161–168, 2006.

[40] W. N. Robinson, “Monitoring Web Service Requirements,” in Proceedings
of the 11th IEEE International Conference on Requirements Engineering
(RE 2003). IEEE Computer Society, 2003, pp. 65–74.

[41] Q. Wang, J. Shao, F. Deng, Y. Liu, M. Li, J. Han, and H. Mei, “An
Online Monitoring Approach for Web Service Requirements,” IEEE
Transactions on Services Computing, vol. 2, no. 4, pp. 338–351, 2009.

[42] Y. Hao, Y. Zhang, and J. Cao, “WSXplorer: Searching for Desired
Web Services,” in Proceedings of the 19th International Conference on
Advanced Information Systems Engineering (CAiSE 2007), ser. Lecture
Notes in Computer Science, vol. 4495. Springer, 2007, pp. 173–187.

[43] G. Spanoudakis, A. Zisman, and A. Kozlenkov, “A Service Discovery
Framework for Service Centric Systems,” in Proceedings of the 2005
IEEE International Conference on Services Computing (SCC 2005).
IEEE Computer Society, 2005, pp. 251–259.

[44] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and
J. Miller, “METEOR-S WSDI: A Scalable P2P Infrastructure of Registries
for Semantic Publication and Discovery of Web services,” Journal of
Information Technology and Management, vol. 6, no. 1, pp. 17–39, 2005.

[45] E. Grandry, E. Dubois, M. Picard, and A. Rifaut, “Managing the
Alignment between Business and Software Services Requirements from
a Capability Model Perspective,” in Towards a Service-Based Internet:
First European Conference, ServiceWave 2008, ser. Lecture Notes in
Computer Science, vol. 5377. Springer, 2008, pp. 171–182.

[46] C. Rolland, R. S. Kaabi, and N. Kraı̈em, “On ISOA: Intentional
Services Oriented Architecture,” in Proceedings of the 19th International
Conference on Advanced Information Systems Engineering (CAiSE 2007),
ser. Lecture Notes in Computer Science, vol. 4495. Springer, 2007, pp.
158–172.

[47] M. Driss, N. Moha, Y. Jamoussi, J.-M. Jézéquel, and H. H. B. Ghézala, “A
Requirement-Centric Approach to Web Service Modeling, Discovery, and
Selection,” in Proceedings of the 8th International Conference on Service-
Oriented Computing (ICSOC 2010), ser. Lecture Notes in Computer
Science, vol. 6470, 2010, pp. 258–272.

[48] H. Chen and K. He, “A Method for Service-Oriented Personalized Re-
quirements Analysis,” Journal of Software Engineering and Applications,
vol. 4, no. 1, pp. 59–68, 2011.

[49] K. Zachos, N. A. M. Maiden, X. Zhu, and S. Jones, “Discovering Web
Services to Specify More Complete System Requirements,” in Proceed-
ings of the 19th International Conference on Advanced Information
Systems Engineering (CAiSE 2007), ser. Lecture Notes in Computer
Science, vol. 4495. Springer, 2007, pp. 142–157.

[50] K. Zachos and N. A. M. Maiden, “Inventing Requirements from Software:
An Empirical Investigation with Web Services,” in Proceedings of the
16th IEEE International Requirements Engineering Conference (RE 2008).
IEEE Computer Society, 2008, pp. 145–154.

[51] R. Studer, S. Grimm, and A. Abecker, Eds., Semantic Web Services,
Concepts, Technologies, and Applications. Springer, 2007.

[52] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos, “Techne: Towards
a New Generation of Requirements Modeling Languages with Goals,
Preferences, and Inconsistency Handling,” in Proceedings of the 18th
IEEE International Requirements Engineering Conference (RE 2010).
IEEE Computer Society, 2010, pp. 115–124.

