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ABSTRACT

Aims. We investigate the long-term evolution of inclined test particles representing a small Earth-like body with negligible gravita-
tional effects (hereafter called massless test-planets) in the restricted three-body problem, and consisting of a star, a gas giant, and a
massless test-planet. The test-planet is initially on a circular orbit and moves around the star at distances closer than the gas giant.
The aim is to show the influences of the eccentricity and the mass of the gas giant on the dynamics, for various inclinations of the
test-planet, and to investigate in more detail the Kozai mechanism in the elliptic problem.
Methods. We performed a parametric study, integrating the orbital evolution of test particles whose initial conditions were distributed
on the semi-major axis – inclination plane. The gas giant’s initial eccentricity was varied. For the calculations, we used the Lie inte-
gration method and in some cases the Bulirsch-Stoer algorithm. To analyze the results, the maximum eccentricity and the Lyapunov
characteristic indicator were used. All integrations were performed for 105 periods of the gas giant.
Results. Our calculations show that inclined massless test-planets can be in stable configurations with gas giants on either circular or
elliptic orbits. The higher the eccentricity of the gas giant, the smaller the possible range in semi-major axis for the test-planet. For
gas giants on circular orbits, our results illustrate the well-known results associated with the Kozai mechanism, which do not allow
stable orbits above a critical inclination of approximately 40◦. For gas giants on eccentric orbits, the dynamics is quite similar, and
the massless companion exhibits limited variations in eccentricity. In addition, we identify a region around 35◦ consisting of long-
time stable, low eccentric orbits. We show that these results are also valid for Earth-mass companions, therefore they can be applied
to extrasolar systems: for instance, the extrasolar planetary system HD 154345 can possess a 35◦ degree inclined, nearly circular,
Earth-mass companion in the habitable zone.

Key words. celestial mechanics – planets and satellites: dynamical evolution and stability – methods: analytical –
methods: numerical – planets and satellites: individual: HD 154345

1. Introduction

More than 400 extrasolar planets have been detected, among
which there are at least 40 multi-planetary systems. The major-
ity of the detections were achieved using the radial velocity tech-
nique, which is incapable of measuring the mutual inclination of
the orbits. Because of this lack of knowledge, as well as a gen-
eral belief that the orbits in planetary systems are coplanar like
those in our Solar System, only a few studies of the dynamics of
extrasolar systems have considered the three-dimensional case.
Some analytical works have highlighted the possibility that sta-
ble highly non-coplanar planetary systems may exist (e.g. Libert
& Henrard 2007; Libert & Tsiganis 2009a), while studies of the
formation of these systems remain in progress (e.g. Levison et al.
1998; Thommes & Lissauer 2003; Chatterjee et al. 2008; Libert
& Tsiganis 2009b).

Terrestrial planets have not – until now – been easily de-
tected because of the limitations of the applied methods. Hence
it is quite important to perform numerical studies to find out
whether these small planets can be in stable configurations with
the giant planets observed so far. In the same way, many stud-
ies of the restricted problem have investigated the stability of

additional planets in known single and multi-planetary systems
(e.g. Menou & Tabachnik 2003; Sándor et al. 2007) under the
assumption of coplanar orbits. In Funk et al. (2008, 2010), a
possible inclination of the fictitious test-planet was considered
in a parametric study of the dynamical stability of potential ad-
ditional terrestrial planets inside the habitable zone1 of nearby
(within 30 pc) extrasolar planetary systems2. In this present pa-
per, we highlight the influence of the eccentricity and the mass of
the gas giant on the evolution of fictitious, inclined, earth-mass
companions that are initially on circular orbits. These results are
analyzed thoroughly in the present contribution.

On the one hand, we consider gas giants on circular orbits
and show that our results are in agreement with the well-known
results of the Kozai mechanism (Kozai 1962) as expected. On the
other hand, we study the influence of increasing the eccentricity
of the gas giant on the Kozai mechanism. In particular, we pay
special attention to a stability region close to 35◦ of inclination
of the fictitious planet, which – to our knowledge – has not yet

1 This is defined as the region around a star in which liquid water is
possible on the surface of an terrestrial planet.
2 See http://www.univie.ac.at/adg/hzcat.
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Table 1. Initial conditions for the gas giant and the test-planet in the
restricted three-body problem.

Gas giant Test-planet
a [A] 1.0 0.01, 0.02,..., 0.99

e 0.0, 0.1,... 0.9 0.0001
i [deg] 0 0, 5,..., 60
ω [deg] 0 0
Ω [deg] 0 0
M [deg] 0 0

been reported in the literature. Since we used the dimensionless
form of the equations of motion, by scaling the results of our
parametric study, we can make it valid for many real extrasolar
planetary systems.

The paper is organized as follows. In Sect. 2, we describe
our parametric study of the restricted three-body problem (here
the fictitious planet is regarded as massless). The results of our
simulations are detailed in Sect. 3.1 for circular gas giants and
in Sect. 3.2 for eccentric gas giants. An application to extrasolar
planetary systems is discussed in Sect. 4. Finally, our results are
summarized in Sect. 5.

2. The dynamical model and the methods

To study the dynamical stability, we applied the model of the
spatial elliptic restricted three-body problem. We integrated the
dimensionless equations of motion. An obvious advantage of us-
ing these equations is that the results are independent of the exact
value of the semi-major axis of the primary, i.e. the gas giant in
single extrasolar planetary systems. The unit of length was cho-
sen such that the separation of the star and the gas giant (the pri-
maries) is unity, i.e. the semi-major axis of the gas giant a1 = 1
in all computations. We defined the unit of mass to be the sum
m0 + m1 = 1, where m0 and m1 are the masses of the star and
the gas giant, respectively. We choose the unit of time such that
k2(m0 + m1) = 1, where k is the gravitational constant. The or-
bital plane of the primaries was used as a reference plane, in
which the line connecting the primaries at t = 0 defines a refer-
ence x-axis. The longitude of the ascending node Ω is the angle
between the line of nodes and the x axis. The argument of peri-
center ω is measured between the line of nodes and the radius
vector of the pericenter. The values of Ω = 0, ω = 0, and the
mean anomaly M = 0 places the test particle on the x axis at a
distance of a(1 − e) from the astrocenter, where a is the semi-
major axis and e is the eccentricity of the test particle. The mass
parameter of the system is μ = m1/(m0 + m1).

As a dynamical model, we used the aforementioned ellip-
tic restricted three-body problem, hence the results are valid for
massless test-planets that move in the gravitational field of a star
and a gas giant. Moreover, we tested whether the results are still
valid for low-mass planets (m = 1, . . . , 10 M⊕), where M⊕ is
the mass of the Earth, and applied them to the extrasolar sys-
tem HD 154345. In Table 1, we summarize the initial conditions
(semi-major axis (a), eccentricity (e), inclination (i), argument
of the pericenter (ω), longitude of the ascending node (Ω), and
the mean anomaly (M)) for the gas giant and the test-planet. The
studies were performed for 105 periods of the primary.

Three mass ratios were considered μ = 0.0005, 0.001, 0.003,
which are among others equivalent to a giant planet of respec-
tively 0.5, 1, and 3 Jupiter mass orbiting a solar mass star. For
the case of μ = 0.001, we performed calculations for eccentrici-
ties of the gas giant (e1) up to 0.5 and for μ = 0.0005 even up to

0.9, hence we obtained a quite good estimate of the stable region
even for high eccentric orbits.

All calculations were performed with the Lie integration
method (see Hanslmeier & Dvorak 1984; Lichtenegger 1984),
which can deal with high eccentricities and close encoun-
ters between the bodies. In addition we performed some test-
calculations with the Bulirsch-Stoer integration method in com-
bination with the LCI (see Fig. 3), an efficient variable-time step
algorithm. The most important feature of the Bulirsch-Stoer al-
gorithm for N-body simulations is that it is capable of keeping an
upper bound on the local errors introduced by taking finite time
steps when adaptively reducing the step size as interactions be-
tween the particles increase in strength. The parameter ε, which
controls the accuracy of the integration, was determined by pre-
liminary test runs and was set to 10−13.

We study the orbital behaviour of massless bodies repre-
senting hypothetical exo-Earths using the maximum eccentricity
(ME) and the Lyapunov characteristic indicator (LCI). The ME
is defined as

ME = max
t∈[0,105]T1

(e(t)), (1)

where T1 is the period of the primary and ME gives the maxi-
mum value of eccentricity reached during the whole computa-
tion time. For very low values (e < 0.2) and very high values
(e > 0.8) of ME, a good agreement can generally be found with
the results of chaos indicators (see e.g. Dvorak et al. 2003; Süli
et al. 2005; Nagy et al. 2006; Süli et al. 2008). For intermediate
values of ME a confident distinction between stable and unstable
motion is not possible, since high eccentric orbits (0.2 < e < 0.8)
can be stable in the long-term.

As a chaos indicator, we used in this study the LCI, which is
a finite time approximation of the largest Lyapunov characteris-
tic exponent (LCE) described in detail in e.g. Froeschlé (1984).
The LCI is therefore defined as

LCI(t, x0, ξ0) =
1
t

log ‖ξ(t)‖, (2)

where x0 is the initial condition of the orbit and ξ(t) is the so-
lution of the linearized variational equations. LCI(t, x0, ξ0) mea-
sures the mean rate of divergence of the orbits.

3. Results

In Fig. 1, we show the results for the three chosen mass ratios
and three different eccentricities of the gas giant. All graphs are
ME plots, where red means low eccentricity hence stable motion,
and blue corresponds to high eccentricities hence to possibly un-
stable motion. We note that the step-like behaviour in the graphs
of Fig. 1 occurs because of the grid of used initial conditions –
in particular because of the quite low resolution in the inclina-
tion (see Table 1). All plots show the region between the star
and the gas giant, where we plotted the inclination of the test-
planet versus its semi-major axis. The first row gives the results
for e1 = 0.0 (circular case), and the second and the third for 0.1
and 0.3, respectively (elliptic case). In all cases, the three plots
correspond to mass ratios of 0.0005, 0.001, and 0.003 (from left
to right). The circular problem is described in Sect. 3.1, while
the elliptic problem is detailed in Sect. 3.2.

3.1. Circular gas giant

When the outer giant planet moves on a circular orbit (Fig. 1,
panels a1−3), the global dynamics are regular with low
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B. Funk et al.: Dynamical stability of inclined orbits

Fig. 1. ME plots in the (a − i) plane. The color code corresponds to the maximum eccentricity – red means low eccentricity and therefore stable
motion, green and blue correspond to high eccentricities and therefore unstable motion (see color code). The plots are for different mass ratios and
eccentricities of the gas giant: first column: μ = 0.0005, e1 = 0, 0.1, 0.3 (up to down); second column: μ = 0.001, e1 = 0, 0.1, 0.3 (up to down);
third column: μ = 0.003, e1 = 0, 0.1, 0.3 (up to down). The black dots indicate the orbits for which we also calculated LCI values (see Fig. 3).

maximum eccentricities (e ≤ 0.01) for a test-planet at small in-
clination values (i ≤ 35◦). This stable red-colored region shrinks
as the mass ratio increases. For highly inclined orbits, larger val-
ues of the test-planets’ eccentricity are observed. Only close-in
test-planets show low ME values (during 100 000 periods) for
highly inclined orbits. But we note that no additional effect such
as tidal effects or general relativity corrections are considered
here, which could modify the behaviour of close-in test-planets.
Figure 1 also shows the influence of some mean motion reso-
nances, e.g. at 0.48 (3:1), 0.63 (2:1), 0.76 (3:2), and 0.83 (4:3).
The dynamical behaviour described above is mainly due to the
influence of the Kozai mechanism (Kozai 1962; Lidov 1962).
Circular orbits are indeed a well-known secular equilibrium of
the restricted three-body problem, which is reduced to two de-
grees of freedom after short-period averaging (i.e. averaging

with respect to the mean anomalies of both bodies) and node re-
duction (e.g. Poincaré 1892; Malige et al. 2002). Assuming that
the outer giant planet is on a circular orbit, this problem is inte-
grable, and its dynamics can be represented in the phase space
(e cosω, e sinω) (see Thomas & Morbidelli 1996, for more de-
tail). Such a representation is given in Fig. 2 where we plot the
curves of a constant Hamiltonian, which correspond to the tra-
jectories of the test-planet.

For small inclinations (Fig. 2 (upper graph), i = 15◦), circu-
lar orbits of the massless body correspond to a stable equilibrium
and no variation in the eccentricity is possible. This explains
the red-colored region in Fig. 1. For higher inclinations (Fig. 2
(lower graph), i = 50◦), the point e = 0 becomes an unstable
equilibrium point, and a separatrix divides the phase space into
three parts: two regions are characterized by the libration of ω
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Fig. 2. Level curves of constant averaged Hamiltonian on the phase
space (e cosω, e sinω) for the circular restricted three-body problem.
The following initial conditions for the test-planets were used for both
plots: a = 0.15, i = 15◦ for e = 0 (upper graph), i = 50◦ for e = 0
(lower graph).

around 90◦ or 270◦ and the third one by the circulation of this
angle. The two stable equilibria created by the bifurcation of the
equilibrium in the circular orbit are referred to as Kozai equilib-
ria. This change in the stability of the central equilibrium induces
large variations in the eccentricity of a test-planet initially on a
circular orbit, since its real motion (short periods included) re-
mains close to the separatrix of the reduced problem. Moreover,
by increasing the inclinations of the test-planet, the separatrix
will reach higher values of eccentricity. The increasing ampli-
tudes of these variations are shown by yellow, green, and light
blue colors in Fig. 1.

As one can see in Fig. 1, the critical inclination correspond-
ing to this change in stability decreases with increasing semi-
major axis ratios. The critical values observed in this numeri-
cal study correspond to those calculated analytically by Kozai
(1962, see Fig. 1 of his paper).

We checked whether the ME results are in a good agree-
ment with the LCI. Test runs showed that the chaotic character
of the orbits close to the unstable equilibrium is reliably con-
firmed by the LCI indicator but only when considering quite
long integration times. This is because the Kozai perturbations
are secular (which means that they operate on extremely long
timescales), and it is very difficult for a chaos indicator asso-
ciated with a non-symplectic integrator, like Burlish-Stoer, to
exhibit these perturbations in a short computation time, as ex-
plained in Libert et al. (2010). To establish the correct orbit
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Fig. 3. LCI-values for some single orbits in the systems with a mass
ratio μ = 0.001 (indicated by black dots in Fig. 1). The initial conditions
for the integrated orbits are summarized in the upper right corner of
each plot. LCI-values going to 0 indicates stable motion, while LCI-
values going to a value higher than 0 indicates chaotic motion.

character in an acceptable computation time, we point out that
both the orbit and the variational equations should be computed
simultaneously in a symplectic way, as in the case of the global
symplectic integrator of Libert et al. (2010). To check the stabil-
ity border indicated by the ME plots, we decided to follow the
evolution of some well-chosen orbits on an adequatly long inte-
gration time (107 years). In Fig. 3, we show, as an example, the
evolution of the LCI for four (e1 = 0.0, upper graph) and two
(e1 = 0.3, lower graph) orbits. While for gas giant eccentric-
ity of 0.3 (e1 = 0.3) the difference between stable and chaotic
motion can be seen in an integration timespan of approximately
5 × 105 years, the difference between stable and chaotic mo-
tion for e1 = 0.0 is not obvious before 106 years. Nevertheless,
these examples show that the results of the ME and the LCI are
in a good agreement when an adequatly long integration time
is chosen for the LCIs (and a sufficiently low precision of the
variable-time step integrator).

3.2. Elliptic gas giant

As the eccentricities of the gas giant increase (Fig. 1 panels b1−3
and c1−3), the region of nearly circular motion (red color region
of the first row) shrinks and almost disappears at an eccentricity
of the giant as high as 0.5 (see Fig. 4). In other words, the unsta-
ble area (dark blue) caused by the proximity of the test-planet to
the gas giant becomes larger as the giant eccentricities increase.
Again one can discern several mean motion resonances as well
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Fig. 4. Similar to Fig. 1 for μ = 0.0005 and e1 = 0.5.
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Fig. 5. The left graph shows the eccentricity (red curve) and the incli-
nation (blue curve – note that we substracted 35◦ from the inclination
values for clearer visibility), while the right graph shows the argument
of the pericenter evolutions of a typical test-planet orbit around 35◦. The
eccentricity of the gas giant is set to e1 = 0.5 and the semi-major axis
of the test-planet to 0.15.

as the disturbing influence of the change in the stability of the
stable equilibrium.

For inclinations lower than the critical values mentioned in
the previous section, the dynamics appear different in the sense
that the maximal eccentricity values are no longer equal to zero
but can reach values as high as 0.2, depending on the proxim-
ity of the test-planet to the giant planet: the higher the semi-
major axes ratio, the higher the variation in eccentricity of the
test-planet. In addition, close to 35◦ there appears to be a region
where the eccentricity hardly varies, which is still visible even
for an eccentricity of 0.5 (see Fig. 4). To learn more about this
area of small variations in eccentricity, we investigated in more
detail a single orbit at inclination 35◦. The orbital evolution is
shown in Fig. 5. The semi-major axis of the test-planet was set
to 0.15, the eccentricity of the gas giant to e1 = 0.5, and the mass
ratio to μ = 0.0005. A coupling between the eccentricity and the
inclination of the test-planet occurred, and ω started librating al-
ternately around 90◦ and 270◦. Similar behaviour is observed for
test-planets inclined 35◦, independently of the non-zero eccen-
tricity of the gas giant.

The behaviour mentioned above has – to our knowledge –
not yet been reported in the literature. From the dynamical point
of view, it is of special interest because the elliptic restricted
three-body problem has not yet been extensively studied. When
the eccentricity of the giant body is non-zero, then the restricted
three-body problem cannot be reduced to one degree of free-
dom and the analytical study of the dynamics becomes more
complicated. Our first investigations have found that circular
orbits are not necessary the most stable equilibria of this two

Table 3. Initial conditions for fictitious planets in the previous study of
Funk et al. (2010)1 .

Fictitious planets
a [AU] width of HZ Δa = 0.05
e 0.0
i [deg] 0–60 Δi = 5
ω, Ω, M 0
mass 2 M⊕
Integration time 500 000 years

Notes. (1) For details see http://www.univie.ac.at/adg/hzcat.

degree of freedom problem and determined the typical varia-
tions in eccentricity observed for test-planets at small inclina-
tions. Our preliminary explanation of the structure around 35◦,
is that it is associated with a secular resonance whose resonant
angle isω−Ω. A detailed analytical study of the elliptic restricted
three-body problem in a Hamiltonian formalism is currently in
preparation.

Furthermore, the plots b and d of Fig. 3 for a very high ec-
centricity of e1 = 0.3 illustrate that the ME and LCI results are
in good agreement. From the results described above, it appears
that inclined massless test-planets may exist in stable configura-
tions with gas giants on circular or elliptical orbits. The higher
the eccentricity of the gas giant, the smaller the possible range
in semi-major axis for the test-planet: for a gas giant situated at
1, the stable range for small inclinations, derived with the LCI,
is a00 = [0.1, 0.84] for e1 = 0, a01 = [0.1, 0.71] for e1 = 0.1,
and a03 = [0.1, 0.54] for e1 = 0.3. Therefore we can assume
that the stability border (asb) can be calculated with the formula
asb = a00 · (1 − e1), which gives the results a01 = 0.76 and
a03 = 0.59. Both results lie quite close to the actual values, so
the above-mentioned formula can be used at least for a first ap-
proximation of the stability border. Furthermore, for gas giants
on eccentric orbits, test-planets suffer from limited variations in
eccentricity, depending on the value of their semi-major axis (the
higher the semi-major axes ratio, the higher the variation in ec-
centricity of the test-planet) and on their inclination (close to
35◦, there is a region of small variation in eccentricity). In the
next section, we show that these results may be generalized to
Earth-mass planets.

4. Application to extrasolar planetary systems

The previous results can be applied for example to the extrasolar
planetary system HD 154345. All orbital parameters are sum-
marized in Table 2. In the first two columns, we give the name
and the mass of the host star. The following columns show the
mass, the semi-major axis, and the eccentricity of the discov-
ered planet. The sixth column gives the mass ratio. The two last
columns provide the width of the habitable zone (HZ) accord-
ing to Kaltenegger et al. (2010) and the width of the HZ when
the semi-major axis of the gas giant is normalized to 1. In a pre-
vious study (Funk et al. 2010), many extrasolar planetary sys-
tems were investigated in detail, by means of a parameter study,
where we varied the semi-major axis, the eccentricity and the
mass of the known extrasolar planet, as well as the inclination
of the fictitious planets. All calculations were performed in the
full three-body problem with fictitious planets having 2 M⊕. The
used initial conditions are summarized in Table 3. Three maxi-
mal eccentricity plots of the system HD 154345 corresponding
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Table 2. Orbital parameter of the extrasolar planetary system HD 154345 taken from Wright et al. (2008).

Name m0 [MSun] m1 [MJupiter] a1 [AU] e1 μ HZ [AU] HZ normalized
HD 154345 0.88 ± 0.09 0.947 ± 0.09 4.19 ± 0.26 0.044 ± 0.046 0.001 0.64–1.26 0.15–0.30

Fig. 6. ME plots (see color code) of the extrasolar planetary system HD 154345 for different eccentricities of the known planet (from left to right:
e1 = 0.044, 0.09, 0.244). The a-i-grid corresponds to the initial conditions of fictitious planets, covering the region of the HZ. In the upper row,
we show the calculations obtained by the restricted three-body problem (test-planet is massless) and draw in the width of the HZ (white lines) for
e1 = 0.0, 0.1 and 0.2 (from left to right). In the lower row, we show the calculations obtained by the full three-body problem study for e1 = 0.044,
0.09, 0.244 (from left to right) and a fictitious planet of 2 M⊕.

to eccentricities 0.044, 0.09, and 0.244 are displayed in Fig. 6
(bottom panels).

To compare these results with those of the restricted three-
body problem discussed in previous section, we choose the plots
corresponding to the parameters mass ratio μ = 0.001 and ec-
centricities of 0.0, 0.1, and 0.2, since these values are close to
the observed ones. These three plots are given in Fig. 6 (upper
row), where we draw, for each one, the width of the normalized
HZ (white lines).

As one can see both results agree quite well, which indicates
that our results for the restricted three-body problem can be ap-
plied to extrasolar planetary systems as long as the mass of the
fictitious planet is not too large. Therefore, we find that the pos-
sibility of extrasolar giant planets possessing an inclined earth-
mass companion is non-negligible. The long-term evolution in
eccentricity of this small body would depend on its inclination
and semi-major axis, as well as on the eccentricity of the extraso-
lar giant planet, as described in Sect. 3. Furthermore, the HZ of
some extrasolar systems may belong to the range of semi-major
axis identified as stable regions in the previous section. At least
for the extrasolar planetary system HD 154345, which is likely

to posses a 35◦ inclined, nearly circular, earth-mass companion
in the HZ.

5. Conclusions

We have investigated the long-term evolution of inclined or-
bits in the circular and elliptic restricted three-body problem.
We have integrated the evolution of a grid of initial conditions
of the massless test-planets (semi-major axis versus inclination)
for different eccentricities and masses of the gas giant. Our re-
sults have shown that a giant planet on circular or elliptic or-
bits may have an inclined massless companion. The higher the
eccentricity of the gas giant, the smaller the possible range in
semi-major axis for the massless test-planet: for a gas giant sit-
uated at a1 = 1, the range is approximately a = [0.1, 0.8] for
e1 = 0, a = [0.1, 0.5] for e1 = 0.3, and a = [0.1, 0.2] for e1 = 0.5
for inclinations up to approximately 35◦.

For a circular giant, our simulations illustrate the well-known
results of a restricted three-body problem: at small inclinations,
circular orbits for the test-planet are in a stable equilibrium,
which bifurcates at higher inclinations into the Kozai equilibria.
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For giants on eccentric orbits, our results show that the dynam-
ics of the problem seems to be quite similar. Nevertheless, we
have shown that an Earth-mass companion is affected by lim-
ited variations in eccentricity, depending on both the value of its
semi-major axis (the higher the semi-major axis ratio, the larger
the variation in eccentricity of the test-planet) and its inclination.

We have paid particular attention to a stability region close to
a fictitious planet inclination of 35◦, which – to our knowledge –
has not yet been reported in the literature and our results may in-
dicate that close to 35◦ a region of small variation in eccentricity
appears.

We finally checked that our results for massless test-planets
can be applied to extrasolar planetary systems as long as the
mass of the fictitious planet is not too large. Hence, we have
found that extrasolar giant planets may very well possess an
inclined Earth-mass companion. Furthermore, the HZ of some
extrasolar systems may belong to the range in semi-major axis
identified as a stable region. We showed that the extrasolar plan-
etary system HD 154345 at least is likely to possess a 35◦ in-
clined, nearly circular, earth-mass companion in the HZ.
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