
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Modelling with FTS: a Collection of Illustrative Examples

Classen, Andreas

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Classen, A 2010, Modelling with FTS: a Collection of Illustrative Examples..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198259596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/modelling-with-fts-a-collection-of-illustrative-examples(2701a7eb-094f-4e2e-b246-9bc286c32472).html

PReCISE – FUNDP
University of Namur
Rue Grandgagnage, 21
B-5000 Namur
Belgium

TECHNICAL REPORT January 18, 2010

AUTHORS A. Classen
APPROVED BY P. Heymans

EMAILS {acs}@info.fundp.ac.be
STATUS Addendum to the paper Model Checking Lots

of Systems: Efficient Verification of Tempo-
ral Properties appearing in the proceedings
of ICSE 2010 32nd International Conference
on Software Engineering, Cape Town, South
Africa.

REFERENCE P-CS-TR SPLMC-00000001
PROJECT MoVES
FUNDING FNRS, the Walloon Region, Interuniversity

Attraction Poles Programme of the Belgian
State of Belgian Science Policy

Modelling with FTS: a Collection of Illustrative Examples

Copyright c© University of Namur. All rights reserved.

Modelling with FTS:

A Collection of Illustrative Examples

Andreas Classen∗

PReCISE Research Centre,
Faculty of Computer Science,

University of Namur
5000 Namur, Belgium
acs@info.fundp.ac.be

1 Introduction

FTS, featured transition systems, are a formalism designed to describe the com-
bined behaviour of a whole system family [3]. FTS are transition systems [1, 2]
(TS in short) in which transitions are labelled with features of a software prod-
uct line [4] (in addition to being labelled with actions). This allows to model
very detailed behavioural variations of the product line. In addition, features
as treated as first-class abstractions, which allows both explicit variability man-
agement and separation of concerns, since a global view of the variability is
available in a feature diagram (FD in short).

FTS come with a tool-supported model checking approach that allows to
verify FTS against LTL properties.1 The purpose of the approach is to verify
all the products of a family at once and to pinpoint the products that violate
properties. An empirical evaluation showed substantial gains over individual
product verification [3].

We report here on a study of examples found in the literature that we did
in order to evaluate our approach. The examples include the beverage vending
machine from [5] in Section 3, the wiper system from [6] in Section 4, and the
mine pump controller [7] in Section 5. We start with an introductory example,
the red lights, in Section 2.

2 The red lights

Let us start with the red lights system, a classic among introductory examples in
model checking. In its basic version, the red lights controller will switch between

∗FNRS Research Fellow.
1Download at www.info.fundp.ac.be/~acs/fts

1

www.info.fundp.ac.be/~acs/fts

s1

s2 s3{y}

s4

{r}

α

β

γ

δ
{} {g}

(a) The basic version without variability.

s1

s2 s3{y}

s4

{r}

α

β

γ

δ

α'

{} {g}

αPriorities α' >

(b) With one additional feature.

Figure 1: FTS of the red light controller.

yellow, red and green as shown by the TS in Figure 1(a). Initially the light is
off, represented by an empty labelling of the initial state s1; it then switches to
yellow in s2 (the y label), then to red and then to green. The action names here
are not important and were thus named α through δ. So far, the controller can
be modelled with a conventional TS.

There exists another version of the controller, which omits the yellow light
and immediately shows red. In order to model the second version, one could
easily draw a second TS without state s2 and a transition from s1 to s3—and so
forth for every version. In general, however, such an approach would not scale,
since the number of different versions can become large. This is despite the fact
that these versions generally only differ in small details.

In consequence, we proposed FTS [3], an extension of classical TSs, where
transitions can be labelled with features2 drawn from a variability model such
as an FD [8]. To model the second red light variant in FTS, it is sufficient to
add a transition from s1 to s3, to label it with a different feature, say SkipYellow,
and to document the fact that there are two variants (one with SkipYellow and
one without) in a variability model. The new transition α′ also has to be of
higher priority than α, otherwise, the variant with SkipYellow would still have
the α transition.

Once an FTS of the system exists, it can be verified using the model checking
algorithm proposed in [3]. We focus here on the modelling aspects and will thus
not go into details about model checking. In short, it will check a temporal
property for all systems represented by the FTS in one shot. In case the property
is violated, the algorithm will pinpoint the products that violate it.

2Feature labels are represented by colouring in this report.

2

3 The vending machine [5]

The vending machine example originally appeared in [5] to illustrate the use of
modal transition systems (MTS) to model the behaviour of software product
lines. Following [5], the vending machine has a European variant serving tea
and coffee as well as an american variant serving coffee and cappuccino. The
European version accepts euro coins while the US version accepts dollars; in ad-
dition, the US version rings a tone when the beverage is served. Its behaviour
is modelled by the MTS shown in Figure 2. In an MTS, transitions can be
optional (represented by dashed lines), which means that MTS, just as FTS,
model a set of different TS. For MTS, these can be obtained by removing cer-
tain optional transitions and making the others mandatory. For instance, the
European variant can be obtained by removing transitions 1$, cappuccino and
ring a tone.

Definition 4.1 (Alternative def. MTS) A MTS is a quintu-
ple (BS, DS, s0, Act,→) such that (BS ∪DS, s0, Act,→)
is a LTS and BS ∩ DS = ∅. A MTS has two distinct sets
of states: the box states BS and the diamond states DS.

At this point, we define the characteristic formula
FC(M) of a (simple) MTS M = (BS, DS, s0, Act,→) as
FC(s0), where

FC(s) =

(
∨

i Pw(αi)) ∧ ((
∧

i[αi]FC(si)) if s ∈ DS
(
∧

i O(αi)) ∧ ((
∧

i[αi]FC(si)) if s ∈ BS

and ∀i : s
ei→ si with I(αi) = {ei}

If we define the characteristic formula in an equational form
using the expressions above, we obtain one equation for
each state of the MTS, and the equations have a number of
terms equal to two times the number of transitions leaving
the relevant state. An attempt to write a single characteristic
formula gives a formula exponential in size with respect to
the number of states, and needs some form of fixed point
expression for expressing cycles in the MTS (see [12]).

Figure 1. A MTS modeling a product family.

5 An example

Let us consider the example introduced in [8], that is, a
family of coffee machines represented by the MTS depicted
in Fig. 1, which allows products to differ for the two differ-
ent currencies accepted, for the three drinks delivered and
for the presence of a ring tone after delivery. In the figure,

solid arcs are required transitions and dashed arcs are possi-
ble transitions, that is, states with outgoing solid arcs belong
to BS, and states with outgoing dashed arcs belong to DS.

The characteristic formula in equational form is given by
the following set of equations:

φ0 = (Pw(1e) ∨ Pw(1$)) ∧ ([1e]φ1 ∧ [1$]φ1)
φ1 = (O(sugar) ∧O(no_sugar))

∧ ([sugar]φ2 ∧ [no_sugar]φ3)
φ2 = (Pw(coffee) ∨ Pw(cappuccino) ∨ Pw(tea))

∧ ([coffee]φ4 ∧ [cappuccino]φ5 ∧ [tea]φ6)
φ3 = (Pw(coffee) ∨ Pw(cappuccino) ∨ Pw(tea))

∧ ([coffee]φ7 ∧ [cappuccino]φ8 ∧ [tea]φ9)
φ4 = O(pour_sugar) ∧ [pour_sugar]φ7

φ5 = O(pour_sugar) ∧ [pour_sugar]φ8

φ6 = O(pour_sugar) ∧ [pour_sugar]φ9

φ7 = O(pour_coffee) ∧ [pour_coffee]φ10

φ8 = O(pour_tea) ∧ [pour_tea]φ11

φ9 = O(pour_coffee) ∧ [pour_coffee]φ11

φ10 = O(pour_milk) ∧ [pour_milk]φ11

φ11 = O(display_done) ∧ [display_done]φ12

φ12 = (Pw(cup_taken) ∨ Pw(ring_a_tone))
∧ ([cup_taken]φ0 ∧ [ring_a_tone]φ13)

φ13 = O(cup_taken) ∧ [cup_taken]φ0

Note that the characteristic formula given above does not
allow, from any state of the considered MTS, to derive a
LTS such that the corresponding state has no outgoing tran-
sitions, even in the case of diamond states.

The characteristic formula of a MTS implies any other
property which is satisfied by the MTS, and can thus serve
as a basis for the logical verification over MTSs. Actually,
this approach is not as efficient as model-checking ones, but
the definition of the characteristic formula may serve as a
basis for a deeper study of the application of deontic logics
to the verification of properties of families of products.

We now show two exemplary formulae that use deontic
operators to formalize properties of the products derived by
the family of coffee machines represented by the MTS de-
picted in Fig. 1.

1. The family permits to derive a product in which it is
permitted to get a coffee with 1e:

Pw(1e) =⇒ [1e] E (tt U Pw(coffee))

2. The family obliges every product to provide the possi-
bility to ask for sugar:

A (tt U O(sugar))

VaMoS'09

74

Figure 2: The vending machine MTS, taken from [5].

However, with the MTS given in Figure 2, it is possible to obtain many more
variants. For instance, it is possible to obtain a machine which takes euro coins
and rings a tone when a beverage is served. This would correspond neither to
the US nor to the European version; still, it can be easily imagined as a valid
system. Moreover, it is also possible to obtain a machine that serves coffee
always with sugar, and tea and cappuccino always without; or a machine which
would accept dollar and euro coins. These systems are probably not among the
systems that the engineer had in mind. The problem that we try to illustrate

3

coffee tea cappuccino

display_done

1€

ring_a_tone

s0

s2

s5s4 s6

s12 s13

tea

s3

s8s7 s9

s1

1$

sugar no_sugar

s10

s11

cappuccino coffee

pour_sugar
pour_sugar pour_sugar

pour_tea pour_coffeepour_coffee

pour_milk

skip_ringtone
cup_taken

skip_ringtonePriorities ring_a_tone >

Figure 3: The vending machine modelled as an FTS.

VendingMachine
v

Tea
t

RingTone
t

Cappuccino
ca

Coffee
co

Beverages
bev

Currency
cur

US Dollar
usd

Euro
eur

Legend: a a= And = Or a = Xor

Figure 4: The FD for the vending machine.

4

here is that in MTS, it is not easily possible to model transitions that belong
together so that they always appear together in a system, or not at all (such as
the two cappuccino transitions in Figure 2).

The vending machine modelled with an FTS is shown in Figure 3. The FD
that comes with the FTS is shown in Figure 4. Valid products of the FD are the
US and the European version as described above, but also other variants. In
contrast to the MTS of Figure 2, the FTS only models systems that are valid,
that is: the pairs of coffee, tea or cappuccino transitions always appear together,
because they belong to the same feature. Similarly, the machine will either
accept dollars or euros, but not both, since the are modelled as alternatives in
the related FD.

4 The wiper system [6]

The car wiper system example was proposed by Gruler et al. in [6]. It consists
of two subsystems: a sensor unit, able to detect rain, and the wiper itself. Both
the sensor and the wiper come in two qualities, high and low. A low quality rain
sensor can only distinguish between rain and no rain, whereas the high quality
sensor can also discriminate between heavy and little rain. Similarly, the high
quality wipers can operate at two speeds, whereas the low quality wiper only
operates at one speed. In addition, the low quality wipers can be set to wipe
permanently. The FD in Figure 5 models this situation.

WiperFamily
r

High
sH

Wiper
w

Low
sL

Sensor
s

High
wH

Low
wL

Figure 5: The FD for the original wiper system.

Gruler et al. propose PL-CCS [6], a variant of CCS where a new operator
⊕ was added to represent alternative choice between two processes. The whole
wiper system is modelled with the PL-CCS expression WipFam in Figure 6,
i.e. the parallel composition of the sensor and the wiper subsystem. The sensor
subsystem is defined as being either the low or the high quality sensor subsystem.
The wiper subsystem is defined similarly.

The PL-CCS definition of the two sensor subsystems is given in Figure 7.
The low quality sensor will either sense no rain, or it will sense heavy/little rain
in which case it sends the message Rain. As expected, the high quality sensor
behaves differently: in case of heavy rain it sends the message HvyRain. An

5

4 Specification and Verification of a Sample Product-Line

Let us now demonstrate our approach on a simplified version of an industrial case study

we have been working on. We consider a product line whose configurations realize

different versions of a windscreen wiper system.

Specification At first, we specify the family of systems, using the formalism introduced

in Section 2. The windscreen wiper systems that we specify in our family WipFam
are each built of two subcomponents: a rain sensor, Sensor , and a windscreen wiper,
Wiper . Both subcomponents can be realized by two variants, a high and a low one,
respectively:

WipFam def= Sensor ‖ Wiper (E1)

Sensor def= SensL⊕1 SensH (E2)

Wiper def= WipL⊕2 WipH (E3)

The low variant SensL of the sensor is specified as follows:

SensL def= non.SensL + ltl .Raining + hvy .Raining + noRain.SensL (E4)

Raining def= non.SensL + ltl .Raining + hvy .Raining + rain.Raining (E5)

The low variant SensL only detects two different environmental conditions—dry
and raining—even though the environment can stimulate the sensor with three differ-

ent conditions: hvy for heavy rain, ltl for little rain and non for no rain. However,

this sensor cannot differ between heavy and little rain, i. e. for this sensor, hvy and ltl
have the same effect, as the sensor reaches a process Raining and provides an action
rain, indicating solely the fact that it is raining (without precisely characterizing the
intensity). As long as no rain has been detected, the sensor provides the action noRain,
respectively.

The high version of the sensor can distinguish between different degrees of rain

intensity, i. e. SensH additionally differentiates heavy rain from little rain. Its PL-CCS

specification is given in the following:

SensH def= non.SensH + ltl .Medium + hvy .Heavy + noRain.SensH (E6)

Medium def= non.SensH + ltl .Medium + hvy .Heavy + rain.Medium (E7)

Heavy def= non.SensH + ltl .Medium + hvy .Heavy + hvyRain.Heavy (E8)

In this product line, the sensors can be arbitrarily combined with two variants of

windscreen wipers,WipL andWipH . In particular, for this example we have no addi-
tional non-functional dependencies between the possible variants which would restrict

the set of combinatorially possible configurations.

The low versionWipL offers two operation modes: (i) a manual mode with perpet-
ual wiper arm movement (action permWip), which has to be activated explicitly by the

16

Figure 6: The wiper system in PL-CCS, taken from [6].

Low quality.

4 Specification and Verification of a Sample Product-Line

Let us now demonstrate our approach on a simplified version of an industrial case study

we have been working on. We consider a product line whose configurations realize

different versions of a windscreen wiper system.

Specification At first, we specify the family of systems, using the formalism introduced

in Section 2. The windscreen wiper systems that we specify in our family WipFam
are each built of two subcomponents: a rain sensor, Sensor , and a windscreen wiper,
Wiper . Both subcomponents can be realized by two variants, a high and a low one,
respectively:

WipFam def= Sensor ‖ Wiper (E1)

Sensor def= SensL⊕1 SensH (E2)

Wiper def= WipL⊕2 WipH (E3)

The low variant SensL of the sensor is specified as follows:

SensL def= non.SensL + ltl .Raining + hvy .Raining + noRain.SensL (E4)

Raining def= non.SensL + ltl .Raining + hvy .Raining + rain.Raining (E5)

The low variant SensL only detects two different environmental conditions—dry
and raining—even though the environment can stimulate the sensor with three differ-

ent conditions: hvy for heavy rain, ltl for little rain and non for no rain. However,

this sensor cannot differ between heavy and little rain, i. e. for this sensor, hvy and ltl
have the same effect, as the sensor reaches a process Raining and provides an action
rain, indicating solely the fact that it is raining (without precisely characterizing the
intensity). As long as no rain has been detected, the sensor provides the action noRain,
respectively.

The high version of the sensor can distinguish between different degrees of rain

intensity, i. e. SensH additionally differentiates heavy rain from little rain. Its PL-CCS

specification is given in the following:

SensH def= non.SensH + ltl .Medium + hvy .Heavy + noRain.SensH (E6)

Medium def= non.SensH + ltl .Medium + hvy .Heavy + rain.Medium (E7)

Heavy def= non.SensH + ltl .Medium + hvy .Heavy + hvyRain.Heavy (E8)

In this product line, the sensors can be arbitrarily combined with two variants of

windscreen wipers,WipL andWipH . In particular, for this example we have no addi-
tional non-functional dependencies between the possible variants which would restrict

the set of combinatorially possible configurations.

The low versionWipL offers two operation modes: (i) a manual mode with perpet-
ual wiper arm movement (action permWip), which has to be activated explicitly by the

16

High quality.

4 Specification and Verification of a Sample Product-Line

Let us now demonstrate our approach on a simplified version of an industrial case study

we have been working on. We consider a product line whose configurations realize

different versions of a windscreen wiper system.

Specification At first, we specify the family of systems, using the formalism introduced

in Section 2. The windscreen wiper systems that we specify in our family WipFam
are each built of two subcomponents: a rain sensor, Sensor , and a windscreen wiper,
Wiper . Both subcomponents can be realized by two variants, a high and a low one,
respectively:

WipFam def= Sensor ‖ Wiper (E1)

Sensor def= SensL⊕1 SensH (E2)

Wiper def= WipL⊕2 WipH (E3)

The low variant SensL of the sensor is specified as follows:

SensL def= non.SensL + ltl .Raining + hvy .Raining + noRain.SensL (E4)

Raining def= non.SensL + ltl .Raining + hvy .Raining + rain.Raining (E5)

The low variant SensL only detects two different environmental conditions—dry
and raining—even though the environment can stimulate the sensor with three differ-

ent conditions: hvy for heavy rain, ltl for little rain and non for no rain. However,

this sensor cannot differ between heavy and little rain, i. e. for this sensor, hvy and ltl
have the same effect, as the sensor reaches a process Raining and provides an action
rain, indicating solely the fact that it is raining (without precisely characterizing the
intensity). As long as no rain has been detected, the sensor provides the action noRain,
respectively.

The high version of the sensor can distinguish between different degrees of rain

intensity, i. e. SensH additionally differentiates heavy rain from little rain. Its PL-CCS

specification is given in the following:

SensH def= non.SensH + ltl .Medium + hvy .Heavy + noRain.SensH (E6)

Medium def= non.SensH + ltl .Medium + hvy .Heavy + rain.Medium (E7)

Heavy def= non.SensH + ltl .Medium + hvy .Heavy + hvyRain.Heavy (E8)

In this product line, the sensors can be arbitrarily combined with two variants of

windscreen wipers,WipL andWipH . In particular, for this example we have no addi-
tional non-functional dependencies between the possible variants which would restrict

the set of combinatorially possible configurations.

The low versionWipL offers two operation modes: (i) a manual mode with perpet-
ual wiper arm movement (action permWip), which has to be activated explicitly by the

16

Figure 7: The sensor subsystem in PL-CCS, taken from [6].

s1

s2

s3

non

noRain
heavy

little

non

non

heavy

little

heavyRain

rain

heavy

little

heavy

heavy

Figure 8: The FTS for the sensor subsystem.

6

Low quality.

driver, (ii) and a semi-automatic interval mode in which thewiper arm moves at a lower

frequency triggered by the rain sensor (via the action rain).

WipL def= off .WipL + manualOn.Permanent + intvOn.Interval (E9)

Interval def= noRain.Interval + intvOff .WipL + intvOn.Interval (E10)

+ rain.Wiping + hvyRain.Wiping

Wiping def= slowWip.Interval + intvOn.Interval (E11)

Permanent def= permWip.Permanent + off .WipL + intvOn.Interval (E12)

The high variantWipH can operate at two speeds: slow (action: slowWip) and fast
(action: fastWip). Here, the wiper arm movement is fully controlled by the rain sensor
and adjusts its frequency automatically to the current rain intensity.

WipH def= off .WipH + intvOn.AutoIntv (E13)

AutoIntv def= noRain.AutoIntv + intvOn.AutoIntv + rain.Slow (E14)

+ intvOff .WipH + hvyRain.Fast

Slow def= slowWip.AutoIntv + intvOn.AutoIntv (E15)

Fast def= fastWip.AutoIntv + intvOn.AutoIntv (E16)

The PL-CCS program specifying the entire product line WipFam is given by the

equations E1–E16. The whole programWipFam is well-formed, which allows a unique

numbering of all (two) variation points as shown by Equations E2 and E3.

Verification From our example system familyWipFam, we can derive four different
individual systems, as we can combine the subsystem variants arbitrarily. Having spec-

ified the family in PL-CCS, we can now apply the model checking approach described

in Section 3, in order to verify functional properties for configurations in the system

family.

Thinking of a relevant property, for instance, one could possibly be interested in

verifying for a windscreen wiping system whether or not a driver is always able to

switch to automatic windscreen wiping mode. (Property 1, formalized in Equation 14).

Another property could demand the windscreen wiper to wipe fast, once it is raining

heavily (Property 2, formalized in Equation 15).

µX.〈.〉X ∨ 〈intvOn〉true (14)

νY.[.]Y ∧ (¬〈intvOff 〉true ∨ [hvy]〈fastWip〉true) (15)

In our example, Property 1 holds for the set of all possible configurations 〈L,L〉,
〈R,L〉, 〈L,R〉 ,and 〈R,R〉, which can be denoted by the single vector 〈?, ?〉. However,
Property 2 is only satisfied in the configuration, in which the high variants of both

subsystems are used, i. e. the result of applying the proposed model checking algorithm

is the set containing the single configuration vector 〈R,R〉. Intuitively, it is easy to see
why: As the low version of the windscreen wiper does not provide a fast wiping mode,

it never provides the output action fastWip. In consequence, the wind screen wiper
can never wipe fast if the low version is used. However, even if the high version of

17

High quality.

driver, (ii) and a semi-automatic interval mode in which thewiper arm moves at a lower

frequency triggered by the rain sensor (via the action rain).

WipL def= off .WipL + manualOn.Permanent + intvOn.Interval (E9)

Interval def= noRain.Interval + intvOff .WipL + intvOn.Interval (E10)

+ rain.Wiping + hvyRain.Wiping

Wiping def= slowWip.Interval + intvOn.Interval (E11)

Permanent def= permWip.Permanent + off .WipL + intvOn.Interval (E12)

The high variantWipH can operate at two speeds: slow (action: slowWip) and fast
(action: fastWip). Here, the wiper arm movement is fully controlled by the rain sensor
and adjusts its frequency automatically to the current rain intensity.

WipH def= off .WipH + intvOn.AutoIntv (E13)

AutoIntv def= noRain.AutoIntv + intvOn.AutoIntv + rain.Slow (E14)

+ intvOff .WipH + hvyRain.Fast

Slow def= slowWip.AutoIntv + intvOn.AutoIntv (E15)

Fast def= fastWip.AutoIntv + intvOn.AutoIntv (E16)

The PL-CCS program specifying the entire product line WipFam is given by the

equations E1–E16. The whole programWipFam is well-formed, which allows a unique

numbering of all (two) variation points as shown by Equations E2 and E3.

Verification From our example system familyWipFam, we can derive four different
individual systems, as we can combine the subsystem variants arbitrarily. Having spec-

ified the family in PL-CCS, we can now apply the model checking approach described

in Section 3, in order to verify functional properties for configurations in the system

family.

Thinking of a relevant property, for instance, one could possibly be interested in

verifying for a windscreen wiping system whether or not a driver is always able to

switch to automatic windscreen wiping mode. (Property 1, formalized in Equation 14).

Another property could demand the windscreen wiper to wipe fast, once it is raining

heavily (Property 2, formalized in Equation 15).

µX.〈.〉X ∨ 〈intvOn〉true (14)

νY.[.]Y ∧ (¬〈intvOff 〉true ∨ [hvy]〈fastWip〉true) (15)

In our example, Property 1 holds for the set of all possible configurations 〈L,L〉,
〈R,L〉, 〈L,R〉 ,and 〈R,R〉, which can be denoted by the single vector 〈?, ?〉. However,
Property 2 is only satisfied in the configuration, in which the high variants of both

subsystems are used, i. e. the result of applying the proposed model checking algorithm

is the set containing the single configuration vector 〈R,R〉. Intuitively, it is easy to see
why: As the low version of the windscreen wiper does not provide a fast wiping mode,

it never provides the output action fastWip. In consequence, the wind screen wiper
can never wipe fast if the low version is used. However, even if the high version of

17

Figure 9: The wiper subsystem in PL-CCS, taken from [6].

s5
heavyRain

intvOn, fastWipe

s4

rain

intvOn, slowWipe

s1

s2

s3

off

intvOn

off

intvOff

intvOn

noRain

permWipe

intvOn

manualOn

heavyRain

Figure 10: The FTS for the wiper subsystem.

7

immediate observation is that both subsystems are quite similar and that the
sending of the Rain message is the same in both cases. Still, the corresponding
part has to be duplicated inside both subsystems. An equivalent description
in FTS is given in Figure 8. Since the part dealing with the detection of little
or no rain is the same for both qualities, the corresponding actions in the FTS
are part of the base system instead of being duplicated. Both features visibly
differ only in the handling of the heavy rain condition. Note that in Figure 8 and
subsequent figures, labels in bold font denote transitions which are synchronised
in a parallel composition.

As of the two wiper subsystems, their PL-CCS definition is given in Figure 9.
Both subsystems have an interval switch, which will switch interval wiping on.
During interval wiping, both subsystems wipe if the sensor subsystem reports
rain; the high quality subsystem will wipe faster in case of heavy rain. In ad-
dition, the low quality wiper can be set to permanent wiping, which ignores
the rain sensor. Here again, both subsystems are almost identical (except for
the permanent wiping function), the sole difference being that the high qual-
ity variant reacts differently to a HvyRain message. As a consequence, the
definitions for both subsystems are almost duplicates. This duplication is not
needed in FTS. Consider the FTS representation of the wiper subsystem shown
in Figure 10. It clearly shows that (except for the permanent wiping function)
both versions only differ in their handling of HeavyRain.

We conclude this example with an extension that is not part of the original
paper [6]. Consider the case in which the permanent wiping feature can also be
supported by high quality wipers (in fact, there is no reason why it should not).
That is, permanent wiping will become an individual feature which is optional.
A revised FD that accommodates the new feature is presented in Figure 11. To
make the corresponding change in the behavioural model, in FTS it is sufficient
to relabel the transitions pertaining to the wiping feature, as shown in Figure 12.
In PL-CCS, on the other hand, one will have to duplicate the definition of the
permanent wiping mode in both subsystem definitions.

WiperFamily
r

High
sH

Wiper
w

Low
sL

Sensor
s

High
wH

Low
wL

Permanent
p

Figure 11: A FD for the wiper system in which permanent wiping is explicitly
represented as a feature.

8

s5
heavyRain

intvOn, fastWipe

s4

rain

intvOn, slowWipe

s1

s2

s3

off

intvOn

off

intvOff

intvOn

noRain

permWipe

intvOn

manualOn

heavyRain

Figure 12: The modified FTS for the wiper system with permanent wiping as a
separate feature.

5 The mine pump system [7]

The purpose of the mine pump system [7] is to keep a mine shaft clear of water
while avoiding the danger of a methane related explosion. It consists of a water
pump, a sensor measuring the water level and a sensor measuring the abundance
of methane in the mine. The system is supposed to activate the pump once the
water level reaches a preset threshold, but only if the methane is below a critical
limit.

MinePumpSys
base

Methane detect.
m

Command
c

Water regulation
l

Figure 13: An initial FD for the mine pump controller.

The system consists of three high-level features, shown in Figure 13: (i) a
command interface c, which can be used to switch the water regulation function
on or off; (ii) a methane alarm interface m, which can receive alarm messages
from the methane sensor in case of critical methane, and (iii) the water regula-
tion subsystem l. The system is modelled by the FTS in Figure 14. It maintains
a variable representing the system state, and its reactions to events such as a
methane alarm or high water depend on this state. In order to keep the de-
scription intuitive, the system state is modelled in a separate FTS, shown in
Figure 15. Basically, the main FTS only describes the actions on the system

9

s 6
s 7

co
m
m
an
dM

sg

s 8

re
ce
ive

M
sg

s 9

st
op
Cm

d

s 1
3

st
ar
tC
m
d

s 1
0

isR
un
ni
ng isN

ot
Ru

nn
in
g

s 1
1

pu
m
pS
to
p

s 1
4

isR
un
ni
ng

isR
ea
dy

isN
ot
Ru

nn
in
g

s 1
5

se
tR
ea
dy

s 1
6

s 1
7

isR
un
ni
ng isN

ot
Ru

nn
in
g

s 1
8

pa
la
rm
M
sg

s 1
2

se
tS
to
p

pu
m
pS
to
p

s 1
9

se
tM
et
ha
ne
St
op

le
ve
lM
sg

s 2
0

s 2
1

hi
gh
Le
ve
l

lo
wL

ev
el

no
rm
al
Le
ve
l

s 2
2

isR
ea
dy

isL
ow

St
op

s 2
3

se
tR
ea
dy

se
tM
et
ha
ne
St
op

s 2
4

isR
ea
dy

s 2
5

pu
m
pS
ta
rt

isN
ot
Re

ad
y

s 2
6

se
tR
un
ni
ng

isR
un
ni
ng

isS
to
pp
ed

isM
et
ha
ne
St
op

s 2
7

s 2
8

isR
un
ni
ng

isN
ot
Ru

nn
in
g

s 2
9

pu
m
pS
to
p

s 3
0

se
tL
ow

St
op

{s
ta
rt}

{m
sg
}

{c
om

m
an
d}

{s
to
pc
om

m
an
d}

{s
ta
rtc
om

m
an
d}

{p
al
ar
m
}

{le
ve
l}

Figure 14: The FTS of the mine pump controller.

10

state, but does not record it explicitly. The actual FTS of the controller is
the parallel composition of these two FTS. Note that in Figure 15 and subse-
quent figures, transitions represented by dashed lines are transitions that are
not labelled by a feature. These transitions will be synchronised during par-
allel composition and take the feature of the transition with which they are
synchronised.

s5

s1

s4

isRunning
isNotReady

isReady
isNotRunning
setReady

isStopped
isNotRunning
isNotReady

s2

isMethaneStop
setMethaneStop
isNotRunning
isNotReady

s3

isLowStop
isNotRunning
isNotReady

{stopped}

{methanestopped}

{lowstopped}

{ready}

{running}

Figure 15: The FTS modelling the system state. The transitions between states
are implicitly named setNewState where NewState is the name of the state in
which the transition arrives, e.g. setReady.

Intuitively, each time the main FTS executes a set* action, e.g. setReady, it
will be synchronised with the corresponding transition in the state FTS. The
result is that the state in which the transition arrives is labelled with the new
state, e.g. ready. The state FTS will thus add an atomic proposition with the
system state to each state of the main FTS. This causes a small blowup; the
resulting FTS will have hundreds of states.

There are five system states:

• stopped means that the water regulation function is off (controlled via the
command interface). The system will in no case switch the pump on.

11

• ready means that the water regulation function is on (controlled via the
command interface). The system will switch the pump on if there is no
methane and the water level is high.

• running means that the pump is currently running.

• lowstopped means that the pump was stopped because the water level was
low. The pump will resume in case the water rises again.

• methanestopped means that the pump was stopped because of a critical
methane level. The pump will not resume until explicitly told so via the
command interface.

The system operates as follows. It will observe three types of events: com-
mands, methane alarm messages and water readings. There are two types of
command: stop and start. In case of a start command, the system state is
changed and set to ready. In case of a stop command, the pump is stopped,
and the system state set to stopped. In case of a methane alarm, the system
stops the pump and sets the system state to methanestopped. The system can
distinguish between three different water levels: in case of normal water, the
system does nothing; if the water is high and the pump not yet running, the
system will first check whether it is ready or whether it just stopped because
of low water (lowstopped), if yes, it will check the methane level, and if there is
no methane (that is, if after the check it is still ready), it will start the pump
and set the state to running, otherwise it will do nothing. Once the water is
low, the system switches off the pump and sets the system state to lowstopped.

The system interacts with its environment, which is modelled with three
other FTS that are put in parallel with the FTS of the system. The methane
level is modelled with the FTS in Figure 16. Methane can rise and lower at will,
represented by the methaneRise and methaneLower transitions. The pAlarmMsg
and setMethaneStop transitions will synchronise with the system FTS, meaning
that the system FTS will receive the alarm message only in case of high methane.

The water pump is represented by the FTS in Figure 17. The pump can
be in two states, running or stopped, and the actions pumpStart and pumpStop,
synchronised with the system FTS, will cause this state to change. The action
pumpRunning is used to model the interaction between the pump and the water.
It is synchronised with the water FTS shown in Figure 18: a running pump will

s2

palarmMsg

s1

methaneRise

methaneLower

setMethaneStop

{} {methane}

Figure 16: An FTS modelling the environment: the methane level.

12

s2

pumpRunning

s1

pumpStart

pumpStop

{pumpoff} {pumon}

Figure 17: An FTS modelling the environment: the pump.

s3

highLevel

s1

normalLevel

s2

lowLevel

waterRise waterRise

pumpRunningpumpRunning

pumpRunning

{lowwater} {normalwater} {highwater}

Figure 18: An FTS modelling the environment: the water level.

cause the water level to decrease. The level can rise at will. The low, high and
normalLevel actions are synchronised with the main FTS, meaning the system
will only observe low, high or normal water if this is indeed the case.

When the command interface and the methane alarm interface are considered
optional, as in the first FD in Figure 13, there are four different products. We
can add further variability by considering the start and stop message types as
well as the three water level readings as individual features. A revised FD is
shown in Figure 19. The product line now has 64 products. The revised system
FTS is given in Figure 20. The other FTS do not change. Please refer to [3] for
a list of LTL properties that were checked for these two FTS as a benchmark of
the performance of our model checking procedure.

MinePumpSys
base

Methane detect.
m

Command
c

Water regulation
l

Stop
cp

Start
ct

High
lh

Low
ll

Normal
ln

Figure 19: The refined FD for the mine pump system.

13

s 6
s 7

co
m
m
an
dM

sg

s 8

re
ce
ive

M
sg

s 9

st
op
Cm

d

s 1
3

st
ar
tC
m
d

s 1
0

isR
un
ni
ng isN

ot
Ru

nn
in
g

s 1
1

pu
m
pS
to
p

s 1
4

isR
un
ni
ng

isR
ea
dy

isN
ot
Ru

nn
in
g

s 1
5

se
tR
ea
dy

s 1
6

s 1
7

isR
un
ni
ng isN

ot
Ru

nn
in
g

s 1
8

pa
la
rm
M
sg

s 1
2

se
tS
to
p

pu
m
pS
to
p

s 1
9

se
tM
et
ha
ne
St
op

le
ve
lM
sg

s 2
0

s 2
1

hi
gh
Le
ve
l

lo
wL

ev
el

no
rm
al
Le
ve
l

s 2
2

isR
ea
dy

isL
ow

St
op

s 2
3

se
tR
ea
dy

se
tM
et
ha
ne
St
op

s 2
4

isR
ea
dy

s 2
5

pu
m
pS
ta
rt

isN
ot
Re

ad
y

s 2
6

se
tR
un
ni
ng

isR
un
ni
ng

isS
to
pp
ed

isM
et
ha
ne
St
op

s 2
7

s 2
8

isR
un
ni
ng

isN
ot
Ru

nn
in
g

s 2
9

pu
m
pS
to
p

s 3
0

se
tL
ow

St
op

{s
ta
rt}

{m
sg
}

{c
om

m
an
d}

{s
to
pc
om

m
an
d}

{s
ta
rtc
om

m
an
d}

{p
al
ar
m
}

{le
ve
l}

Figure 20: The refined FTS for the mine pump system.

14

References

[1] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2007.

[2] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[3] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. Model
checking lots of systems: Efficient verification of temporal properties in soft-
ware product lines. In 32nd International Conference on Software Engi-
neering, ICSE 2010, May 2-8, 2010, Cape Town, South Africa, Proceedings.
IEEE, 2010. To appear.

[4] P. C. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. SEI Series in Software Engineering. Addison-Wesley, August 2001.

[5] A. Fantechi and S. Gnesi. Formal modeling for product families engineering.
In SPLC 2008, pages 193–202. IEEE CS, 2008.

[6] A. Gruler, M. Leucker, and K. Scheidemann. Modeling and model checking
software product lines. In IFIP WG 6.1 FMOODS ’08, pages 113–131.
Springer, 2008.

[7] J. Kramer, J. Magee, M. Sloman, and A. Lister. Conic: an integrated
approach to distributed computer control systems. Computers and Digital
Techniques, IEE Proceedings E, 130(1):1–10, 1983.

[8] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps. Feature
Diagrams: A Survey and A Formal Semantics. In RE’06, pages 139–148,
2006.

15

	Introduction
	The red lights
	The vending machine Fantechi2008
	The wiper system Gruler2008
	The mine pump system Kramer1983

