
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Tag and Prune: A Pragmatic Approach to Software Product Line Implementation

Boucher, Quentin; Classen, Andreas; Heymans, Patrick; Bourdoux, Arnaud; Demonceau,
Laurent
Published in:
25th IEEE/ACM International Conference on Automated Software Engineering (ASE'10), Antwerp, Belgium, 20-
24 September 2010

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Boucher, Q, Classen, A, Heymans, P, Bourdoux, A & Demonceau, L 2010, Tag and Prune: A Pragmatic
Approach to Software Product Line Implementation. in 25th IEEE/ACM International Conference on Automated
Software Engineering (ASE'10), Antwerp, Belgium, 20-24 September 2010. ACM Press, pp. 333-336.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198259588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/tag-and-prune-a-pragmatic-approach-to-software-product-line-implementation(0f6fe9b6-8c64-4ecf-ad48-145bd308e67f).html

Tag and Prune: A Pragmatic Approach to
Software Product Line Implementation

Quentin Boucher, Andreas Classen,
∗

Patrick Heymans
PReCISE Research Centre

Faculty of Computer Science
University of Namur, Belgium

{qbo,acs,phe}@info.fundp.ac.be

Arnaud Bourdoux, Laurent Demonceau
Spacebel s.a.

Liège Science Park
{arnaud.bourdoux,laurent.demonceau}

@spacebel.be

ABSTRACT
To realise variability at the code level, product line meth-
ods classically advocate usage of inheritance, components,
frameworks, aspects or generative techniques. However, these
might require unaffordable paradigm shifts for the develop-
ers if the software was not thought at the outset as a product
line. Furthermore, these techniques can be conflicting with
a company’s coding practices or external regulations.

These concerns were the motivation for the industry-univer-
sity collaboration described in this paper where we develop
a minimally intrusive coding technique based on tags. It is
supported by a toolchain and is now in use in the partner
company for the development of flight grade satellite com-
munication software libraries.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software

General Terms
Design, Documentation, Languages

Keywords
Feature diagram, code tagging

1. INTRODUCTION
Software product line engineering (SPLE) is an increas-

ingly popular software engineering paradigm institutionalis-
ing reuse across the software lifecycle. Central to the SPLE
paradigm is the modelling and management of variability,
i.e. “the commonalities and differences in the applications in
terms of requirements, architecture, components, and test
artefacts” [18]. This variability is often conveniently ex-
pressed in terms of features, which appear to be high level
abstractions that shape the reasoning of the engineers and
other stakeholders [6]. A product of the SPL is seen as a set

∗FNRS Research Fellow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

of features. By adopting SPLE, one expects to achieve mass-
customisation, i.e. the ability to create many different sys-
tems, leveraging on similarities between them and thereby
improve the cost, productivity, time to market, quality of
developing software.

Current approaches to the implementation of SPLs clas-
sically advocate usage of specific programming techniques
(e.g., via inheritance, aspects,. . . [1, 2, 3, 4, 9, 19]), par-
ticular architectures (e.g., components or dedicated frame-
works [9, 13]), compiler directives (e.g., ifdef directives in
C [9, 17]), adapted IDEs (e.g., syntax colouring [8, 11, 15])
or generative programming [7]. One thing almost all of these
approaches have in common is the paradigm shift they re-
quire in the way software is written. While the transition
from ‘classical’ software engineering to SPLE is generally a
conscious decision, known to have a major impact on project
management, drastic changes to the development approach
might prove unaffordable. In the case of safety-critical soft-
ware, as for instance flight-grade satellite software, it can be
outright impossible to change the coding paradigm, since it
is part of the mission requirements and often enforced by
external regulations (see, e.g., [16]).

These concerns were the main motivations for a collabo-
ration between the University of Namur and an industrial
partner, Spacebel S.A., a software company specialised in
aerospace applications. The context of this work, which we
now describe in more detail, is the development of a family
of file transfer protocol libraries.

1.1 Industrial context
The CCSDS File delivery Protocol (CFDP) [5], is a file

transfer protocol for communication links spanning inter-
planetary distances. The protocol was issued by the Con-

......

...

...

...

CFDP_lib

snd_min pusrecv_min

recv_min_
excl

rebootextended

recv_min_
ack

recv_
inactivity

recv_recep
tion_oppor recv_fsrecv_usr_

proxy_put

...

<<excludes>>

.........

......
Legend

and-decomposition or-decomposition optional feature

Level 1

Level 2

Level 3

Figure 1: Partial FD of the CFDP library

333

sultative Committee for Space Data Systems (CCSDS). It
is independent from the underlying file system and is meant
to cover an extensive number of mission needs. Capabili-
ties include deferred transmission, concurrent transfer, sus-
pend/resume, and the ability to transmit via a proxy.

A partial feature diagram for the CFDP library is shown
in Figure 1. Basically, feature diagrams (FDs) are trees
whose nodes denote features and whose edges represent top-
down hierarchical decomposition of features. The features
at level 1 represent the main functionality of the library:
send (snd min) and receive (recv min) files, allow for a de-
vice to receive data through others (extended), safe reboot
after unexpected system failure (reboot), and support for
the “packet utilisation standard” (pus). Each is then further
decomposed on one or two more levels, as shown for the
recv min feature.

Components for space usage are developed in order to deal
with extreme environmental conditions such as cosmic rays,
temperature variation and vibration. This type of hardware
is thus generally very expensive and several evolutionary
steps behind consumer hardware. As a consequence, very
stringent restrictions apply to suppliers of on-board soft-
ware components. CPU usage and memory footprint are
typical quantities that have to be minimised. For such de-
velopments, practitioners often have no other choice than
programming in C and obeying strict rules that prohibit
usage of ‘dangerous’ mechanisms (typically, dynamic heap
memory allocation) or general-purpose third-party libraries.

Considering these restrictions, and given that specific mis-
sions only require part of the protocol’s functionality, it is
highly desirable to only deploy those parts of the protocol
that are eventually going to be used. More concretely, the
feature set of a CFDP implementation has to be minimal
wrt. the mission requirements: the implementation cannot
include dead (i.e. unused) code. The SPLE approach de-
scribed in this paper takes these constraints into account.

1.2 Problem statement and contribution
The objective of the collaboration between the university

and Spacebel was to jointly develop an SPL implementation
technique that would satisfy the following requirements:

(R1) Allow mass-customisation of the CFDP library, i.e. be
able to efficiently derive products that only contain
features required for a specific mission, such that no
product has dead code.

(R2) Have a minimal impact on current development prac-
tices, and be compliant with quality standards and re-
gulations in place for flight software.

(R3) Automate the solution as much as possible.

For the implementation we chose a pruning-based approach.
At the code level, this is achieved by special annotations,
called feature tags, which trace code fragments back to fea-
tures (see Section 2). The overall process that spans from
feature modelling down to compilation is described in Sec-
tion 3. The approach is evaluated in Section 4.

2. TAG AND PRUNE
One can distinguish between two types of approaches for

implementing SPLs: compositional approaches implement
features as distinct modules while annotative approaches as-
sume that there is one ‘maximal’ product where annotations

/*@feature:RECV_MIN@*//*@!file_feature!@*/
(...)
void cfdp_receiver_handle_PDU(cfdp_receiver* const me, struct cfdp_buffer* PDU_buffer,
CFDP_PDU_type_t PDU_type) {
 {
 /*@feature:RECV_INACTIVITY@*/
 /* Restart inactivity timer */
 cfdp_timer_start(&(me->timer_inactivity),me->config.timeout_inactivity);

 /* Handle PDU and dispatch it depending on its type */
 switch (PDU_type)
 {
 /*@feature:RECV_MIN_ACK@*/
 case CFDP_PDU_ACK_FINISHED:
 {
 cfdp_receiver_handle_PDU_eof_no_error(me,PDU_buffer);
 }
 break;
 case CFDP_PDU_EOF_NO_ERROR:
 {
 cfdp_receiver_handle_PDU_eof_no_error(me,PDU_buffer);
 }
 break;
 }
 (...)
 }
}

Figure 2: Code tagging example

in the source code indicate the feature a fragment belongs
to [14, 15]. With the compositional approach, a product is
generated by composing a set of fragments. With an annota-
tive approach, a product is obtained by removing fragments
corresponding to discarded features.

We decided to follow an annotative approach since in our
case compositional approaches come with a paradigm shift,
which would violate requirement R2. Furthermore, exist-
ing annotative approaches proved to be unsuitable for our
undertaking.

Basically, our approach consists in annotating blocks of
C code with feature tags; a feature tag being a list of the
features that require the block to be present. If none of the
features listed in a tag is included in a particular product,
then the tagged code block will not be part of the source
code generated for this product. Tags can also be nested
and a whole file can be tagged with an additional annotation.
Untagged code is assumed to be needed for all features.

Syntactically, a feature tag is a particular comment style.
As such, it is displayed in the same colour as comments in
code editors, which eases the reading. Our tags follow a pre-
defined pattern that can be recognised by a feature parser.

<fcomment> ::= "/*@feature:" <flist> "@*/" [<filetag>]
<flist> ::= <featurename> (":" <flist>) *
<filetag> ::= "/*@!file_feature!@*/"

In this pattern, <featurename> identifies a feature of the FD.
The scope of a tag is the ‘functional block’, which we de-

fine as a group of statements that belong together, and that
can be removed as a whole without violating the syntax
or grammar of the language. Functional blocks thus cor-
respond to elements of the abstract syntax tree (AST), an
idea previously found in [15]. With this approach, we can
guarantee that the pruned code will always be syntactically
correct. Figure 2 is an example of tagged code where func-
tional blocks associated to the different tags are highlighted.

Note that code tags were conceived as necessary condi-
tions for code to be present, and so expressing the opposite
of a given code tag (the ‘else’) can be tricky. However, this
can be accomplished by defining additional features in the
FD that exclude other features. The negation thus becomes
implicit through the FD.

334

The main advantages of code tagging over the previously
mentioned approaches are:

• the ‘automatic’ function block scoping: the developer
does not need to track closing tags, or worry about
syntactical correctness,

• its independence from a special IDE: the developer can
use any code generator/editor combination.

To make sure that pruning always results in correctly typed
code (a problem known as safe composition [21]), we had to
set up particular coding guidelines and additional tests.

3. OVERALL PROCESS
The proposed process and its associated toolchain are

represented graphically in Figure 3. It is organised after
the classical SPLE process [18] which consists of two main
streams: domain engineering (the creation of reusable arte-
facts) and application engineering. It uses 3 kinds of tools:
(i) tools that were already in use, namely a UML modelling
tool and a C compiler; (ii) tools built specifically to sup-
port the approach, namely the code pruner implementing
the method from Section 2; and (iii) a commercial feature
modelling tool.

Feature modelling. One of the first steps is to capture the
variability of the SPL. In the case of the CFDP, we actually
based this analysis on the official protocol specification [5].
The complete FD of the CFDP product line contains 75 fea-
tures, four cross-tree constraints, and is up to three levels
deep. The only supplemental expertise required from the
engineer is knowledge about FDs, which turned out to be
very intuitive to use. Feature modelling can be done with
any FD tool. Tools with automated satisfiability checks and
a configuration interface help automate some of the subse-
quent tasks.

Design. The main impact of our approach on the design
phase is the need to take features into account when defin-
ing the architecture in order to facilitate implementation of
the variability. In practice, this means that the architecture
will tend to be more modular, so that high-level features di-
rectly map to high-level design artefacts, such as packages.
We extended the UML tool in use at Spacebel so that engi-
neers can tag design models with features, these tags being
included in the code generated by the tool. The approach
is general enough to accommodate any UML modelling tool
that supports custom annotations. As in traditional devel-
opment, a good design reduces development time; this effect

Feature
Modelling ImplementationDesign

Domain engineering

Configuration Code pruning
and compilation

Application engineering

feature modelling tool UML modelling tool

Parser & C Compiler

Figure 3: Toolchain as deployed at Spacebel

is amplified since the design has to account for the features
that will eventually become tags in the code.

Implementation. In an effort to be minimally intrusive,
implementation must remain largely untouched. The UML
tool is used to generate code skeletons from the design mod-
els, including skeletons already tagged with features. The
remaining code is written manually and tagged with fea-
tures in the process. A few new coding rules were added
due to the way the code pruner works, such as the manda-
tory use of blocks in case statements, for instance. The
developer needs additional expertise: she has to understand
the FD, and to learn the syntax and the semantics of the
tagging language. The developers reported that the concep-
tual overhead caused by feature tags is manageable. During
testing and debugging, around 20% of the errors were caused
by feature tags, and only 5% of these were actual logical er-
rors. The other 95% were all type errors, easily found and
corrected. Feature tagging thus only caused a marginal in-
crease in the number of errors.

Configuration. Configuration, that is, selecting the fea-
tures to be included in a product, is done with the FD
tool (reusing the FD elaborated during the feature mod-
elling phase). The person doing the configuration needs to
have a deep knowledge of the mission requirements as well as
a sufficient understanding of the FD, to be able to map mis-
sion requirements to features of the library. It is during this
activity that the initial investment pays off. If this activity
were performed manually on untagged code, it would take
around 20% of the development time to create each product.
Furthermore, manual code pruning would be error-prone.

Code pruning and compilation. Up to this point, the im-
plementation contains all possible features. The last step
thus consists in removing non selected features from the
tagged source code. To this end, we implemented a source
code pruner for ANSI C enriched with the feature tag syntax
described in Section 2. This parser takes as input the source
files of an application and the list of features that make up
the product to be created and creates pruned files as out-
put. These can be used to compile the final product and
thus constitute the end result of the tool-supported process.

4. EVALUATION
Here we discuss the extent to which the initial require-

ments, formulated in Section 1.2, were satisfied.
(R1) Mass-customisation and no dead code. The

first requirement is the outset of the project: be able to
quickly produce a reduced version of a library on demand.
Mass-customisation is enabled by following an SPL approach,
with explicit variability management through FDs. Dead
code is avoided by pruning unnecessary code (related to fea-
tures that are irrelevant for the specific needs of a mission)
before compilation. We have conducted various experiments
to measure the gains in memory and CPU footprint that can
be achieved by customising a library to specific mission re-
quirements: while the full library requires 65 Kb of PROM,
a version restricted to sending files needs 16.2 Kb, four times
less. To put this into perspective, for the LISA Pathfinder (a
planned ESA mission which does not use the CFDP proto-
col), the PROM budget for the entire data handling system
is 375 Kb. We therefore consider this requirement to be met.

(R2) Minimal impact and compliance. The applica-
tion domain comes with a number of stringent development
constraints, quality standards and regulations. As detailed

335

in the previous section, the transition to our SPLE approach
necessitates three changes: (1) specification and design now
include the FD, (2) code has to be developed with tags that
trace back to features, and (3) each delivered library goes
through a configuration and pruning step. These changes
require additional expertise from engineers and developers:
FDs and the tagging technique. According to the practition-
ers involved, both are very easy to master and do not affect
coding practice in a fundamental way; the development envi-
ronment and paradigm are not affected. Furthermore, none
of these points impacts the technologies used during the de-
velopment process. Technically, the deliverable is thus in-
distinguishable from one that would have been developed
individually, which meets the compliance requirement.

(R3) Automation. All of the additional steps are tool-
supported, and pruning is fully automated. There is room
for improvement, though. Firstly, FD elaboration and con-
figuration will always require user intervention and can thus
never be completely automated. In previous papers, we pro-
posed methods to further improve the configuration process
based on the Spacebel case [12, 22]. Secondly, although
the tagging approach keeps the code very readable, read-
ability could be enhanced by highlighting tagged code frag-
ments (e.g. with colours [15]). A first prototype of such a
tool, based on TagSEA [20], has already been developed [10].
Thirdly, integration of the various tools in the toolchain of
Figure 3 is currently not very tight in that it occurs only
through file exchange.

5. CONCLUSION
To realise variation points at the code level, product line

methods classically advocate usage of inheritance, compo-
nents, frameworks, aspects or generative techniques. These
techniques often require unaffordable paradigm shifts from
the developers if the software was not thought at the outset
as a product line. As part of a partnership between indus-
try and university we developed a novel approach to imple-
menting SPLs with three principal goals: (1) allow mass-
customisation, (2) have a minimal impact on development
practices, and (3) be automated. The approach uses FDs
to capture variability and its kernel consists of a technique
for tagging portions of code with features. It has been used
successfully for the development of a flight grade satellite
file transfer library product line.

Acknowledgements
This work is funded by the Walloon Region under the Euro-
pean Regional Development Fund (ERDF), the FNRS, the
Interuniversity Attraction Poles Programme of the Belgian
State, Belgian Science Policy (MoVES project) and the Bel-
gian National Bank.

6. REFERENCES
[1] M. Anastasopoulos and D. Muthig. An evaluation of

aspect-oriented programming as a product line imple-
mentation technology. In ICSR, pages 141–156, 2004.

[2] S. Apel, T. Leich, and G. Saake. Aspectual feature
modules. IEEE Trans. Softw. Eng., 34:162–180, 2008.

[3] D. Batory. Feature-oriented programming and the
ahead tool suite. In ICSE’04, pages 702–703, 2004.

[4] D. S. Batory, J. N. Sarvela, and A. Rauschmayer.
Scaling step-wise refinement. In ICSE 2003, pages
187–197, 2003.

[5] CCSDS. CCSDS File Delivery Protocol (CFDP): Blue
Book, Issue 4 and Green Book, Issue 3. Number
CCSDS 727.0-B-4, CCSDS 720.1-G-3. NASA, 2007.

[6] A. Classen, P. Heymans, and P.-Y. Schobbens. What’s
in a feature: A requirements engineering perspective.
In FASE’08, volume 4961 of LNCS, pages 16–30, 2008.

[7] K. Czarnecki and U. W. Eisenecker. Generative
Programming. Methods, Tools and Applications.
Addison-Wesley, 2000.

[8] P. Ebraert, A. Classen, P. Heymans, and T. D’Hondt.
Feature diagrams for change-oriented programming. In
ICFI/FIW’09. IOS Press, June 2009.

[9] C. Gacek and M. Anastasopoules. Implementing
product line variabilities. SIGSOFT Softw. Eng.
Notes, 26(3):109–117, 2001.

[10] C. Gauthier, A. Classen, Q. Boucher, P. Heymans,
M.-A. Storey, and M. Mendonca. XToF: A tool for
tag-based product line implementation. In VaMoS’10,
pages 163–166. University of Duisburg-Essen, 2010.

[11] F. Heidenreich, J. Kopcsek, and C. Wende.
Featuremapper: mapping features to models. In
ICSE’08, pages 943–944, 2008.

[12] A. Hubaux, A. Classen, and P. Heymans. Formal
modelling of feature configuration workflows. In
SPLC’09, pages 221–230, 2009.

[13] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang.
Xvcl: Xml-based variant configuration language. In
ICSE’03, pages 810–811. IEEE CS, 2003.

[14] C. Kästner and S. Apel. Integrating compositional and
annotative approaches for product line engineering. In
GPCE’08, pages 35–40, 2008.

[15] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In ICSE’08, 2008.

[16] MISRA. MISRA-C: Guidelines for the use of the C
language in critical systems. Motor Industry Research
Association, UK, 2008.

[17] R. Pawlak. Spoon: Compile-time annotation
processing for middleware. IEEE Distributed Systems
Online, 7(11):1, 2006.

[18] K. Pohl, G. Böckle, and F. J. van der Linden. Software
Product Line Engineering: Foundations, Principles
and Techniques. Springer, Secaucus, NJ, USA, 2005.

[19] Y. Smaragdakis and D. S. Batory. Mixin layers: an
object-oriented implementation technique for
refinements and collaboration-based designs. ACM
Trans. Softw. Eng. Methodol., 11(2):215–255, 2002.

[20] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby.
Shared waypoints and social tagging to support
collaboration in software development. In CSCW’06,
pages 195–198. ACM, 2006.

[21] S. Thaker, D. S. Batory, D. Kitchin, and W. Cook.
Safe composition of product lines. In GPCE’07, pages
95–104, 2007.

[22] T. T. Tun, Q. Boucher, A. Classen, A. Hubaux, and
P. Heymans. Relating requirements and feature
configurations: A systematic approach. In SPLC’09,
pages 201–210, 2009.

336

