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Non-linear protocell models: Synchronization and Chaos
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Timoteo Carletti · Marco Villani · Irene Poli

30 April 2009

Abstract We consider generic protocells models allowing linear and non-linear kinetics

for the main involved chemical reactions. We are interested in understanding if and how

the protocell division and the metabolism do synchronize to give rise to sustainable

evolution of the protocell.

Keywords Protocell · Self-Replication · Dynamical model · Synchronization

1 Introduction

Protocells could be lipid vesicles, or micelles, endowed with some rudimentary metabolism

and should contain “genetic”material, being able to grow, reproduce and evolve. While

viable protocells do not yet exist, their study is important in order to understand pos-

sible scenarios for the origin of life, as well as for creating new “protolife” forms which
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are able to adapt and evolve (8). This endeavor has an obvious theoretical interest,

but it might also lead to an entirely new “living technology”, definitely different from

conventional biotechnology.

Theoretical models can be extremely useful to devise possible protocell architec-

tures and to forecast their behavior. What can be called the “genetic material” of a

protocell is composed by a set of molecules which, collectively, are able to replicate

themselves. At the same time, the whole protocell undergoes a growth process (its

metabolism) followed by a breakup into two daughter cells. This breakup is a physi-

cal phenomenon which is frequently observed in lipid vesicles, and it has nothing to

do with life, although it superficially resembles the division of a cell (5). In order for

evolution to be possible, some genetic molecules should affect the rate of duplication

of the whole container, and some mechanisms have been proposed whereby this can be

achieved.

In this paper we address an important issue in protocell research: the genetic mate-

rial duplicates at a certain rate, while the lipid container grows, in general, at another

rate. When the container splits into two, it may happen that the genetic material has

not yet doubled: in this case its concentration would be lower in the daughter proto-

cells. Hence through generations, this density might eventually vanish. On the other

hand, if the genetic material growth were faster than the container, the former would

accumulate in successive generations.

So, in order for a viable population of evolving protocells to form, it is necessary

that the rhythms of the two processes are synchronized. In some models (like the

Chemoton (4) this is imposed a priori in the kinetic equations, but it is unlikely that

such a set of exactly coupled reactions springs up spontaneously in a single step. It is

therefore interesting to consider the possibility that such synchronization could be an

emergent phenomenon, without imposing it a priori.

It has previously been shown that this may indeed happen when one takes into

account successive generations of protocells (11). Even if at the beginning the two pro-

cesses take place with different paces, they asymptotically approach synchronization,

in the sense that both i) the time interval between the formation of a protocell and

the moment when it doubles its size and ii) the time required for doubling the genetic

material change, do vary and generation after generation, they tend to the same value.

The present paper explores under which conditions such synchronization takes

place, in the interesting case where there are several different kinds of replicating

molecules in each protocell, and they can affect each other’s replication rates in a

non-linear way. It therefore expands our previous studies, which had considered syn-

chronization i) when there is only one kind of replicating molecule in each protocell ii)

when there are different kinds of replicators in each protocell, but they do not directly

affect each other’s replication rate and iii) when there are different kinds of replicators

in each protocell, which affect each other’s replication rates, and the kinetic equations

are linear. Note that the model as a whole is always non-linear, due to the division of

the lipid container: linearity refers only to the set of kinetic equations for the replicators

in a protocell.

Synchronization is studied here using abstract models belonging to the “surface

reaction models” family (briefly, SRMs); let us observe that other architectures have

been introduced, for instance the internal reaction models (IRMs) (2). The difference

is that, in the former case, the reactions which lead to the formation of the new genetic

material and those devoted to the formation of new membrane molecules take place

close to the protocell outer surface, while in IRMs they both take place in the interior of
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the vesicle. The modeling level is fairly abstract, so the results should hold for different

detailed protocell architectures. SRMs are inspired by the the so-called “Los Alamos

bug”, a model of protocells where the genetic material is composed by strands of PNA

(9; 10) which should be found in the vesicle membrane. According to this hypothesis,

different PNA’s may influence the growth rate of their “container” by catalyzing the

formation of amphiphiles (which form the protocell membrane) from precursors. On the

other hand IRMs are supported among other, by the RNA-cell architecture proposed

by (7; 6; 13).

The paper is organized as follows. For the sake of completeness in sections 2 and

3 we recall the main features of SRMs, the main mathematical techniques to study

synchronization and the results of our previous studies. Section 4 is devoted to the

introduction of some non-linear replicators kinetic models and the description of their

synchronization properties. Finally, in the last section some critical comments and in-

dications for further work are reported, in particular aiming at understanding the out-

come of regular behaviors once the involved kinetic equations exhibit chaotic regimes:

embed chaos to make it disappear.

2 Surface Reactions Models

Let us suppose the protocell to be a spherical vesicle, with an aqueous interior and a

lipid-phase membrane composed by amphiphilic molecules. In a way inspired by the

Los Alamos bug hypothesis, we will suppose that the membrane grows by addition

of amphiphiles, which are formed close to its external surface by suitable precursors,

under the catalytic influence of some molecules which are found in the vesicle, hereby

called Genetic Memory Molecules, GMMs for short. In general, only a fraction of these

catalysts will be effective, namely those which are close enough to the outer surface (it

is assumed that these molecules can be found in the lipid phase). We will also suppose

that the membrane is composed by a single kind of amphiphilic molecules.

Let us then consider a single protocell, and let C be the quantity of its lipid con-

stituent (moles of amphiphiles). Then the growth of C in time is assumed to be propor-

tional to the vesicle surface S , times a function of the concentration of the catalysts

in the membrane, times a function of the density of the precursors which are found

outside, close to the membrane. We will assume that this last term is not influential,

e.g. that either precursors are buffered, so that their concentration is kept constant, or

that there are saturation effects and the concentration of the precursors is high enough

to saturate.

Moreover, we will also assume i) that the rate of spontaneous formation of am-

phiphiles in the outer medium is negligible with respect to the one due to the catalytic

effects of the replicators and ii) that diffusion is fast enough to ensure that, on the

time scale of the model, the catalyst concentration is homogeneous in the lipid phase:

so, if there is a single kind of catalyst, and if X denotes its quantity (moles) in the

protocell lipid phase, its concentration is [X] = X/VL, where VL is the volume of the

lipid phase.

Therefore, under the above hypotheses

dC

dt
= S(VL)f̂

„
X

VL

«
(1)
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Where f̂ denotes a function of the concentration that will be specified later on,

and the dependency of S upon the volume VL has been emphasized. We will assume

that S is proportional to V βL , with the parameter β ranging in the interval [2/3, 1] :

in a spherical micelle, where the volume of the lipid phase equals the total volume, S

would be proportional to V
2/3
L , while in a vesicle with a very thin membrane it would

be almost proportional to VL itself. Since VL = C/ρ (with ρ constant), by redefining

the arbitrary function which appears in the r.h.s. of the previous equation we obtain

dC

dt
= Cβf

„
X

C

«
(2)

If, as it is often the case, we assume f to be proportional to X/C to some power γ

we obtain

dC

dt
= αCβ−γXγ (3)

A particularly important studied case is when the growth of the container is as-

sumed to be proportional to the concentration of the catalyst molecules, i.e.

dC

dt
= αCβ−1X (4)

Eqs. (3) and (4) describe the continuous growth of the protocell up to a certain

size, which is then followed by the breakup in two daughter cells. Although this is a

complicated process, we will assume for simplicity (as it is done in most models) that

the cell breaks when it reaches a certain size, i.e. when C(t) equals a fixed value θ and

that the initial value of C of each of the two daughter cells is θ/2.

We also suppose, like in Los Alamos bug, that also the replication of the X -type

molecules takes place near the external surface, by virtue of buffered precursors which

are also in this case not taken explicitly into account. Replication takes place in a thin

boundary of width δ near the surface, therefore only the molecules which are found in

this volume can contribute to the synthesis of new molecules. Therefore dX /dt should

be proportional to Sδ times a function of X/C , so

dX

dt
= S(V βL )ĝ

„
X

C

«
= Cβg

„
X

C

«
(5)

Assuming g to be proportional to X/C raised to some power ν we then obtain

dC

dt
= ηCβ−νXν (6)

The case where the continuous growth phase is described by Eqs. (4) and (6) will

be referred to as the “single replicator” case.

Note that in deriving Eqs. (5) and (6) it has been implicitly assumed that repli-

cations needs the presence of externally supplied precursors, which are available only

close to the outer boundary of the membrane. This is consistent with a template dupli-

cation mechanism, like that of nucleic acids; if replicators were e.g. interacting polypep-

tides, and precursors were available in the whole lipid phase, then all the X molecules

in the lipid phase could contribute and, instead of Eq. (5) we would get

dX

dt
= Cg

„
X

C

«
(7)
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And, if g is proportional to X/C raised to some power ν

dX

dt
= ηC1−νXν (8)

So the difference between the two cases would amount to choosing β = 1 in the

second one. But it has already been shown (11) that, while the kinetics is influenced by

the value of the geometric parameter β, the achievement of synchronization is not, so

that one can limit to analyze the case β = 1 to draw general conclusions. We therefore

come to the conclusion that, as far as synchronization is concerned, both a “nucleic-

acid based” and a “polypeptide based” hypothesis are described by the formalism used

here and therefore behave in much the same way.

A particularly important case, whose analysis is quite simple, is the one where both

exponents γ and ν are equal to one, so(
dC
dt = ηCβ−1X
dC
dt = ηCβ−1X

(9)

Which can be straightforwardly generalized to the case of N different linearly in-

teracting replicators : (
dC
dt = αXCβ−1

dX
dt = MXCβ−1

(10)

Where α and X are N-dimensional vectors and M is the N ×N matrix of kinetic

coefficients. The same arguments used above concerning the role of β, we can limit

ourselves to consider the case β = 1 in the study of the synchronization phenomenon.

Next step is to consider two replicators, X and Y , in the same protocell whose

growth rate is assumed to be non-linear. If they do not interact directly, and their

effect on the growth of the lipid container is linear, then the continuous growth is

described by the following equations, analogous to Eq. (6)8><>:
dC
dt = α′X + α′′Y
dX
dt = η′XνCβ−ν

dY
dt = η′′Y νCβ−ν

(11)

A more interesting case is when the replicators directly interact each others. For

instance, let us suppose that the kinetics is second order, so that the rates of production

of new X and new Y should be proportional to the frequency of encounters between

X and Y molecules. The total number of encounters per second, in the lipid phase,

is then Sδ[X][Y ] ≈ V β−2
L δXY . By observing that VL is proportional to C and by

lumping some constants in the terms η′ and η′′ one then gets8><>:
dC
dt = α′Cβ−1X
dX
dt = η′Cβ−2XY
dY
dt = η′′Cβ−2XY

(12)

Where we have assumed for simplicity that only one kind of molecule, say X ,

catalyzes the growth of the membrane, i.e. set α′′ = 0 in Eq.(11). In the more general

case where the rate of production of X is proportional to the concentration of Y times

some power ν of X , and similarly for Y , the previous equations generalize to
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8><>:
dC
dt = α′Cβ−1X
dX
dt = η′Cβ−1−νXνY
dY
dt = η′′Cβ−1−νXY ν

(13)

Eqs. (11) and (12) are examples of cases with two non-linear interacting replicators.

More general non-linear equations will be introduced in section 4.

3 A summary of previous results

The equations of SRMs lend themselves to a nice analytical technique, which has

been applied in order to study their behavior, and which has been complemented by

numerical simulations1.

Starting with an initial quantity of container C at time T0 equal to θ/2, we assume

that once C reaches a critical value θ, the protocell will divide into two equal protocells

each one of size θ/2. Let ∆T0 be the time interval needed to double C from this initial

condition, and let T1 = T0 +∆T0 be the time when the critical value θ is reached. Since

the initial value for C is fixed,∆T0 is a function of the initial quantity of replicators, X0.

The final value of X in the protocell, just before the division will be denoted by X(T1)

. Because we assume perfect halving at the division, each offspring will start with an

initial concentration of replicators equal to X1 = X(T1)/2. Then the continuous growth

process starts again, until the next doubling time will be reached, T2 = T1 +∆T1, and

the third generation will start with an initial value X2 = X(T2)/2, and so on.

We generalize the preceding discussion with the following equations, which refer to

the kth cell division cycle that starts at time Tk and ends at time Tk+1 :

θ

2
=

Z Tk+1

Tk

dC

dt
dt , and Xk+1 =

1

2
X(Tk+1) (14)

Note that in general X(Tk+1) 6= 2X(Tk) and therefore the time needed to double

the value of C is not constant between two successive generations. The problem of

synchronization therefore amounts to finding under which conditions the following

equality asymptotically holds:

lim
t→∞

[X(Tk+1)− 2X(Tk)] = 0 (15)

The existence of first integrals of the equations describing the continuous growth

phase, allows us to prove synchronization. In fact we are able to obtain a discrete map

X(Tk+1) = F (X(Tk)) , and the search for conditions which allow synchronization are

equivalent to the existence of a fixed point.

There is no general form for the first integrals, which depend upon the kind of SRM

model which is considered: several examples can be found in (11; 3; 2) and the main

results are hereby summarized. Before doing so, it is however interesting to consider

which kind of behaviors one can imagine to find. The possible alternatives are the

following:

1 Numerical simulations have been performed using Matlab’s standard solver for ordinary
differential equations ode45 with parameter “nonNegative”. This function implements a Runge-
Kutta method with a variable time step for efficient computation and prevents the variables
to become negative, for details see Matlab website (http://www.mathworks.com).
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1. Synchronization: in successive generations (as k →∞ ) the time for duplication of

the protocell, ∆Tk, and the time required to duplicate the genetic material,∆T gk ,

approach the same value (for the reasons highlighted above, this condition is satis-

fied when Eq.(15) holds).

2. The initial concentration of the genetic material vanishes in the limit of infinitely

many divisions; in this case, given the above assumptions, the growth of the con-

tainer ends and the whole process stops.

3. The initial concentration of the genetic material grows unbounded a k →∞ . This

results in a limitation of the previous equations to modeling a protocell, which

indeed lack a rate limiting term for the growth rate of X.

4. The two rates ∆Tk and ∆T gk oscillate in time with the same frequency. This con-

dition is not equivalent to synchronization strictu sensu but it would nonetheless

allow sustainable growth of the population of protocells. Therefore this condition

might be called super-synchronization. Note that in principle super-synchronization

does not require equality of the two frequencies, but that their ratio be a rational

number.

5. The two rates ∆Tk and ∆T gk exhibit a non regular time behavior.

In the case of a single replicator whose replication rate given by Eq.(6) with 0 <

ν < 2, with linear growth for the container, one can show that synchronization is

always achieved provided that α and η are positive (these conditions are fairly obvious,

otherwise it would make no sense to speak of growth). The result holds also if one

takes a realistic geometry into account (i.e. if one uses the volume of a spherical shell

instead of the approximation S ≈ V βL ). It also generalizes to more general forms of

the function which describes the growth of the protocell or that of the replicators (12).

More generically, we can prove that once the container growth follows some non-linear

power law, i.e. γ 6= 1 in Eq.(4), then a necessary condition to have synchronization is

0 < ν < γ + 1.

Let us observe that the interesting case of parabolic growth, i.e. ν < 1, fits the above

condition. On the other hand, we can prove and it has been numerically checked that in

the case of a very steep increase ν ≥ 2, the system does not approach synchronization:

If ν = 2 then synchronization can be obtained only with a very specific choice of the

involved parameters, whereas if ν > 2 synchronization can never be achieved, according

to the initial amount of X, in the long run either Xk diverges or goes to zero.

A further generalization is worth discussing. In section 2 we have assumed that

[X] = X/VL, which is correct as long as X itself does not appreciably contribute to

the volume of the lipid phase. But if the quantity of X becomes large, and X itself

is a lipophilic compound which contributes to the container, this formula should be

substituted by [X] = X/(VL + VX) . This can be rewritten, by rescaling the kinetic

constants, as X/(C + rX) . It has been analytically shown and numerically confirmed

that also in this case synchronization is achieved when α and η are positive.

If there are several replicators in the same cell, but they do not interact directly,

namely the system is modeled by Eq.(11), one again finds synchronization if α, η and η’

are positive. In the linear case, ν = 1 , with two replicators, only the fastest replicator

survives in the final population of protocells, while if ν < 1 both survive, their relative

proportion being a function of η/η′ . This is consistent with similar behaviors observed

in population dynamics. On the other hand if there is mutual interaction, namely

the protocell can be described by Eq.(12) or Eq.(13), then synchronization cannot be

always achieved.
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Fig. 1 An example of 4 X 4 matrix M with negative entries where synchronization in not
achieved but the division time and the initial amount of genetic material regularly oscillate
division after division. Left panel: the division time, ∆Tk, in function of the generation number
k. Right Panel: The time evolution behavior of the amounts of Xk at the beginning of each divi-
sion. Symbols refer to X1 = 4, X2 = �, X3 = ◦, X4 = ♦ ( C0 = 500, X0 = [20.3, 20.2, 27, 47],
M = [0, -0.0690, 1.6821, -3.7767; 1.6905, 0, -2.3801, 1.3082; 1.3082, 3.9692, 0, 4.283; 0.6255,
3.838,-4.1488, 0])

The case of several linearly interacting replicators Eq.(10) has been analytically

studied and a complete discussion of the different cases can be found in (2). The

most relevant results are that the behavior of the system is ruled, in the long time

limit, by the eigenvalue of the matrix M with largest real part, denoted by λLRP . If

<(λLRP ) > 0, and if the corresponding eigenvector v1 is non-negative2, synchronization

is achieved. The asymptotic value of Xk is a multiple of v1 . A sufficient condition to

guarantee that λLRP is real and positive and that the associated eigenvector is non-

negative, is that the matrix elements Mij are non-negative. This is an important case,

corresponding to all X molecules, which directly interact, contribute to the synthesis

of the others (mutual catalysis).

It is however possible to imagine also cases where the network of reactions includes

some negative terms (if they were all non-positive the system would of course die

out). The most relevant phenomenon discovered in this analysis is the existence of an

oscillatory behavior, super-synchronization, which is found when the eigenvalues with

the largest real part are complex conjugate (see for instance figure 1).

Let us observe that the most striking result of the analysis of linear replicators is

that they behave in a way similar to that of a Continuously Stirred Tank Reactor :

in the present case vesicle splitting limits the asymptotic values, while in CSTR it is

the outflow which does it. But the ratio of various replicators is the same in the two

cases. The coefficient α does not influence this ratio, nor the asymptotic division time,

although it affects the actual value of the asymptotic quantities.

These latter cases show that non-linearity may lead to a halting of the growth,

or to an unbounded growth of the molecules, hence preventing the protocell from a

viable evolution. These behaviors can be associated with the presence of power laws

growth rates, to tackle the question we thus consider more general non-linear models

by introducing “squashing functions”.

2 Because eigenvectors are defined up to a multiplicative factor, by non-negative we mean
that all the components can be made positive.
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4 Non-linear models with squashing terms

The growth of the container is still assumed to be described by a linear equation as

Eq.(4), for instance

dC

dt
= αX (16)

We then select some possible kinetic equations for the replicators growth, that we

now briefly describe and analyze with the help of dedicated numerical simulations.

4.1 Quasilinear models

One drawback of linear equations like eq.(10) is that the growth rate may undergo

an unrealistic unlimited increase. In order to take physical constraints on the rates

into account it is possible to introduce bounds which are never exceeded. Instead of

fixing sharp thresholds, which would lead to discontinuous derivatives, we consider here

“squashing functions”, i.e. functions which are bounded both from below and from

above, and which are never decreasing. They can be though as activating functions for

the reactions to start.

Let σ(x) be such a function, then we hypothesize the following replicator law in

the case of N interacting molecules :

dX i

dt
= Cβσ

 
NX
k=1

MikXk
C

!
(17)

In this case the behavior is similar to that of the corresponding linear model, i.e.

Eq.(10), once we use the same coefficients Mij . In particular, synchronization in the

linear models implies synchronization in the quasi-linear one. However sometimes we

have observed super-synchronization in the linear case, while the corresponding non-

linear version still synchronizes.

We frequently observe that the amounts of X -molecules rapidly saturate, so that

the duplication times are largely unaffected by the exact values of the matrix elements

Mij and are not a function of λLRP , as it would happen in the linear case. A second

interesting observed feature is that cell duplication times are not affected by the value

of α.

5 Second order kinetics

he quadratic model Eq.(12) can be generalized as to include N interacting GMMs, to

give

dX i

dt
= Cβ−2

NX
k=1

MikXiXk (18)

In the case of mutual catalysis the matrix coefficients are non-negative. Note that

catalytic cycles can be modeled in this way by a proper choice of the matrix elements

Mik. Generically this model does not show synchronization, except for very peculiar
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Fig. 2 Synchronization fixed point for the system ruled by eq.(19). On the left panel four
different runs with fixed values for η and different X0 are shown ( C0 = 500, X1

0 = [2.77,
32.93, 17.72], X2

0 = [15.05, 33.49, 39.31], X3
0 = [38.50, 42.48, 18.03], X4

0 = [10.60, 26.95,
19.06], η = [1.5, 0.5, 1] ). On the right panel, four different runs with random values of η are
shown ( C0 = 500, X1

0 = [38.41, 7.29, 26.85], X2
0 = [1.18, 29.93, 48.22], X3

0 = [13.45, 37.46,
16.29], X4

0 = [21.29, 11.07, 15.81], η1 = [0.4139, 1.665, 1.214], η2 = [0.927, 0.432, 0.826], η3

= [1.967, 1.167, 1.813], η4 = [1.276, 0.278, 0.034], ). In both cases α = [1, 1, 1] and M = [0,
1, 0; 0, 0, 1; 1, 0, 0]

relationships among the coefficients; in the case of only two GMMs one can provide an

analytical answer.

On the other hand, once we introduce molecules able to self-replicate

dX i

dt
= Cβ−2

NX
k=1

MikXiXk + Cβ−1ηiXi (19)

we can have synchronization. Let us observe that fixing non-negative matrix ele-

ments Mik in a cyclic way one gets the well known hyper-cycle systems.

The synchronization fixed point depends on the value of η as shown in figure 2.

6 Second order kinetics without self-replication

Let us finally consider the case where there is no self-replication, but the GMMs mu-

tually catalyze each other’s formation from existing precursors, in a way it requires

the interaction of two molecules to produce a third one. The corresponding equations,

neglecting possible saturation effects, are then

dXi
dt

= Cβ−2
NX
k=1

MijkXjXk (20)

Where, in order to avoid self-replication, the matrix elements should have the form

Mijk = µijk(1− δij)(1− δik) (21)

In this case we observe that sometimes synchronization is achieved, while in other

cases extinction is the outcome. This result is related to the sparseness of the matrix
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M . It is interesting to observe that, if a large fraction of the matrix elements is non-

vanishing, synchronization is found, even when the frequency of negative Mijk’s equals

that of positive ones.

Considering a random initialization of Mijk, increasing the number of GMMs (in

a population of independent protocells) the sparsity coefficient decrease due to the

random initialization of the non zero entries that decrease increasing the matrix di-

mensions.

Several simulations show that, considering an equal frequency of negative and pos-

itive entries, ten replicators (that correspond to a sparsity coefficient equal to 0.28) are

sufficient in order to avoid death of the protocell.

7 Conclusions and remarks on the chaotic behaviors

The models considered so far are, from a mathematical point of view, generic non-linear

systems of differential equations, that we know can exhibit chaotic behaviors. It is thus

a natural question to consider how these non-regular behaviors can be associated to

sustainable growth and evolution of protocells. In other words, why, even if you have

a set of chemical reactions that exhibit a chaotic behavior, once you “embed” these

reactions in a protocell, their behavior is more regular, in such a way the protocell can

grow and divide?

In the following we provide a partial answer to this question by considering the

Willamowsky-Rössler (1) system3, that exhibits chaotic behaviors (see figure 3) and it

has been already used to model chemical reactions:8><>:
dX
dt = k1X − k−1X

2 − k2XY + k−2Y
2 − k4XZ + k−4

dY
dt = k2XY − k−2Y

2 − k3Y + k−3
dZ
dt = −k4XZ + k−4 + k5Z − k−5Z

2

(22)

We observe that if the previous kinetic equations are introduced in a protocell,

whose container varies as a function of some GMMs, then the Willamowsky-Rössler

protocell becomes8>>>><>>>>:
dC
dt = αX
dX
dt = k1X − 1

C k−1X
2 − 1

C k2XY + 1
C k−2Y

2 − 1
C k4XZ + Ck−4

dY
dt = 1

C k2XY −
1
C k−2Y

2 − k3Y + Ck−3
dZ
dt = − 1

C k4XZ + Ck−4 + k5Z − 1
C k−5Z

2

(23)

We observed that the system undergoes through a bifurcation as the parameters α

varies: for small values of the latter the system still evolves chaotically following the

Willamowsky-Rössler strange attractor, then as α increases the system presents, first

a periodic orbit and then a fixed point, hence synchronization, see figure 4.

This implies that protocells, and possibly also real cells, during their evolution could

have “tuned”, or have been selected, in such a way the coupling between container

growth and metabolism/information reproduction, gives rise to a regular behavior,

even if the latter systems could evolve (separately) in a chaotic way.

3 Similar conclusions have been found by analyzing a modified Lorentz system where the
strange attractor is fully contained in the positive octant.
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Fig. 3 The Willamowsky-Rössler strange attractor (X(0) = 2, Y(0) = 3, Z(0) = 1, k1 =
30, k2 = 1, k3 = 10, k4 = 1, k5 = 16.5, k−1 = 0.25, k−2 = 0.0001, k−3 = 0.001, k−4 =
0.5, k−5 = 0.5)
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Fig. 4 The behavior of the Willamowsky-Rössler system introduced in a protocell is tightly
correlated with the value of α. The figure on the left panel represents the bifurcation diagram
of ∆TC in function of α variation. On the X axis α values are represented while on the Y
axis the cell division time is shown (α goes from 0.1 to 0.01 and for each value of the latter
the last twenty cell division times are shown). Although it is not clear observing the graph,
the system shows supersynchronization for α equal to 0.1. On the right panel Z in function of
X is represented using different values for the parameter α . It is clearly observable that the
orbits dimension decrease increasing the value of α . For values of α larger than 0.3 (here not
shown) the limit cycle became a fixed point and synchronization is achieved (the values of the
parameters are the same of figure 3)

The addressed question is surely relevant to understand the emergence of sus-

tainable forms of life, and thus deserves further investigations that will be presented

elsewhere.

Acknowledgements Authors would like to thank the “DICE project of Fondazione Venezia”and
the European Centre for Living Technology for the financial and logistic support.

References

1. B. D. Aguda and B. L. Clarke. Dynamic elements of chaos in the williamowski-

rossler network. Phys, (89):12, December 1988.



13

2. T. Carletti, R. Serra, I. Poli, M. Villani, and A. Filisetti. Sufficient conditions for

emergent synchronization in protocell models. J Theor Biol, 254(4):741–751, 2008

Oct 21.

3. A. Filisetti, R. Serra, T. Carletti, M. Villani, and I. Poli. Synchronization phenomena

in protocell models. Biophysical Reviews and Letters (BRL), 3(1/2):325–342, 2008.

4. T. Ganti. Chemoton theory, vol. i: Theory of fluyd machineries: Vol. ii: Theory of

livin system. New York: Kluwer Academic/Plenum, 2003.

5. M. M. Hanczyc and J. W. Szostak. Replicating vesicles as models of primitive cell

growth and division. Curr Opin Chem Biol, 8(6):660–664, Dec 2004.

6. S. S. Mansy, J. P. Schrum, M. Krishnamurthy, S. Tobé, D. A. Treco, and J. W.
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