
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Taming Time in Software Product Lines

Hubaux, Arnaud; Classen, Andreas

Publication date:
2008

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Hubaux, A & Classen, A 2008, Taming Time in Software Product Lines..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198257508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/taming-time-in-software-product-lines(d91a863c-64b0-4fcb-9a9b-0f8ffbe9b6ab).html

PReCISE – FUNDP
University of Namur
Rue Grandgagnage, 21
B-5000 Namur
Belgium

TECHNICAL REPORT July 1, 2008

AUTHORS A. Hubaux, A. Classen
EMAILS {ahu,acs}@info.fundp.ac.be
STATUS Draft version v0.2

REFERENCE P-CS-TR SPLBT-00000001
PROJECT MoVES
FUNDING Interuniversity Attraction Poles Programme of

the Belgian State of Belgian Science Policy

Taming Time in Software Product Lines

Copyright c© University of Namur. All rights reserved.

DRAFT
VERSIO

N

c©
Univ

ers
ity

of
Nam

ur.
All r

igh
ts

res
erv

ed
.

CONTENTS 1

Contents
1 Foreword 2

2 Introduction 3
2.1 Motivation . 3
2.2 Outline . 4

3 PloneMeeting 4
3.1 Overview . 4
3.2 Current state of the art . 4

4 Binding times from the trenches 5
4.1 Classifying the binding times . 5
4.2 Managing the time scale . 7

5 Open questions 8

6 Conclusion 9

Acknowledgments 9

References 9

Draft version v0.2 P-CS-TR SPLBT-00000001 July 1, 2008

DRAFT
VERSIO

N

c©
Univ

ers
ity

of
Nam

ur.
All r

igh
ts

res
erv

ed
.

1 Foreword 2

Abstract

Software product lines (SPL) are mass-customised systems that are designed to
meet the specific needs of market segments or individual clients. A common way
of modelling the commonality and variability of a SPL is the feature diagram (FD).
While the static modelling of variability is widely covered in existing work, the
management of time is regularly overlooked or left open to the SPL and product
designers. Our objectives are to clarify the concepts of time and binding time, and
to explicitly take these latter two into account in the variability resolution process.
We intend to combine a literature review and empirical analysis conducted on one
open source case study to properly identify the current shortcomings of time rep-
resentation and management in SPL. In this paper, we report on our preliminary
observations on binding time classifications and the time scale used in the variabil-
ity resolution process, and illustrate the deficiencies of current techniques.

1 Foreword
In Book XI from The Confessions (AD 397–398), St. Augusting wrote in Chapter XIV
– Neither time nor future, but the present only, really is:

For what is time? Who can readily and briefly explain this? Who can
even in thought comprehend it, so as to utter a word about it? But what in
discourse do we mention more familiarly and knowingly, than time? And,
we understand, when we speak of it; we understand also, when we hear it
spoken of by another. What then is time? If no one asks me, I know: if I
wish to explain it to one that asketh, I know not;...

Paradoxically, any contemporary quidam unprepared to answer the question what
is time? is most likely to concur with St Augustin’s answer, even though it was stated
about 1600 years ago. Although the study of time throughout ages and across the dis-
ciplines would be an engrossing labour, it is way beyond the scope of our work. There-
fore, we will limit our investigations to the advances of the mathematical definitions
that paved the way towards a formalised —or at least rationalised— concept of time.
So, rather than studying time itself, the purpose of this report is to address the under-
standing of time in Software Product Lines (SPL). With all due care, we will explore the
use of time in SPL and focus on the modelling of binding times and the management of
variability resolution with specific target the dynamic evolution of product configura-
tions. Note that in the remainder of this report, we will consider time from the temporal
logic perspective. In other words, the common vision of time usually assimilated to
the ticking of a clock will be set aside. We will further elaborate on the management
of time in coming sections and attempt to provide a time scale in compliance with the
SPL needs. For the sake of the argumentation, we will partially negate the following
assertion of Dave Allen by quibbling with the management of both time and variability
resolution:

“Time management” is a foolish idea–you don’t manage time. Have
you ever mismanaged five minutes and come up with six? Or four-and-a-
half? Time just is. Our actions are what we manage, during time.

Draft version v0.2 P-CS-TR SPLBT-00000001 July 1, 2008

DRAFT
VERSIO

N

c©
Univ

ers
ity

of
Nam

ur.
All r

igh
ts

res
erv

ed
.

2 Introduction 3

We currently narrowed down our research to two major types of outcomes, which
should allow us to achieve our main goal. The first outcome we expect from this study is
a resilient classification of binding times with clear guidelines as to when they are worth
being considered. A second outcome is a formal variability resolution process allowing
the straightforward configuration of products as well as the supervised evolution of
product configurations. Our main goal is to save the SPL configurator(s) the heavy
burden of checking the consistency of the derived configurations, and thereby avoid
latent crashes of the system due to ill configured products.

2 Introduction
The variability in time and the variability in space are usually considered as fundamen-
tally distinct dimensions in software product line engineering (SPLE) [1]. Pohl et al. [1]
define the variability in time as “the existence of different versions of an artefact that are
valid at different times” and the variability in space as “the existence of an artefact in
different shapes at the same time”. The common denominator of these two definitions is
the notion of time. It is actually the time that determines the artefact that is considered
and the perspective of the performed analysis. In this report, we will abstract from the
software artefacts to focus on (1) the configuration of the SPL at a given time and on
(2) the evolution of the configuration over time to (3) eventually reach the dynamic re-
configuration of the SPL at runtime. We will later assume that the variability modelling
stage panned out and that the resulting FD is syntactically and semantically correct. In
the remainder of this section, we will present the motivations underlying our research
and give the outline of this report.

2.1 Motivation
The initial observation that drove us to investigate the concept of time in SPLE was the
apparent discrepancies between its understanding in the literature on the topic of SPLE
and feature modelling. This was further reinforced by our empirical studies conducted
on one of our case study, viz. PloneMeeting. During the modelling of the FD of Plone-
Meeting, we struggled to express time-related information, among which the selection
of the appropriate binding time classes, their modelling, and the conformance of the
variability resolution with these binding time constraints.

Based on these shortcomings showing in the literature and in empirical analysis, we
started looking for work investigating the concept of time in SPL. The existing studies
we surveyed like [2, 3], however, focus on FM languages and overlook the formali-
sation of time and its integration in the variability resolution process. This lead us to
consider research questions addressing both time modelling and variability resolution
issues which can be formulated as follows:

1. What are the relevant binding times and how should they be expressed?

2. What are the shortcomings of time management in feature models?

3. What is the time scale that guides the variability resolution process?

Draft version v0.2 P-CS-TR SPLBT-00000001 July 1, 2008

DRAFT
VERSIO

N

c©
Univ

ers
ity

of
Nam

ur.
All r

igh
ts

res
erv

ed
.

2.2 Outline 4

The formalisation of time and the adaptation of the formal semantics of FD to take
it into account are leaft for future work. This paper reports on our preliminary work
attempting to better understand and classify the binding times.

2.2 Outline
The remainder of the paper is structured as follows. Sec. 3 will introduce PloneGov,
PloneMeeting and the work we achieved on this case so far. Sec. 4 will elaborate on
the concept of binding time, binding time classifications and discuss the time scale used
during the variability resolution process. Sec. 5 will put forward some open issues we
identified during our analysis. Sec. 6 will conclude this report.

3 PloneMeeting

3.1 Overview
PloneGov is an open source project fostering the development of web based eGovern-
ment applications and gathering around 55 international public organizations into 19
products and counting with frequent product releases [4]. All these products promote
the cooperative development of applications and web sites targeted to public organiza-
tions and their citizens. They split into three categories: (1) citizen-oriented services,
(2) government internal applications and (3) general purpose tools. The worldwide
scope of PloneGov yields specific legal, social, political or linguistic aspects to deal
with. They are all constraining the features required from a given product, hence the
need for flexibility regarding product derivation.

For now, we focus only on one of PloneGov’s products, namely PloneMeeting.
PloneMeeting is a Belgian government-initiated project offering advanced meeting man-
agement functionalities to national authorities. It is currently gaining worldwide recog-
nition, and is being tested in some French, Spanish and North American towns.

Besides promoting the free dissemination of high-end web based eGovernment
applications, PloneGov also encourages cross-product interactions and integrations.
However, interviews with the PloneMeeting developers brought to light that neither
an agreed nor shared development policy ever existed among the different PloneGov
products. This lack of development and reusability policy makes it hard for developers
to seamlessly integrate and adapt some external products. Therefore, improving the
homogeneity of the development and the variability management within and among the
products of the PloneGov product family rank among the most prioritary objectives of
the development team.

3.2 Current state of the art
In previous work [5], we introduced the idea of using SPL principles to engineer the
PloneGov project. Our conclusion showed a number of organisational and technical
problems that had to be tackled. Handling the distributed developers, managing the

Draft version v0.2 P-CS-TR SPLBT-00000001 July 1, 2008

DRAFT
VERSIO

N

c©
Univ

ers
ity

of
Nam

ur.
All r

igh
ts

res
erv

ed
.

4 Binding times from the trenches 5

already existing variability, and expressing different variability levels according to user
classes were only a few of them.

In [6], we focused on the identification and modelling of the variability in Plone-
Meeting. Since no variability model formerly existed, the variation points had to be
reverse engineered from stakeholders, developers and existing artefacts to enable the
re-engineering of configurable artefacts. We therefore defined a reverse engineering
process taking these various information sources as input and producing separate fea-
ture models for the different concerns we identified.

The most significant results we obtained so far are the four modelling challenges
we identified in [7] during the variability reverse engineering of PloneMeeting. The
first one refers to the implicit modelling viewpoint underlying the variability modelling
and its link with binding times. The second one discusses the modelling of features that
are unavailable but that one still wants to be present in the FM. The third one focuses
on the evolution of FMs and more specifically on the evolution of complex constraints
expressed in propositional logic. The fourth one addresses the representation of large
sets of features in an FM. The workarounds we proposed to tackle these issues will
still have to be systematically applied to concrete cases and properly assessed in future
work.

4 Binding times from the trenches
Subsequent to variability modelling is the resolution of variation points, which eventu-
ally results in fully configured products. This variability resolution process is referred
to as variant binding and can be performed at different times of the development pro-
cess. These binding times can be numerous and range over the different stages of the
SPLE lifecycle. In order to identify the binding times needed by the case presented in
Sec. 3, we started investigating (1) their differences, and (2) the representation of time
and time constraints in FMs. This section reports on the two major issues we faced,
i.e. the identification of a consistent binding time classification, and the selection the
appropriate time scale.

4.1 Classifying the binding times
Binding time has always been a major concern in variability resolution since FODA [8]
and existing work has largely contributed to the extension of the original binding times.
However, an acknowledged classification of well defined binding times has not been
reached so far. As Tab. 1 attests, a review of only five mainstream papers results in
eleven binding times addressing either static, i.e. prior to system start-up, or dynamic,
i.e. posterior to system start-up, resolution stages. Their versatility is further reinforced
by the different perspectives followed by the authors.

Kang et al. , in FODA [8], originally specified three binding times they define as the
time at which the instantiation of software (sic) is performed. Compilation time
specifies the features that have to be bound when compiling the software. Load
time specifies the features that have to be bound at software start-up but that

Draft version v0.2 P-CS-TR SPLBT-00000001 July 1, 2008

DRAFT
VERSIO

N

c©
Univ

ers
ity

of
Nam

ur.
All r

igh
ts

res
erv

ed
.

4.1 Classifying the binding times 6

Table 1: Overview of existing binding times
Binding time classifications

Binding typeKang et al. [8] van Gurp et al.
[9]

Dolstra et al.
[10]

van der Hoek
[11]

Svahnberg et
al. [12]

Requirements

Static

Architecture Architecture
Design Design
Source code Invocation

Compilation Compilation Compilation Invocation Compilation
Link Link

Distribution
Build
Installation

Load Start
Dynamic

Runtime Runtime Runtime Runtime Runtime

remain stable during execution. Runtime specifies the features that can be bound
automatically or interactively during execution.

van Gurp et al. characterised these binding times as mere abstraction levels that allow
to “relate variation points to different moments in the development” [9]. Each ab-
straction level corresponds to a development stage of the SPL. They consider
development as the transformation of the representations used during the devel-
opment phases. During these transformations, design decisions can be taken or
postponed and left open to later variability resolution stages.

Dolstra et al. see binding times as the milestones of the “development, deployment
and usage timeline” [10]. They refer to this timeline variability as an additional
dimension to variability that is often sidestepped in ongoing practices. They put
forward the binding times of Tab. 1 as typical examples of decision moments.

van der Hoek postulates that the binding order of variation points should not influence
the resulting software instances, i.e. an instance should be independent from vari-
ation point binding times. This so-called any-time variability is defined as “the
ability of a software artefact to vary its behaviour at any point in the life cycle”
and is claimed to substantially increase the flexibility of the variability resolution
process [11]. He also differentiates any-time variability from variability in time,
which is defined as the versioning of elements that fosters evolutive PL architec-
ture. The invocation time encompasses both the complete variability resolution
and the system instantiation, hence its multiple occurrences in Tab. 1. Note that
the mapping with the compile time is not obvious in this work.

Svahnberg et al. define the binding time as the time at which the system is bound to a
particular variant [12]. They present their binding times through a taxonomy of
variability resolution techniques. They also argue that binding times should not
include design and implementation phases since, at those times, variation points
can be introduced, “but there are no means available to select between them”.

Draft version v0.2 P-CS-TR SPLBT-00000001 July 1, 2008

DRAFT
VERSIO

N

c©
Univ

ers
ity

of
Nam

ur.
All r

igh
ts

res
erv

ed
.

4.2 Managing the time scale 7

time

Compilation Load Runtime

In-stage variability resolution step
Development stage

0 5 10 15

Figure 1: Binding time scale

In addition to the various perspectives, there is lack of normalisation in the used
terminology. For instance, the invocation time proposed by van der Hoek [11] appears
loosely defined when compared to the fine-grainded decomposition proposed by Dol-
stra et al. [10]. Another, and maybe more severe, discrepancy is presented in Beuche et
al. [13] which take both compile and configuration times (not reported in Tab. 1) as ex-
amples of binding times. This again underlines the confusion around the interpretation
of binding time. All the definitions of binding time we gave above target specific points
in time whereas the configuration time refers more to a process than a binding time per
se. The configuration is what is performed at each stage of the variability resolution
process and is thereby not a stage in itself.

4.2 Managing the time scale
The classification issue raised in Sec. 4.1 is only a part of the binding time manage-
ment problem. A follow-up issue is the management of the resolution steps within the
stages. Sec. 4.1 assumed that the interval between two binding times was the time scale
unit. However, it is likely that more than a single resolution stage will be performed
to go from binding time bt to bt+1. These additional resolution stages also have to
be considered as binding times since variants are also bound during them. Fig. 1 il-
lustrates, based on the Kang et al.’s classification, these two levels of binding times
where Compilation, Load, and Runtime are binding times tagging development stages
and intermediate resolution stages are in-stage binding times.

The question is then why do we need such a distinction? From the pure feature
modelling point of view, no distinction is needed. Indeed, the binding time can be
seen as a simple ordering criteria constraining the resolution stages. In this case, the
labels of the different phases of the development lifecyle or the stages in which the
bindings are performed do not really matter. The generic staged configuration process
of variability resolution presented and formalised in [14] goes along the same line. Each
stage of the configuration process wipes out some variability choices by specialising and
configuring the FM to finally reach a fully configured family member. Configuration
stages are performed by possibly different parties who have been assigned roles like
product manager, developer or user.

Nevertheless, the FM is part of the global SPLE process, and is thereby dependent
on the development stages. Indeed, as variability resolution goes, “we tend to have
a different configuration interface per configuration moment” [10], hence the need to
separate binding time classes (BTC) and to express them explicitly. There already exist
some proposals to annotate variation points with binding times like van Gurp et al. [9],

Draft version v0.2 P-CS-TR SPLBT-00000001 July 1, 2008

DRAFT
VERSIO

N

c©
Univ

ers
ity

of
Nam

ur.
All r

igh
ts

res
erv

ed
.

5 Open questions 8

VSL [15], and Schmid et al. [16]. Dolstra et al. [10] resort to a pseudo variation point
time with the binding times as associated variants, and a set of valid transition rules
between configurations. However, these solutions focus on the lifecycle stages and will
need to be extended to deal with arbitrary binding times and configuration changes
occurring unpredictably.

As a matter of fact, the automatic rebinding of variants and the constrained evolution
of configuration are hard to express in these approaches, hence their limited suitability
to dynamic environments. For instance, in the case presented in Sec. 3, a meeting is
a key concept. The allowed states of a meeting are defined according to a workflow.
The typical states of the workflow are created, published, frozen, decided, closed, and
archived. The transitions among the states are guarded by conditions on, for example,
the permissions of the user performing the action. This workflow can be changed in
the PloneMeeting configuration menu but the time at which it can be performed, e.g.
installation time or runtime, is not specified. This is a major issue since the states of
the already existing meetings might not be compatible with a newly selected workflow.
Since each workflow is represented by a feature in the FM, restrictions on the allowed
transitions between configurations should be enforced to prevent the application from
reaching an inconsistent state, which is not achievable with existing FM languages. In
this particular case, the workflow should be set to be immutable once selected.

This immutable status is actually more problematic than it might first seem because
allowing the immutability of configuration choices to be set implies that configuration
choices can evolve. However, previous definitions of binding time suggested the per-
manent binding of variants. Allowing some variants to be rebound contradicts with the
durability of the binding. Three possible solutions to this mutability issue are (1) to
allow variants to be rebound at any time, (2) to prevent variants from being rebound,
thereby making it impossible for a configuration to evolve, and (3) to allow variants
to be rebound only within a stage, every binding performed in previous stages being
immutable and every binding to be performed in later stages being left untouched.

This brief evaluation of the time scale already showed the sensibility of the time
unit, which subsequently challenged the mutability of variant bindings. Further inves-
tigations will need to be conducted to explicitelly model time and to integrate it in the
variability resolution process.

5 Open questions
Some questions we leave open for future work are:

1. Should specific binding times be fixed?

2. Should patterns of binding times classifications be developed according to SPL
types?

3. How flexible should the bindings be?

4. Should the stakeholders be able to specify their BTCs?

Draft version v0.2 P-CS-TR SPLBT-00000001 July 1, 2008

DRAFT
VERSIO

N

c©
Univ

ers
ity

of
Nam

ur.
All r

igh
ts

res
erv

ed
.

6 Conclusion 9

6 Conclusion
Although extensively covered in the literature, we demonstrated that binding times and
more generally the concept of time are still lacking a clear and agreed view throughout
the SPLE lifecycle. More specifically, we showed by means of five binding time clas-
sifications taken from mainstream papers the differences of existing classifications. We
also put forward the difficulties that show up when one considers different time scales
in the variability resolution process. These issues drove us to question the immutability
of configuration choices, principally at runtime.

This work is only a first step towards a better understanding and management of
time in SPL. The amount of work ahead is still weighty, a large part of which will be
dedicated to the integration of an existing semantics of FD language to preserve the
benefits of the already existing automated analysis. A major challenge will be to deal
with the resulting increased complexity of FDs whose scalability is already questioned.

Acknowledgments
We would like to thank Gaëtan Delannay and the other contributors of the PloneGov and
PloneMeeting initiatives, as well as our colleagues Patrick Heymans, Jean-Christophe
Trigaux and Germain Saval for their valuable comments on this work. This work is
sponsored by the Interuniversity Attraction Poles Programme of the Belgian State of
Belgian Science Policy under the MoVES project.

References
[1] Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:

Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA (2005)

[2] Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Feature Diagrams: A
Survey and A Formal Semantics. In: Proceedings of the 14th IEEE International
Requirements Engineering Conference (RE’06), Minneapolis, Minnesota, USA
(September 2006) 139–148

[3] Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of
feature diagrams. Computer Networks 51 (February 2007) 456–479

[4] : PloneGov. http://www.plonegov.org/

[5] Delannay, G., Mens, K., Heymans, P., Schobbens, P.Y., Zeippen, J.M.: PloneGov
as an Open Source Product Line. In: Workshop on Open Source Software and
Product Lines (OSSPL07), collocated with SPLC. (2007)

[6] Hubaux, A., Heymans, P., Unphon, H.: Separating Variability Concerns in a Prod-
uct Line Re-Engineering Project. In: International workshop on Early Aspects at
AOSD. (2008)

Draft version v0.2 P-CS-TR SPLBT-00000001 July 1, 2008

DRAFT
VERSIO

N

c©
Univ

ers
ity

of
Nam

ur.
All r

igh
ts

res
erv

ed
.

REFERENCES 10

[7] Hubaux, A., Heymans, P., Benavides, D.: Variability modelling challenges from
the trenches of an open source product line re-engineering project. In: Software
Product Line Conference (SPLC’08). (2008) To appear.

[8] Kang, K., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical report, Software Engineer-
ing Institute, Carnegie Mellon University (1990)

[9] Van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in software
product lines. In: WICSA ’01: Proceedings of the Working IEEE/IFIP Conference
on Software Architecture (WICSA’01), Washington, DC, USA, IEEE Computer
Society (2001) 45

[10] Dolstra, E., Florijn, G., de Jonge, M., Visser, E.: Capturing timeline variabil-
ity with transparent configuration environments. In Bosch, J., Knauber, P., eds.:
IEEE Workshop on Software Variability Management (SVM’03), Portland, Ore-
gon, IEEE (May 2003)

[11] van der Hoek, A.: Design-time product line architectures for any-time variability.
Science of Computer Programming 53(3) (2004) 285–304

[12] Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization
techniques. Software – Practice and Experience 35(8) (2005) 705–754

[13] Beuche, D., Papajewski, H., Schröder-Preikschat, W.: Variability management
with feature models. Sci. Comput. Program. 53(3) (2004) 333–352

[14] Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based fea-
ture models and their specialization. Software Process: Improvement and Practice
10(1) (2005) 7–29

[15] Becker, M.: Towards a general model of variability in product families. In: 1st
Workshop on Software Variability Management, Groningen, Netherlands (Febru-
ary 2003)

[16] Schmid, K., Eichelberger, H.: Model-Based Implementation of Meta-Variability
Constructs: A Case Study using Aspects. In: Proceedings of VAMOS 2008, Essen
(January 2008) 63–71

Draft version v0.2 P-CS-TR SPLBT-00000001 July 1, 2008

