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Asymptotic behaviour and stability for solutions
of a biochemical reactor distributed parameter
model

A. K. Dramé, D. Dochain, and J. J. Winkin,

Abstract

This paper deals with the dynamical analysis of a tubular biochemical reactor. The existence of nonnegative state trajectories
and the invariance of the set of all physically feasible state values under the dynamical equation as well as the convergence of
the state trajectories to equilibrium profiles are proved. In addition, the existence of multiple equilibrium profiles is analyzed. It
is proved that under physically meaningful conditions the system has two stable and one unstable equilibrium profiles.

Index Terms

state trajectories, asymptotic behaviour, multiple equilibrium profiles, stability, biochemical reactor.

I. INTRODUCTION

The dynamical analysis and control of tubular biochemical reactors have motivated many research activities over the last
decades ([5], [6], [11], [13], [24], etc.). The dynamics of these reactors are described by distributed parameter systems and
typically by nonlinear partial differential equations with e.g. Danckwerts type boundary conditions, see e.g. [5], [6]. The aim
of this paper is to analyze the dynamical nonlinear model of a fixed bed tubular biochemical reactor with axial dispersion. The
nonlinearity in the model arises from the substrate inhibition term in the model equations and is a specific rational function of
the state components. The basis of the model under study is derived from the work performed on anaerobic digestion in the
pilot fixed bed reactor of the LBE-INRA in Narbonne (France) and is mainly inspired from the dynamical models built and
validated on the process ([3], [21]). This study follows the preliminary one performed in [13].

The existence and uniqueness of the state trajectories (limiting substrate and limiting biomass) as well as their asymptotic
behaviour are analyzed for this model. First of all, it is proved that the trajectories exist on the whole (nonnegative real) time
axis and the set of all physically feasible state values is invariant under the dynamical equation. This set takes into account
the positivity of the state variables as well as a saturation condition on the substrate. Second, the asymptotic behaviour of the
trajectories is investigated and it is proved that the trajectories converge to equilibrium solutions of the system.

In addition the existence of multiple equilibrium profiles is analyzed. The multiplicity is established together with the stability
of equilibrium profiles by using phase plane analysis of ordinary differential equations.

The paper is organized as follows : in Section 2, the dynamical model is presented and some preliminary analysis is performed.
In Section 3, the state trajectories of the tubular biochemical reactor dynamical model are analyzed. Sections 4 and 5 deal with
the existence of multiple equilibrium profiles and their stability. Finally, some concluding remarks are given in Section 6.

II. THE DYNAMICAL MODEL

Applying the mass balance principles to the limiting substrate concentration S(7,¢) and the living biomass concentration
X (7,¢) leads to the following nonlinear system of partial differential equations :

2
oS _ 0% _ 9S

— = —v——ku(S, X)X 1.1
ar ~ P ~vac ~ kS X) (1)
X
OX _ jaX + u(S. X)X, (I1.2)
or
with the boundary conditions : for all 7 > 0,
D§(7'7 0) —vS(1,0) + vSi, =0 and ﬁ(r, L)=0. (11.3)
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The substrate inhibition is expressed via the following law :

S
u(S, X) = p

"KsX + 5+ 52

(IL4)

In the equations above, D, k, kg, Kg, K;, Sin, v and ug are positive parameters. In particular, D, v and k4 denote the
axial dispersion coeficient, the superficial fluid velocity and the kinetic constant, respectively. The parameters k£ and K g are
dimensionless, whereas K; has the dimension of a concentration. In addition the specific growth rate (S, X) has the dimension
of the inverse of a time. Finally ¢ € [0, L] and 7 > 0 denote the spatial and time variables, respectively, and L denotes the
length of the reactor.

Observe that the reaction considered here is autocatalytic, i.e. the biomass is not only a product of the reaction, but also a
catalyst of that reaction. This feature is modelled by the last term in the right-hand sides (RHS) of equations (II.1) and (IL.2). In
addition the two first terms of the RHS of equation (II.1) are diffusion and convection terms, respectively. The removal-mortality
phenomenon for the biomass is modelled by the first term of the RHS of equation (II.2). This corresponds to the observation
that biomass aggregates reach a maximum size beyond which solid particles leave the reactor : this happens notably because of
shear forces between the fluid (substrate) going through the reactor and the solid (biomass). The selection of the above model
is largely motivated by its analogy with the single microbial growth model with Haldane kinetics in perfectly mixed reactors,
for which the existence of multiple (stable and unstable) equilibria have been emphasized (see e.g. [1], [2], [4], [19]).

From a physical point of view, it is expected that the following saturation condition holds :
0<8 < Sin, (IL5)

where S;, is the inlet limiting substrate concentration. One of the contributions of this paper is to prove that the physiscal
set defined by inequalities (IL.5) is invariant under the dynamic equation of the biochemical reactor model introduced above.
As usual, the dynamical analysis of this model will be performed on an equivalent dimensionless infinite dimensional system
description. By using the new state components

T Sin = and 7 X
Ty = o 1=
! Szn ? S’Ln
and the new spatial and time variables
¢ v
== d t:=—
2=, an A

respectively, the model (II.1)-(II.2) can be rewritten as the following two PDE’s :
071 1 0%t 01

o T 02 o I T o)
0% e s
o = i, B)i, (IL7)
with the boundary conditions : for all ¢ > 0,
1 0% - 011
- 7 _ — ——(t.1) =0. 1I.
. o> (¢,0) — Z1(¢,0) =0 and o (t,1)=0 (I1.8)
where the modified substrate inhibition law fi(Z1,Z2) is given by
1_ 3
i (L—2) (IL.9)

P Rea (1—71) + ol — 71)2
and where the constants «, 3, v and P, (Peclet number) are given respectively by

Sin L L vL

= — = —k d P.:=—
Ki7ﬁ V/j/Oa'y I/dan D7
respectively. We also introduce the following change of variables in order to transform the equation (I1.6)-(IL.8) into a reaction-
diffusion equation with a bounded perturbation. This transformation is for mathematical analysis purpose and we will use
the resulting reaction-diffusion type equation to study asymptotic behaviour of solution of the system (I.6)-(IL.8). This is a

one-to-one transformation, so the two systems are equivalent.

=

x1(2) == e_%zj':l(z) and x9(z) := 6_%2532(2) for all z € [0, 1], for all 21, 22 € C[0, 1].

Then, we have the following equations :

8x 1 82$ Pe =
8_; == 8221 — w1+ K, 2)w (IL.10)
e




8])2

5 = 1ot [z, 22z, (IL11)
with the boundary conditions : for all £ > 0,
0 P, 0 P,
ale (t,0) = 1 (t,0) and %(t, 1) = -t 1), (IL12)

where P P
= ~ e e
[i(z, 21, x2) = [i(€? a1, €72 “xa).

Now the dimensionless model (II.10)-(II.12) can be given an infinite dimensional state space description as follows. Consider
the Banach space C[0, 1] (equipped with the usual norm ||.|| co) on which we define the unbounded linear operator A1 by :

dz, P. dxq P,
D(A)) = 2[0,1 - == =0, — (1) + =22(1) =
D(A1) = {1 € C2[0,1]: T2(0) = Saa(0) = 0, T2(1) + “Eaa(1) = 0},
1 d2$1 Pe
Aivy = ——— — — D(Ay).
=5 gm0 Va1 € D(A)
We also consider the bounded linear operator Ao = —~I where I is the identity operator on C[0, 1]. Therefore equations
(I1.10)-(I1.12) can be rewritten as follows : for all t > 0,
dz(t
% = Axz(t) + N(z(t)),
where z := (z1,22)T is a vector of the Banach space Z := C[0, 1] @ C[0, 1] endowed with the natural norm |.|| z =

[Illco +1l-lco, A := diag(A1, A2) is defined on its domain D(A) = D(A1) & C|0, 1] and N is the nonlinear operator defined
on X by N(z) := (N1(z), Na(z)) where

N1 = k‘NQ and Ng(l'l,fl,'g) = /:L(l'l,l'g)l'g.

By the arguments given in [7], the operator A is the infinitesimal generator of an exponentially stable C-semigroup of
bounded linear operators T (t) on C|0, 1]. It is easy to see that A5 is the infinitesimal generator of an exponentially stable C'y-
semigroup of bounded linear operators T'2(t) = e~ 7' on C[0, 1]. Therefore A is the infinitesimal generator of an exponentially
stable Cp-semigroup of bounded linear operators T'(t) on Z given by T'(t) = diag(T'1(t), T2(t)). Moreover, the semigroups
Ty (t) and Tx(t) are analytic in C[0, 1] and T4 (t) is compact in C1[0, 1]. Therefore, T'(¢) is analytic in Z.

ITI. STATE TRAJECTORIES
A. Global existence
The well-posedness and invariance properties of the state trajectories of the biochemical reactor dimensionless model (II.10)-
(II.12) are now studied by using the description of an abstract semilinear Cauchy Problem of the form
dx(t)
dt

= Ax(t) + N(z(t)),
z(0) = zo € Q,

(IIL1)

where the operators A and IV are defined in the previous section and (2, motivated by (IL.5), is the physically admissible set
given by :
PE?
Q= {(z1,20)€Z:0<z1(2)<e 2% 0<umy(z) forall ze0,1]} (111.2)

The main tool used in the analysis of this problem is the following theorem, which is an equivalent version of Theorem 5.1
of [16, p.355]. This Theorem gives sufficient conditions for the existence and the uniqueness of the mild solution of equations
of type (IIL.1) on the whole interval [0, +00) and for the invariance of the set {2 under the dynamical equations.

Theorem 3.1: [16, p. 355, Theorem 5.1] Let (X, [|.||) be a real Banach space and T( t) a Cp-semigroup of bounded linear
operators such that |T(t)| < Me®, for all t > 0, for some § € R and M > 1. Let A be the infinitesimal generator of T'(t)
and D be a closed subset of X. Assume also that N is a continuous function from D into X. Let us consider the following
initial value problem

de(t) - -
ke Az(t) + N(z(t)),

z(0) = zo € D.

(I11.3)

Assume that o ~
(i) D is T'(t)-invariant, i.e. for all ¢t > 0, T'(t)D C D;



(ii) For all z € D, .
lim —d hN (z); D) = 0;
i, e+ ANG):D)
(iii) N is continuous on D and there exists & € R* such that the operator (N -1 1) is dissipative on l~).~
Then for all zg € D, (IIL.3) has a unique mild solution z(¢,z¢) on [0, co[. Moreover, if T(t) is defined on D by T(t)xo =
x(t, o), for all t > 0 and z( € D, it is a nonlinear semigroup on D, with (A + N) as its generator.
The following lemma holds.

Lemma 3.2: The semigroup T'(t) is positive and for all ¢ > 0, T'(¢t)Q C Q.
Proof : Let 7o = (20,1, 702) € Q and z(t) = T'(t)xo = (T1(t)z0,1, Ta(t)w02)T, for t > 0. Obviously, z2(t) = Ta(t)z02 > 0,

for all ¢ > 0. We have to prove that 0 < x1(¢,2) = (T1(t)z0,1) (2) < e=F% forall t > 0and z € [0, 1]. Let us introduce

y1(t) := —x1(¢) for all ¢ > 0. Since the semigroup 7' (t) is analytic in C[0, 1], then y; satisfies the equation
o _ 19 P
ot P92 a4
y1(0) = —z0.1,
8y1 Pe 8y1 Pe
—(t,0) = —uy1(t,0 d —(t,1)=——wy1(t,1).
82(7) 2y1(5)an az(a) 2y1(7)

It follows by the comparison theorem (see eg. [20, Chap 3, Theorem 8]) that y; reaches its maximum at a boundary point
(0,2), z €]0, 1], (t,0), t > 0 or (¢,1), ¢ > 0. If this maximum is reached at (¢,0) (resp. at (¢, 1)), then it follows from [20,

Chap 3, Theorem 8] that

oy oy
9% (¢,0) <0 (resp. 9% (t,1) > 0).

Hence, considering the boundary conditions, the solution y; cannot have a positive maximum at (¢,0) and (¢, 1). It follows
that its maximum is negative and therefore 0 < x(¢), for all ¢ > 0. Since T4 (t) is a semigroup of contraction,

z1(t, 2) < [lz1(®)]lco < ||zo,1lco < e*%z, for all z € [0, 1] and ¢ > 0.

It follows that T'(¢)zo € €2 that is : the semigroup 7'(¢) is positive and €2 is invariant under 7'(¢). O

Remark 3.1: It is easy to see that the function N :  — Z is Lipschitz continuous and that its Lipschitz constant, [ n, can
be obtained by rather simple calculations.
Now let A be a closed interval of R and consider the set

K(A,CJ0,1) :={o € C[0, 1] : ¢(2) € A for all z € [0, 1]}.
The proof of the following Lemma is similar to the one of [11, Proposition 3.1] is therefore omitted.

Lemma 3.3: Assume that A = [a, b], fo : A — R is a continuous function and f, : [0, 1] x A — R is a nonnegative
bounded measurable function. If f.(a) > 0 and f.(b) < 0, then

1
lim —d h K(A 1)) =
Jim —d(é +hB(¢), K(A, C[0, 1])) =0,
where the substitution operator B is defined on K (A, C|0, 1]) by

(B(9)](2) := fp(2,6(2)).fe(4(2)),
for all z € [0, 1], for all ¢ € K(A,C[0, 1]).

Remark 3.2: By replacing [a, b] by [a, 00) in Lemma 3.3 the conclusion holds if only the condition f.(a) > 0 is satisfied.
The following Lemma can be deduced from Lemma 3.3 and Remark 3.2.

Lemma 3.4: For all (x1,x2) € Q,

1
hlirg+ Ed((xl’ x2) + hN((z1,22));2) = 0.
Finally, we can deduce from Remark 3.1 that the operator N — [ v is dissipative on {2, where [ is the Lipschitz constant of
N.
In the following theorem, the global existence of state trajectories is reported. It follows from the Lemmas above and Remark
3.1, by using Theorem 3.1.



Theorem 3.5: For every xg € {2, equation (III.1) has a unique mild solution z(¢,2¢) on the interval [0, +o00[. Moreover,
if one sets T(t)z := x(t,x0) then, (T(t)):>0 is a strongly continuous nonlinear semigroup on €, generated by the operator
A+ N.

Hence the state trajectories of the tubular biochemical reactor nonlinear model given by (III.1) (or equivalently (II.10)-(I1.12))
are well-defined on the whole time interval [0, +00). Moreover, the physically feasible set 2 is invariant under this model
dynamics, i.e. for all ¢ > 0, T(¢)Q2 C .

B. Asymptotic behaviour

This subsection deals with the asymptotic behaviour of solutions of (III.1). The main result is the convergence of the solutions
to equilibrium profiles of the dynamical model of the tubular biochemical reactor. We will successively give some regularity
and relative compactness result of the solutions before dealing with their asymptotic behaviour. For the sake of simplicity, we
shall denote by x(t) the solution z(t, () of (IIL.1). The proof of following Lemma is similar to the one of [7, Lemma 3.1]
and is therefore omitted.

Lemma 3.6: (i) For any z( € €, the mild solution x(¢) of (III.1) is a classical solution, i.e. :
z € C([0,400[; Z) N C'(J0, 4+00[; Z),
x(t) € D(A), forallt > 0 and z(t) satisfies (IIl.1) in the usual sense.

(#4) For any to > 0, the subsets

{Az(t), t > to} and {agit), >0}

are bounded in Z. Moreover, the norms of C[0, 1] and C'*[0, 1] are equivalent on the subset {x1(t), t > to}; i.e.
AMo >0/ Vit >to, [lz1(t)llco < [z1(t)ller < Mollz1(t)]lco-

In view of Lemma 3.6, we shall understand by solution of (III.1) a global classical solution.

Let us define now the following functionals, keeping in mind the idea of some kind of energy function.

Ji(z1,22) = /01 (2]136 <%>2 - /:1 Fl(z,u,xg)du> dz + i(xf(O) +22(1)),

1 T2
Jo(x1,22) = —/ / Fy(z, 21, u)dudz,
o Jo

P, = ~
where Fi(z,21,22) = ——x1 + kfi(2, 1, 22)xe and Fa(z,x1,22) = —ya2 + (2, 1, T2)xo.

4
We finally define
J(x1,22) = Ji(x1, x2) + Jo(x1, 22).

The functional J is well defined along the trajectories of equation (III.1) and the following statement holds.

Lemma 3.7: For any solution z(t) of (IIL.1), we have
d ! 5‘x1 2 8:52 2

1 z1(t,z) ) z2(t,2) 0
_ / / 9 (Fu(eu, 2a(t, ) du +/ 9 Byl 21 (t, 2), u))du | de.
Proof : Let x(t) = (x1(t),x22(t)) be a solution of (IIL.1), then the component x (¢) satisfies the equation

8x1 - 1 821}1 Pe

5 B2 ™ + Ni(z1(t), z2(t)),
8x1 _ P, 81'1 _ P,
W(LO) = Exl(ta()% E(t 1) ) xl(t’ 1)




By differentiating this equation with respect to ¢ and by using the comparison theorem [20, Chap 3, Theorem 8], one can
prove that 8’“ L (t) belongs to C'*[0, 1] for all ¢ > 0. The following calculation is then well founded.

d VA1 o (o Oy z1(t:2) g
& () _/O (m% (E) ~ Fi(z1,02) o —/0 (R (2w, 2a(t, ) )

0
5 (@3(6.0) +a(t,1)

Y01 8z, 0 [0m Or1 1(h2) g
-/ (Fa—a<a—> Atene G- [ GRGwa) ) i

10, , 9

2 tz)
0

+

A~ =

1 [0z Or Ox1 011 10
—(EEb:l— oo ) 10 @30,0) 4 430,

Using the boundary conditions in (IL.12) and the fact that x 1 (¢) satisfies the PDE above, it follows that

EJl( ())—_/0 <%> s _/ / 1o a (i (2, 0, (1, 2)))dud.
%Jg( (1) = —/01 <(%)2—/0x2(m)%(Fg(z,xl(t,z),u))du> dz.
o - - (5 ()
_ /01 </O 2 i(m(z w, 2ot z)))du+/0x2(t’z) %(Fg(z,xl(t,z),u))du> dz.

Let us denote by K (1), for any 7 > 0, the subset of Z given by

On the other hand,

Hence

K(r) ={z(t), t > 1}.

The following Lemma states a relative compactness of the solutions of (III.1). Note that the invariance of the set {2 implies
the boundedness of solutions of (II.1). Note also that N is Lipschitz continuous in C[0, 1] with constant [ ;.

Lemma 3.8: Assume that [y, < 7 and let g = (z9,1,%0,2) € © and z(t) be the solution of (III.1), then K (0) is relatively
compact in Z. Moreover, for any to > 0, K (to) is relatively compact in C'*[0, 1] © C[0, 1].
Proof : 1. Relative compactness in Z
Observe that x;(t) satisfies the integral equation

x1(t) =T1(t)zo1 + /Ot T1(t — s)N1(z1(s), z2(s))ds

and recall that the semigroup T (¢) is compact in C[0, 1] and Ny(x1(t),z2(t)) is bounded in C[0, 1]. Then, it follows from
[18, p. 236, Lemma 2.4] that x(¢) has a compact closure in C[0, 1].

Let us now prove that x5(t) is relatively compact in C[0, 1] by applying Ascoli-Arzela’s Theorem. To apply this Theorem, it
is sufficient to prove that x5(t) is equicontinuous since it is bounded in C[0, 1] and z3(t)(z) € R, for all t > 0, z € [0, 1].



Let 2o,z € [0, 1], we have

z2(t)(20) —22(t)(2) = (T2(t)wo,2)(20) — (T2(t)70,2)(2)
+ /O (To(t — s)Na(21(5), 72(8)))(20) — (T2(t — 5)Na(z1(5), 22(8)))(2)ds
= e "(20,2(20) — T0,2(2))

t
+ / e 77 (Ny(1(s), w2(5))) (20) — Na(w1(s), 22(s)))(2)) ds.
0
Since Ny is Lipschitz continuous with constant [ ,, we have

|22(t)(20) — 22(t)(2)] < e |w02(20) — 20,2(2)]
¢
+ m3/6”“*Mmm@uw—xm@uﬂ+ux@uw—xx$umd&
0
Let € > 0. Since x4 (t) is relatively compact in C[0, 1] then, there exists do > 0 such that

|z — 20| <60 = |21(5)(20) — 21(8)(2)| <&, Vs> 0.

Then, for z € [0, 1] satisfying |z — zg| < do, we have

Wm@%%m@@Kﬂ+%%ﬁﬂmfﬁWMWWﬁMWW&

By applying Gronwall’s inequality, we have

l l t
s (t)(20) —22(D)(2)] < (14 22)ee + 1y, (14+ 22)e / el (t=9) 75 g g
Y Y 0
Iy
< 1+ l&)gevt + Mwh\@t@(v—lw)t
- Y= lNz
Ing\ ~t
(14 Bt
Y= ZN2
So, as Iy, < 7, let €9 be such that
v —InN,
T e
(1 +=F)

By using ¢¢ in the role of ¢ in the previous calculations, we find that for z € [0, 1]
|z — 20| < 60 == |z2(t)(2) — 22(t)(20)] <&, V> 0.
It follows that x2(t) is equicontinuous in C|[0, 1] and by Ascoli-Arzela’s Theorem, x 2(t) has compact closure in C[0, 1].
2. Relative compactness in C'[0, 1] @ C[0, 1]
By Lemma 3.6, the set Ko = {z1(t), t >t} is bounded in C'*[0, 1]. Observe also that for each z € [0, 1], {z1(¢,2)), t > to}
has a compact closure in R. Once again, by Lemma 3.6, the norms of C[0, 1] and C 1[0, 1] are equivalent on Kg. Since x1(t)

is equicontinuous in C[0, 1] then K¢ is also equicontinuous in C'[0, 1]. It follows from Ascoli-Arzela’s Theorem that K (o)
has a compact closure in C'1[0, 1] @& C[0, 1]. This completes the proof. O

As the solutions of (III.1) are defined for all time, we can define their w-limit in the usual way as for dynamical systems.

Definition 3.1: The w-limit set of a solution x(t) of (III.1) with respect to the topology of Z is the set defined by

w(xzo/Z)={p € Z: F(tn)nen, tn - +ooand xz(t,) ¢ in Z}.
n—-+00 n—Too
The following statement holds for equation (IIL.1).



Lemma 3.9: Let x(t) = (x1(¢), z2(t)) be a solution of (II.1). Then, the w-limit set of x(¢) with respect to the topology of
Z coincides with its w-limit set with respect to the topology of C'1[0, 1] & C[0, 1]; i.e.

w(z0/Z) = w(zo/C0, 1] @ C[0, 1]).
Proof : Observe that
w(zo/C0, 1] ® C[0, 1]) = w(wo1/C'[0, 1]) ® w(xo2/C0, 1]).

We have only to prove the identity for the component z1(t) of z(t). Obviously,
w(x071/C'1 [0, 1]) - w(m071/0[0, 1])
Let ¢ € w(xo,1/C0, 1]), then there exists (¢, )nen such that

t, — 4oo and z1(t,) — ¢ in C[0, 1].

n——+oo n——+oo

Without loss of generality, we can assume that (¢,),>0 is increasing and that ¢ty > 0. From Lemma 3.8, x1(¢) is eventually
relatively compact in C'*[0, 1]. Then there exists a subsequence (t,, )k>0 of (t,)n>0 and a function ¢ € C''[0, 1] such that

tn, — oo and z1(t,,) W ¢ in C0, 1].
— T 00

Tk k—+o0

It follows from the uniqueness of the limit in C[0, 1] that ¢ = ¢ and ¢ € C'[0, 1], since the above convergence also holds
in C[0, 1]. Hence
w(20,1/C[0, 1]) C w(zo,1/C[0, 1]).

This completes the proof. U

In view of this Lemma, the w-limit set of a solution x(¢) will be simply denoted by w(zg).
The following Theorem is one of the main results related to the asymptotic behaviour of solutions of (III.1) established here.

Theorem 3.10: Assume that [y, < v and let 2o = (20,1, 20,2) € £ and z(¢) be the solution of (II.1) with z(0) = x( and
w(xg) its w-limit set. Then w(zp) is non empty and is contained in D(A). Moreover w(z ) consists of equilibrium profiles of
(IL1).

Proof : Let z¢ € (2, from Lemma 3.8, w(z() is non empty. Therefore, there exist ¢ € w(xo) and a sequence (¢, ),>0 such
that

t, — +4oo and z(t,) — ¢ inZ.
n— oo n—-+oo

Let us introduce Z,, := x(t,) and g, (t) := x(t + t,,) for all n € N and ¢ > 0. Then, 7, (t) satisfies the integral equation

Tn(t) = T(t)Tn + /0 T(t — 5)N (G (s))ds. (I1L.4)

Recall that T'(t) is a Cy-semigroup of contractions and N is Lipschitz continuous with constant [ 5. Then,

t

19n(t) = I (Dl z < |Zn — Tz + lN/ 9n(8) = Jm(s)l|zds, forallt>0 and n,m € N.
0

Hence, by using Gronwall’s inequality : for any t¢ > 0, there exists a constant C' > 0 such that

0<t<to

Then considered as a subset of C([0, to]; Z), (§n)n>0 is a Cauchy sequence. It follows that there exists a continuous function
y : [0, oco[— Z such that

Vito >0, lm sup ||gn(t) —y(t)]|z=0.
n—00 0<t<tq

Taking the limit in (IIl.4) when n — oo, leads to
t
y(t) =T@)y +/ T(t — s)N(y(s))ds, for all t > 0.
0

Then y(¢) is a mild solution of (III.1) and by Lemma 3.6, y(t) is a classical solution of (IIL.1).
Moreover, §,(t) € D(A) and AT(t) € L(Z) for all t > 0 and n € N, and

AGn(t) = AT(£)Zn + /0 AT (t — )N (Gn(s))ds.



Taking the limit, when n — oo,

lim Ay, (t) = AT(t)p + /0 AT (t — s)N(y(s))ds = Ay(t).

n—00

Since the function N is continuous, one has

By Lemma 3.7, for any to > 0

J(e(te)) - UL/‘Gf“> (%?f)@m
/ / (/II(T . 8 (F1(z u, x2(7, 2))) du + /OIZ(W) 827' (FQ(Z,iL‘l(T,Z),u))du> dzdr.

As z(t) is bounded in Z (there exists My such that 0 < ||z(¢)||z < Mo, for all ¢ > 0), we define the functions
Fi(z,u,z2(7, 2)), if 0<wu<a(rz2)

Gl(zaT7U’) =
0 if u > x1(7, 2)
Fy(z,21(T, 2),u), if 0<u<x(r,2)
GQ(ZaSaU) =
0 if u > x2(T, 2)

Then,

z1(1,2) 8 t Mo 9
/ / F1 (z,u,x2(7, 2)))dudr = / / —(G1(z, 7, u))dudr
to JO 87—

Mo t a
= /0 /to E(GI(Z’T’ u))dudr

Mo
/0 (Gl(zatvu)_Gl(zatovu)) du

z1(t,2)
- l (Fy(2, u, 22(8)) — Fi (2, 0, 2(t)) dus.

As x1(t) is bounded and F is continuous, then the integral

1 pt pxi(r,2) o
/ / / —(F1(z,u, z2(T, 2)))dudrdz, t > tg
0o Ji, Jo or
is bounded.

Similarly, by using G2, we show that the integral

z1(1,2) a
/ / / Fg (z,21(7, 2),u))dudrdz, t > tg
is bounded.

By Lemma 3.6, J(z(t)) is bounded in Z. Hence,

/to / ((8"“) (%)2>dzdr<oo.

Taking any 0 < ¢ < t; < oo, one gets the following identity

2 - 2 t1+tn 2
lim/ / (8y"1> +(8y”’2> dzdt = lim / (8x1> (%> dzdt = 0.
n—oo Ju ot n—oo f, 44 ot
It follows that . )
[ () () e
to ot
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Hence, y is independent of ¢ and y(t) = ¢, for all ¢t > 0. y(t) being a classical solution of (IIL.1), it follows that
peD(A) and Ap+ N(p)=0.

The convergence of solutions of (IIL.1) to its equilibrium profiles is reported now.

Theorem 3.11: Asssume that Iy, < 7 and let zo = (20,1,%0,2) € 2 and z(t) be the solution of (IIL.1) with z(0) = x.
Then there exists an equilibrium profile z of (II.1) such that
Jim z(t) =2 in cto, 1] @ C|o, 1].
—00
Proof : Let x(t) = (z1(t), z2(t)) be the solution of (IIL.1) and w(x() its w-limit set. Let us define

f(t, z,w) = Ni(w, z2(t, 2)),
Then, the x1-equation in (III.1) can be written as follows

0x1 1 9%z P.
Bt P o2 L + f(t, z,21)

21(0, 2) = x0,1(2) (IL.5)
8.131 . Pe . 8371 . Pe
E(tvo) = 7%(@0)» g (t,1)= 5 z1(t, 1),

and we denote by w(xg 1) its w-limit set, that is : w(zg) = w(xo,1) Bw(xo 2). By Theorem 3.10, w(x() consists of equilibrium
solutions. Then, w(x,1) consists of solutions of ordinary differential equations and the convergence of subsequences of x 1 ()
holds in norm C'[0, 1]. Then, by Theorem A in [14], w(x,1) contains at most one element Z1. As w(zo,1) is non empty, then
it contains exactly one element. It follows that 21 (¢) converges towards z; in norm C*[0, 1]. Therefore, 1 (t), z2(t) converges
to an equilibrium (71, Z2) in C*[0, 1] ® C[0, 1]. O

IV. MULTIPLE EQUILIBRIUM PROFILES

In this section, the equilibrium profiles analysis of the biochemical reactor dimensionless model (I1.6)-(I1.9) is performed
by using a perturbation theory. The equilibrium profiles (Z 1, Z2) are solutions of

1"

51— Ty + k(Ey, B)T = O,
. —YZo + [i(Z1,T2)T2 = 0, (Iv.1)
S50 ~:(0) =7(1) = 0.

€
Obviously, the system (IV.1) has a trivial solution (Z1,Z2) = (0,0) which corresponds to the reactor washout (S, X) =
(Sin,0) when considering the initial state variables. In the following, we shall be interested in solution of (IV.1) which satisfy
L
ii(Z1,Z2) = 7. Recall that P, = Y We give here a result of the existence of multiple equilibrium profiles whose proof is
based on pertubation theory and is more simple. The following statement holds

Proposition 4.1: There exists D* > 0 sufficiently large and v* > 0 such that for all D > D* the system (IV.1) has
(i) at least two non trivial solutions if the parameter v satisfies 0 < v < v*,
(ii) at least one nontrivial solution for v = v*,
Proof : From the second equation of (IV.1), we have [i(Z 1, Z2) = 7 which implies that
(]. — i’l)(M + Otkd{fl)

Ty = ToKs ,  where M = pg — kq — akq <0.

Let us consider the real valued function g defined by

kL(]. - i’l)(M + Oékdif'l)

9(z1) = Ks :

The system (IV.1) is equivalent to the following equation

{ D7} — vy +g(&1)
Dz,(0) —vz1(0) = z,(1) = 0.

|
[=)

(IV.2)



11

Let us introduce u(z) := Z1(1 — z) and v(z) := Z,(1 — z) for all 0 < z < 1. Then equation (IV.2) becomes
= —v,
)
v = D vv — g(u)), (Iv.3)

w®0) = a v(0)=0 and v(l) = %u(l).

Note that (IV.2) can be solved by finding a parameter ¥ = v(a, D) (depending on a and D), whenever a and D are given,
such that the solution (u,v) of the Cauchy Problem in (IV.3) satisfies the final condition

v
1) = —u(l).
o(1) = (1)
Therefore, if there are a; # az and D > 0 such that v(a2, D) = v(ag, D), then (IV.2) has at least two solutions. So, the
existence of multiple equilibrium profiles is equivalent to the existence of a1, as, ..., and D > 0 such that v(a;, D) = v(a;, D),

for all ¢ and j. ) )
Now we assume that D is large enough and we introduce ¢ = —, u. = v and v. = —v and we regard v as a function of ¢

€
(v = v(a,¢)) instead of a function of D. This leads to the following regular perturbation problem

U, = —€v
v; =  —(vev. — g(ue)) (Iv.4)
ue(0) = a, v-(0) =0 and v (1) = vus(1).

Considering the non-perturbed problem,
ug = a, vo(l) = g(ug), whence va = g(a).

Then, for ¢ = 0 we have

g(a)
0) = =——=.
v(a,0) = £
From direct computations, one can check that
ov(a,0) kL 9 0?v(a,0) 2kLM
= — M k d = .
Oa Kga? ( + oieaa ) an Oa? Kga3 <0

It follows that the function « — v/(a,0) is concave and has the following form (Figure 1)

v(a, 0)

Fig. 1. Graph of v(.,0)

From the Theorem of dependence of the solutions of ordinary differential equations on initial conditions,
hII(l) v(a,e) = v(a,0) in C?|0, 1].
£E—

It follows that there exists €* > 0 such that for any 0 < ¢ < €*, the equation (IV.4) has
(i) at least two non trivial solutions for 0 < v < v*,
(ii) at least one non trivial solution for v = v*,
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A. Numerical illustration

Numerical simulations have been performed in order to illustrate the existence of multiple equilibrium profiles for the tubular
biochemical reactor model. The following values of the model’s parameters are considered :

Sin =10; K; =5; ug=0.65; kg =0.26; D=13; L=1;k=7; Kg=3; and v = 0.03.

It is shown that besides the trivial equilibrium (0,0), there exist two non trivial equilibrium profiles (Z 1,Z2) and (x7, %)
represented in Figure 2 and Figure 3. The equilibrium profiles satisfy the inequalities

0<z1(z) <zi(z), forall z €0, 1]

Recall that -

_ S’Ln -5

T = ——

Sin ’
where S is the corresponding substrate concentration at equilibrium. So, in both Figures 2 and 3, the substrate concentration
is decreasing along the reactor. In Figure 3, the biomass concentration X * is also decreasing along the reactor. Indeed, in
this case the substrate concentration S* is too small and so the death effect becomes more important than the growth for the

biomass.

103 10
254.200 210
253.760 188
253.320 166
X(2) X, (2)
252.880 1.44
252.440 1.22
252.000 1.00
00 01 02 03 04 05 06 07 08 09 10 0.0 o1 0.2 03 04 05 06 07 08 0.9 10
z z

Fig. 2. Nontrivial equilibrium (Z1, Z2)

=3 =3
x 10 x 10

995.000
4.000

994.587
3786

994.175
3571

993.763

x% (z)

x4 (2) 3.357

993.350
3.143

992,938
992,525 2929
992.112 2714
991.700 2500

00 01 02 03 04 05 06 07 08 09 1.0 0.0 o1 02 03 0.4 05 06 07 08 0.9 1.0
z z

Fig. 3. Nontrivial equilibrium (27, x3)

V. STABILITY OF EQUILIBRIUM PROFILES

The stability of equilibrium profiles of the biochemical reactor dimensionless model (I1.6)-(II.9) is analyzed here. This
analysis is based on the linearized equations at the equilibrium. As in Lemma 3.8, one can see that the semigroup associated
with the linearized equations is compact and by [23, Theorems 11.20 and 11.22], the stability of equilibria is determined by
the eigenvalue problem. We first prove that the trivial equilibrium (0, 0) is locally asymptotically stable. Among the multiple
equilibrium profiles, it is shown that the middle one (Z1, Z2) is unstable whereas the third equilibrium profile (x 7, x3) is locally
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asymptotically stable.
Let us consider an equilibrium solution (Z1,Z2) of (IL6)-(IL.9). Recall that

_ (]. - i’l)(M + Otkd{fl) o 1o (1 - Lf'l)
To = and i(Z1,%2) = — , forall z € [0, 1]. V.1
: kas o T2) = G R+ (1— ) + a(l = 21)° SR
Let us introduce for ¢ = 1,2, 5 9
pi(z) = o D (w1, u2)u2) |(ur uz)=(21 (2),32(2))-
It follows from direct computations, by using (V.1), that
1
p1(z) = NQ—K(M + akqZ1(2))(kq — po + 20kq(1 — Z1(2))), for all z € [0, 1]
ofr S
and i
02(z) = u—‘;(kd + akq(1 — Z1(2))), forall z € [0, 1].
0
The linearized system of (IL.6)-(I.9) at (Z1,Z2) is given by
oxy 1 0%z, Ox1 kpo ko
g Boaz o g ralutTgeke
Oy s+ B0 ()1 + s (2)as, (V2)
ot Ié; Ié;
0x1 0z
ZL4,0) =  Puri(t,0) and —(¢,1) = 0.
~L(1,0) #1(1,0) and Z2(1,1)
The stability of the equilibria is determined by the eigenvalue problem
1 " ’ k k
Bt S (e = A,
—Ya2 + %%1(2)»@1 + %@2(2)»@2 = Az, (V.3)
1 /
—27(0) = z1(0) and x,(1) = 0.
Pe

A. Stability of the trivial equilibrium (0,0)

For the trivial equilibrium, the functions ¢; and @9 are constant and given by

B M(akq — M)
= =_——— 2 <0, forall 0,1
1 =p1(2) 2Ky <0, forall zel0,1],
k2(1
P2 = @a(z) = kg1 +a) >0, forall z€ [0, 1].

1
The parameters are assumed to satisfy the following condition.

I\?2
Al : k(14 ) < pd (;) :
Hence, the following result holds.

Proposition 5.1: Assume that A1 holds. Then the trivial equilibrium (0, 0) is locally asymptotically stable.

Proof : First of all, observe that if
AL —y+ %952

then under assumption Al, A < 0 and therefore the equilibrium profile (0,0) is locally asymptotically stable.
Now assume that

Ao+ g (V)
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Then from the second equation of (V.3), x2 can be expressed as follows

B
To = %xl = 6.131.
+v =72
v 3 12
We set also i i
Ho - Ho 5
a=—7p1 <0 and b= —7b<0.
g7 3
The problem (V.3) is reduced to the following one :
1 1" ’
—z —2+(a+b—Nzx; = 0,
Pe
1 /
—27(0) =21(0) and z,(1) = 0.
P

Let us introduce the following variables
w(z) = e Tz (2), w(z):=u'(z), forallze0,1].

The equations above are equivalent to the following ones

u = v,
P,
/ _ e o —
v = Pe<4+)\ a b)u, (V.5)
P, P,
v(0) = Teu(O) and v(l) = —Eeu(l).
A necessary condition for equations (V.5) to have a solution is that
Pe
—+A—-a—-b<0.
4
It turns out that A must satisfy P
A< —f +a+b<0.
It follows that the trivial equilibrium profile (0,0) is locally asymptotically stable. 0

Now we shall consider that there exist two nontrivial equilibrium profiles (Z1,Z2) and (z7,z3) as determined by Proposition
4.1. Note that the equilibrium profiles satisfy

0<Z(z) <zi(2), Vze[0,1].

We shall first deal with the the stability of the nontrivial equilibrium profile (z 7, z3).

B. Stability of the nontrivial equilibrium (x7,x3)
Observe that the function 2 is positive and decreasing in [0, 1]. Also,

-M 1 M
v1(z) >0, forall z € [0, 1] such that z7(2) € {a—kd’ 3 ok {,
(2) <0, forall z € [0, 1] such that 27 (%) € ! M 1

z or all z suc x] (= - —
1 ’ ’ ! 2 2aky’

3M
40(](7{1 ?

and if z3(z) € [} — 1] for all z € [0, 1], then ¢ is decreasing.
Let us consider the eigenvalues problem (V.3). Observe that if there exists z¢ € [0, 1] such that
Aty — %302(20) <0
then, by using assumption Al, one has A < 0. Also, if A+ <0 then A < 0. Therefore, we shall assume that

A+7>0 and >\+'y—%go2(z)>0, v zelo, 1. (V.6)
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It follows from equation (V.3) that

V4
2y =10 ‘/’1(#0) 1 (V.7)
B+ ¥ — —a(2)
B
and
1 12 ’ k k
Bt e+ (R = A,
1, ,
P21 (0) = 21(0), (1) = 0.

One can deduce from the Krein-Rutman theory that 1 never changes sign. Without loss of generality, we can assume that x
is positive and as (x1,x2) is an eigenvector then x; is strictly positive. Let us introduce the following variables

u(z) == e%le(z) and v(z) := u/(z), for all z € [0, 1].

Then (considering also (V.7))

u = v,
' P pok A+
— pfey_HE_ AT

., ( B ) V)

P, P,

v(0) = —u(0), v(1)=—u(l).

2 2

First : Observe that if 27 is in the interval [§ — 52—, 1] then ¢1(2) is negative for all z € [0, 1]. Hence, reminding (V.6), a

necessary condition for (V.8) to have a solution is A < 0.

Let us consider now the opposite case and let us make the following assumptions.

1 3M -M 1 3M
A2: - — <4 — d - - < x* for all 1].
17 1ok =\ ok an 17 ok, = x7(z), forall z € [0, 1]

Observe that if A is a very large positive number then v/(z) is always strictly positive and (V.8) cannot have a solution.
Therefore, there exists Ay,q, such that A + v < A\ 00 + 7. Also, from (V.6), there exists a strictly positive number C'y such
that A + v — %‘)gag(z) > Cy for all z € [0, 1].

Second : Observe that if z} is such that ¢ (z) is positive for all z € [0, 1] i.e. 25(z) € [+ — 34 1 — M) for all z € [0, 1],

4ad’ 2
then the function
ok Aty o1(2)
B\ A7 —Fe(2)
is increasing in [0, 1]. Hence, a necessary condition for (V.8) to have a solution is
Pe ,U'Ok A+ B
— A — | (= 0) <0.
4 6 <(A+7_%¢2(0) 901()
There exists a positive number A (depending on ) such that
P, NOk A+ g 1
— A — | (= 0)—A<O.

We make the following assumptions

1 1
asi azmax{a [ @+ o [ ln@enelE]
=1, 0 0
1
Ad: ao/ lp1(2)]|dz < 1,
0

where 9 )
a Hok Amaz + Y piok Amaz + pok 1
0= ——"F7"7 = =

B Co > MT B T B At
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Under assumption A3, the solution (u,v) of (V.8) satisfies

Introducing 6 := % leads to
, Vz€][0,1] V.9)
and (by using (V.7))

» (V.10)
00) = S 0=

Integrating this equation leads to

_Pf ! 2 fok ' Aty
—Pefr—/O 0°(z)dz + P. <>\—7/0 P1(2) </\+——%<P2(Z)> dZ)-

By using (V.9), one has
ok [ Aty
PANP. |-1+"— —— | dz|].
- ( T s szj1(Z)<>‘+7—%<P2(Z)> Z)

Then, by assumptions A3-A4, it follows that A < 0.

Third : Let us consider now the case when there exists zg €]0, 1] such that

1 3M 1 M

M
4 40tkd ’ 2 2akd

1
2 20tkd

zi(z) € , for all z € [z, 1].

] for all z € [0, zo] and x7(z) >

Two situations are possible. If v (0) < 0 then by using assumptions A3-A4 and the arguments given in the previous case, one
has A < 0. On the opposite case, we have v (z) > 0 for all z € [0, zo] and as in the first part (of the subsection) a necessary

condition for (V.8) to have a solution is A < 0 since
Pe MOk A+ B
— = ——————p1(2) > 0, forall z € |2, 1].
4 ﬁ A""Y_%SOQ(Z)SDI() [0 ]

In view of the arguments above, the following statement holds :

Proposition 5.2: Assume that A1-A4 hold. Then the nontrivial equilibrium profile (x ], x3) is locally asymptotically stable.

C. Instability of the nontrivial equilibrium profile (Z1,T2)

Let us consider the functionals

! 1 ’ k k 1
/ (_F|x1|2 + %sﬁ(z)x% + %wg(z)xlxg) dz — 3 (2%(0) + 23(1))
Q1 (z1, z2) = 22 e : |
ll=1[I3
1

/ (—7|ﬂ’?2|2 + %502(3)3?3 + %@1@)&31@) dz

Q2(z1, ) = =2 . 7
[[z2I3

where ||z;||2 is the Lg-norm of x; on [0, 1]. Observe that if (x1,22) is an eigenvector of (V.3) then necessarily Q1(z1,z2) =
Q2(x1,x2) and is the corresponding eigenvalue. As in the idea of [23, Theorem 11.6], one can see that the principal eigenvalue
A1 is an increasing function of P,. Then A1(P,.) > A1(0). Therefore, one has to consider the case P, = 0. Let us first introduce

e=P,, wu(z):=x1(2), ve(z):= ém;(z), we(z) :=x2(z), forall z €0, 1].
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One can deduce from (V.3) that

u, = EVe,
/ k k
v, = (EUE - Migal(z)ue - Migog(z)wg + )\ue) ,
p p
1(0) = wu.(0), v (1)=0.
For € = 0, the equilibria as well as the eigenfunctions are scalar and by integrating the equation above, one has :
k k
~ue(0) = =501 (0)ue(0) — Z5p2(0)w (0) + Xue(0).

Therefore,

WM@#%@@JM@#%MWM)

It is easy to see that z; is a zero of the function

= |:_£7 1:| N k”(aaxQ)fL'Q _1
aky a

and that the derivative of this function at z; is strictly positive. Hence, %’“@1(0) — 1 > 0. On the other hand, one can see

from the expression of po(z) that it is always positive. It follows that the eigenvalue A1(0) is strictly positive and this holds

for all P, > 0.

In view of the arguments above, the following statement holds

Proposition 5.3: The non trivial equilibrium profile (Z1,Z2) is unstable.

VI. CONCLUDING REMARKS

This paper was devoted to the dynamical analysis of a tubular biochemical reactor nonlinear model. The dynamics of these
reactors are described by distributed parameter systems. More specifically, a system of nonlinear partial differential equations
was studied. The existence of the state trajectories and the invariance of the set of physically feasible state values under the
dynamics of the reactor as well as the convergence of the state trajectories to equilibrium profiles of the dynamical model were
proved. The multiple existence and stability of equilibrium profiles were analyzed under physically meaningfull conditions.
It was proved that, depending on the axial dispersion parameter, the dynamical model can have two stable and one unstable
equilibrium profiles. In this study, it is shown that, for large values of axial dispersion parameter, the tubular biochemical behaves
like a stirred tank reactor. And, as for completely mixed systems, the system studied here can have an unstable equilibrium
which can coincide with an interesting operating point in practical viewpoint. So, as perspectives for further researches, we
shall be interested in the control of this system which is nonlinear and infinite dimensional.
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