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Abstract. Stochastic processes have, since a long time, large applications in quite
different domains. The standard theory considers discrete or continuous state space.
We consider here the concept of Stochastic Process associated to all the cases of
symbolic variables: quantitative, categorical single and multiple, interval, modal.
More particularly, we adapt the definition of Markov Chain and give the equivalent
of the Chapman-Kolmogorov theorem in all cases.

1 Introduction

Frequently, we have to consider systems which develop in time or space in
accordance with probabilistic laws. The study of such systems is called the
theory of Stochastic Processes. More precisely, a Stochastic Process is a ran-
dom variable which depends on time or space.

The aim of this paper is to propose theoretical bases for generalisation of
Stochastic Processes to Symbolic variables.

Indeed, Stochastic Processes are defined for variables for which the state
space (or values) is a countable or finite set or the real line (−∞,∞). In the
first case, the process is called a Chain. Here, we want to extend this concept
to variables which can be multivalued, interval or even modal.

This problem is practically meaningful. For example, let us consider the
evolution of the value of stock. Usually, each day, the stock has several val-
ues: open, close, mean, maximum, minimum. The stock value can thus be
characterised by an interval of values and not by a unique number.

If we consider daily audience of a TV channel, the audience for a family
is given by the percentage of time spent at watching different broadcasts and
not by a single category. In this case, the variable is modal.

This paper does not deal with the statistical analysis of symbolic data
from Stochastic Processes. We try only to modelise the problem from a prob-
abilistic point of view.

We will concentrate our study to a special case of Stochastic Process which
is Markov Chains. We will first recall the definition and principal character-
istics of Markov Chain in the case of categorical and continuous variables
and we will extend them to the case of multivalued categorical, interval and
modal variables.
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To simplify the presentation, we will speak only about time and not space.
This choice is motivated by the fact that it concerns the more frequent ap-
plications.

We have also chosen to present here only the case of discrete time. But
continuous time could also be considered, in an extended paper.

Numerous books have been written about Stochastic Processes. From
others, let us quote Cox and Miller (1965), Bartlett (1978), Prabhu (1965),
Karlin (1966), Neveu (1964), Feller (1968), Bailey (1964) and more recently,
Stierzaker (2005), Lawler (2006), Beichelt (2006), Meyn & Tweedie (1993),
Girkhman and Skorokhod (2004). On the other hand, in Symbolic Data Anal-
ysis, very few has been done in Stochastic Processes. Diday et al. (2004) and
De Carvalho et al. (2004) have studied linear symbolic regression. Prudencio
et al. (2004) have considered time series. We can also mention the work of
Soule et al. (2004) in flow classification.

2 Definitions

Let us consider (Ω,A, P r) a probability space and {X t, t ∈ T} a Stochastic
Process defined on this space, i.e. a random variable depending upon the
parameter t, considered as the time.

We will consider the particular case where the time is discrete, with values
represented by the positive integers. In this case, the Stochastic Process is
often written {Xn, n ∈ N }.

The set of values of Xt is the state space. In the standard theory, it can
be continuous or discrete. The study of a Stochastic Process is very complex
except if we make hypothesis on the behavior of the process.

One common hypothesis is the Markovian one. A Markov process is a
process with the property that, given the value X t, the values of Xs, s > t,
do not depend on the values of Xu, u < t.

In formal terms, a process is said to be Markovian if

Pr[a < Xt ≤ b | Xt1
= x1, Xt2

= x2, . . . , Xtn

= xn]

= Pr[a < Xt ≤ b | Xtn

= xn]

whenever t1 < t2 < · · · < tn < t.
The function

Pr[Xt ∈ A | Xs = x] , t > s

is called the transition probability function and is basic to the study of the
structure of Markov processes.

A Markov process is said to have stationary transition probabilities

if the transition probabilities are function only of t − s and not s. We say
also “homogeneous in time”. A Stochastic Process X t for t in T is said to
be stationary if the joint distribution function of the families of random
variables (Xt1+h, Xt2+h, . . . , Xtn+h) and (Xt1 , Xt2 , . . . , Xtn

) are the same for
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all h > 0 and arbitrary selections t1, t2, . . . , tn of T . This property means that
the particular times at which we examine the process are of no relevance. In
particular, the distribution of X t is the same for each t. Let us note that there
is no reason to expect that a Markov process with stationary probabilities is
a stationary process (Karlin (1966), p 204).

3 Single valued categorical variables

Let us consider the case where Xn means belonging to one category among
s at time n.

We can modelise this case in writing Xn = k, 1 ≤ k ≤ s. The process
{Xn, n ∈ T} is thus a classical Stochastic Process whose state space is the
finite set (1, 2, . . . , s). We will suppose that the process is Markovian, with
stationary transition probabilities.

The stationary transition probabilities are defined by:

Pij(n) = Pr[Xm+n = j | Xm = i] .

For such probabilities, it can be shown easily the Chapman-Kolmogorov prop-
erty:

Pij(m + n) =
∑

k

Pik(n) Pkj(m) , ∀ i, j

or
P (m + n) = P (m) P (n)

with P (n) the matrix with element Pij(n) and

P ≡ P (1) .

¿From this, we have
P (n) = P n

which allows the computation of the matrix P (n) when n is small.
With some properties on transition probabilities, it is possible to show

that the Markov Chain is stationary and to compute easily lim
n→∞

P (n) (Cox

and Miller (1965)), (Prabhu (1965)).

4 Multivalued categorical variables

In this case, the variable
−→
Xt indicates belonging to several categories, among

s (C1, . . . , Cs).
We can modelise this case in considering the multidimensional variable

−→
Xt with state −→ = (j1, . . . , js) where

jk =

{

1 if the category Ck is present,

0 elsewhere.
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−→
Xt is here a s-vector process.

Such a process is a Markov process if

Pr[
−−−→
Xtn+1

= −−→an+1 |
−−→
Xt1

= −→a1, . . . ,
−−→
Xtn

= −→an] = Pr[
−→
X tn+1

= −−→an+1 |
−−→
Xtn

= −→an]

for all t1 < t2 < · · · < tn < tn+1 .

If we suppose that the transition probabilities are stationary, let us define:

P−→ı −→ (n) = Pr[
−−−→
Xt+n = −→ | Xt = −→ı ] .

The Chapman-Kolmogorov property is still valid :

P−→ı −→ (n + m) =
∑

−→

k

P−→ı
−→

k
(n) P−→

k −→
(m)

which allows to compute P−→ı −→ (n) from P−→ı −→ (1).

5 Single quantitative variable

In this case, the state space of the Markov Chain Xn is (−∞,+∞). As
previously, we restrict to chains with stationary transition probabilities.

Pn(x; y) = Pr[Xm+n ≤ y | Xm = x] (1)

defines the n-th order transition distribution function.
In particular, let

P1(x; y) ≡ P (x; y) = Pr[Xm+1 ≤ y | Xm = x] .

The Chapman-Kolmogorov equation can be written:

Pm+n(x; y) =

∫ +∞

−∞

dz P [Xm ≤ z | X0 = x] Pr[Xm+n ≤ y | Xm = z] (2)

or

Pm+n(x; y) =

∫ +∞

−∞

dz Pm(x; z) Pn(z; y) . (3)

If pm(x; y) denotes the probability densities, if they exist, this relation can
be written

Pm+n(x; y) =

∫ y

−∞

pm+n(x;u) du =

∫ +∞

−∞

pm(x; z)

∫ y

−∞

pn(z;u) du dz

and thus, it can be proven that (Cox and Miller (1965), p 134) :

pm+n(x;u) =

∫ +∞

−∞

pm(x; z) pn(z;u) dz . (4)
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A Markov process is specified by giving the initial distribution and transition
probabilities P (x; y).

The use of Kolmogorov equation gives all the other transition probabilities
Pn(x; y) and the state distributions.

An alternative approach is given by the use of Copulas (Nelsen (1999)).
A Copula function C is a multivariate uniform distribution (a multivariate
distribution with uniform margins).

It can be shown, from Sklar’s theorem, that if F is a N -dimensional dis-
tribution function with continuous margins F1, . . . , FN , then F has a unique
Copula representation

F (x1, . . . , xN ) = C(F1(x1), . . . , FN (xN )) .

The product of Copulas is defined by

C1 ? C2(u, v) =

∫ 1

0

∂
∂v

C1(u, z) ∂
∂u

C2(z, v) dz .

Darsow et al. (1992) prove that if X t is a Markov process and let Cm,n

denote the Copula of the random variables Xm and Xn, then the Chapman-
Kolmogorov equation is equivalent to

Ct,t+m+n = Ct,t+m ? Ct+m,t+m+n (5)

where ? denotes the product of Copulas.
With this approach, a Markov process is specified by giving all the marginal

distributions and a family of 2-Copulas satisfying (5) (Joe (1997)).

6 Interval Symbolic variable

Let us suppose that, at each time, the variable is known only by its belonging
to an interval of the real line.

It means that we are here interested by the transition probabilities

Pr[a2 ≤ Xm+n ≤ b2 | a1 ≤ Xm ≤ b1]

which we will write

Pr[Xm+n ∈ A2 | Xm ∈ A1] = Pn(A1;A2) (6)

if A1 and A2 are intervals of ] − ∞,+∞[ and if this probability does not
depend on m.

We will define an Interval Markov Chain, a chain such that

Pr[Xtn+1
∈ An+1 | Xt1

∈ A1, . . . , Xtn

∈ An]

= Pr[Xtn+1
∈ An+1 | Xtn

∈ An] (7)
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where Aj = [aj , bj ].
Let us note that we have a particular case

Pr[Xtn+1
∈ An+1 | Xt1

= a1, . . . , Xtn

= an] = Pr[Xtn+1
∈ An+1 | Xtn

= an]

when aj = bj .
Let A1 = [a1, b1] and

Pm(A1; z) = Pr[Xt+m ≤ z | Xt ∈ A1]

which is supposed not depending on t.
Then,

Pm(A1;A2) = Pm(A1; b2) − Pm(A1; a2)

for an interval A2 = [a2, b2] and continuous Pm function.
If the derivative of Pm(A1; z) exists, we will note

pm(A1;u) = ∂
∂u

Pm(A1;u) .

Theorem: For an Interval Markov Chain with stationary transition proba-

bilities, we have the relation

Pm+n(A1;A2) =

∫

∞

−∞

dz Pm(A1; z) Pn(z;A2) (8)

and, if the probability density exists,

pm+n(A1;u) =

∫ +∞

−∞

pm(A1; z) pn(z;u) dz . (9)

Proof. From conditional probability property, we know that

Pr[Xt+m+n ∈ A2 | Xt ∈ A1]

=

∫

∞

−∞

dz Pr[Xt+m ≤ z | Xt ∈ A1] Pr[Xt+m+n ∈ A2 | Xt ∈ A1, Xt+m = z] .

Using the Markovian property (7) we have

Pr[Xt+m+n ∈ A2 | Xt ∈ A1]

=

∫

∞

−∞

dz Pr[Xt+m ≤ z | Xt ∈ A1] Pr[Xt+m+n ∈ A2 | Xt+m = z]

and using the fact that the transition probabilities do not depend on time
and notations (6)

Pm+n(A1;A2) =

∫ +∞

−∞

dz Pm(A1; z) Pn(z;A2) .
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If the densities pm(A1;u) and pn(z;u) exist, then

Pm+n(A1;A2) =

∫ b2

a2

pm+n(A1;u) du =

∫ +∞

−∞

pm(A1; z)

∫ b2

a2

pn(z;u) du dz .

Thus

pm+n(A1;u) =

∫ +∞

−∞

pm(A1; z) pn(z;u) dz .

Remark: It is possible to modelise an interval by two values : its center
and its half-length. In this case, X t is in fact a two dimensions continuous
variable.

7 Modal variable

A Modal variable is known by the belonging probability to classes C1, . . . , Cs

(Bock and Diday (2000)).

For a Modal Stochastic Process, it means that the variable
−→
Xt is defined

by Π1(t), . . . , Πs(t) with

Π1(t) + · · · + Πs(t) = 1 , 0 ≤ Πj(t) ≤ 1 , ∀ j .

−→
Xt is thus in fact a multidimensional continuous process whose value will be

written
−→
Π t and whose state space is the hypercube [0, 1] × · · · × [0, 1] with

constraint
s−1
∑

j=1

Πj ≤ 1.

The Markov hypothesis is still

Pr[{
−−−→
Xtn+1

≤
−→
Π (n + 1) |

−−→
Xt1

=
−→
Π (1),

−−→
Xt2

=
−→
Π (2), . . .

−−→
Xtn

=
−→
Π (n)]

= Pr[
−−−→
Xtn+1

≤
−→
Π (n + 1) |

−−→
Xtn

=
−→
Π (n)] .

If the process is homogeneous in time (has stationary transition probabilities),
using a multidimensional analog of (1) and (2), we have

Pn(
−→
Π ;−→y ) = Pr[

−−−−→
Xm+n ≤ −→y |

−−→
Xm =

−→
Π ] with yj ≤ 1

Pn(
−→
Π ;−→y ) = 0 if

s−1
∑

j=1

Πj > 1

Let

pn(
−→
Π ;−→y ) =

d

d−→y
Pn(

−→
Π ;−→y ) .

It can be proved that

pm+n(
−→
Π ;−→y ) =

∫

pm(
−→
Π ;−→z ) pn(−→z ;−→y ) d−→z
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where the integral is an s − 1 multiple integral on the space [0, 1] × [0, 1] ×
· · · × [0, 1].

Let us notice that for two categories, as Π1(t) + Π2(t) = 1, X(t) is a
one-dimensional process, so that the problem is a particular case of §5 where
the state space is [0, 1] and not ] −∞,+∞[.

Conclusion

In this paper, we have defined Symbolic Markov Chain for all the cases of
Symbolic variables: quantitative, categorical single and multiple, interval,
modal. We have also given the equivalent of Chapman-Kolmogorov equa-
tions in all cases. This property is the bases of the theoretical study of Markov
Chains. We intend to continue this work in giving the more interesting re-
sults which give the knowledge of the state probabilities in interval and modal
cases.

Let us note that in the case of continuous state space, we get interesting
results with continuous time. In particular, the Kolmogorov equations are
then known as the Fokker-Planck diffusion equations.
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