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In the beginning of the 19th century, T.Young and J. Fraunhofer
built the first optical diffraction gratings and showed the role

of optical diffraction in their behaviour. Since that time, diffrac-
tion gratings have been used in a broad range of technological
applications, from the earlier accurate optical spectrometers to
the recent integrated optical devices. They are also used in a
broad range of wavelength from X-ray to microwaves. In this
context, diffraction gratings have been the cornerstones of
many publications for almost two centuries. Surprisingly, nowa-
days the subject is far from being exhausted.

Every student knows that a grating can spread a white light
beam from an incandescent lamp into a continuous spectrum of
colors.For a grating made with a one-dimensional lattice of thick-
thin wires, this‘’rainbow’’ is duplicated many times,each one cor-
responding to a diffraction orderm (See Fig.1 for instance).These
basic behaviours of diffraction gratings can be easily understood
by the conservation of light momentum such as

k
→→

s = k
→→

i + K
→→

(1)

where k
→→

s is the momentum of the scattered light, k
→→

i is the mo-
mentum of the incident light, and K

→→

is a vector of the recipro-
cal lattice of the grating such that K

→→

•a→→ = 2πm(m���), where a→→

is the basis vector of the lattice. The general behaviour of opti-
cal grating results from this basic assumption. For instance, in
Fig.1, one considers a reflecting grating. An incident light i is
then scattered into three diffraction orders. The zero order
(m= 0) is known as the specular beam. In Fig.1, two other or-
ders are considered, m= 1 and m= -1. 

Wood anomalies
In 1902, R. W. Wood observed some unexpected patterns in the
spectrum of light resolved by optical diffraction gratings [1].
The Wood spectrum presented many unusual rapid variations
of its intensity in certain narrow wavelengths bands. As a con-
sequence, these effects unexplained by ordinary grating theory
were named ‘’Wood anomalies’’. 

In 1907, Lord Rayleigh proposed an explanation of those
anomalies [2]. Considering for instance the case of the Fig.1,
one notes that the order m= 1 becomes tangent to the surface
grating before disappearing. In such a case, the light momen-
tum component along the Oz axis of a diffracted order  m, i.e.
kz,m, becomes imaginary right after having been cancelled.
Then, the diffracted order becomes evanescent (non-homoge-
neous order). When kz,m is real, the diffracted order is free to
propagate along the Oz axis (homogeneous order). In the pres-
ent case, as the order m= 1 turns to be non-homogeneous, its
energy will be redistributed over the other orders. As a conse-

quence, the diffracted beam intensity of the specular beam
(m= 0), for instance, increases just as the diffracted order m= 1
vanishes. For an incidence θ (see Fig.1), a diffracted order  m
becomes non-homogeneous for wavelengths greater than a
specific value, the Rayleigh wavelength, for which an anomaly
occurs. One then talks about a Rayleigh anomaly.

Around 1938, U. Fano proposed another explanation [3],
where the anomalies are related to a resonance effect.  Such a res-
onance comes from a coupling between an eigenmode of the
grating and a non-homogeneous diffraction order (one also talks
about a resonant diffraction order), i.e. after it vanishes for wave-
lengths greater than the corresponding Rayleigh wavelength. 

From an experimental point of view, gratings can then show
some very complex behaviour often hard to explain in details
without the use of Maxwell’s equations. In addition, solving
Maxwell’s equations in order to study the electromagnetic dif-
fraction quickly becomes a difficult problem, even with simple
geometries. Except for some simple and powerful analytical
works, such as those from Lord Rayleigh or U. Fano, it will be
necessary to wait until the Sixties and the beginning of com-
puter calculation to observe significant progress in the Wood
anomalies comprehension. For instance, one can underline the
first fundamental numerical results of Hessel and Oliner in
1965 [4], and Maystre and Nevière in 1977 [5,6]. Hessel and
Oliner presented a wide study of the eigenmode resonance role
in Wood anomalies [4]. They have shown that depending on
the type of periodic structure, the two kinds of anomalies i.e.,
Rayleigh anomalies or resonant anomalies may occur sepa-
rately or are almost superimposed. 
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� Fig. 1: A reflecting optical grating. i is the incident light beam. The light beams
labelled m are some of the diffracted orders and θ is the angle of incidence.
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Maystre and Nevière studied specific cases of such resonant
anomalies [5,6]. For instance, they presented a wide study about
’’plasmon anomalies’’, which occurs when the surface plasmons
of a metallic grating are excited [5]. They also considered an
anomaly that appears when a dielectric coating is deposited on
a metallic grating, and corresponds to guided modes reso-
nances in the dielectric layer [6]. 

It is important to underline that, in some recent publications,
some authors improperly reduce the Wood anomalies to the
Rayleigh anomalies only. It is important to recall that the Wood
anomaly concept covers the resonant anomalies (Fano anom-
alies) and the Rayleigh anomalies at the same time. In addition,
the resonant part of the phenomenon can imply many kinds of
resonances and not only the surface plasmons resonances. 
Amazingly, thirty years after the pioneer works, in the early 21st

century, the experimental and theoretical interest in these sub-
jects has not dried up. 

Optical transmission in a nanostructured slab 
In 1998, Ebbesen et al [7] reported on optical transmission ex-
periments performed on periodic arrays of subwavelength
cylindrical holes drilled in a thin metallic layer deposited on
glass (see Fig.2). These experiments renewed the motivation
for investigating metallic gratings, in particular those with a
two-dimensional lattice. The most attractive characteristic of
their results was the peculiar wavelength dependence of the
transmission (see Fig.3). The latter was defined as the ratio be-
tween the energy of the specular transmitted beam (m= 0) only
and the energy of the incident beam. After these first experi-
mental observations, the role of the thin metallic film surface
plasmons (SPs) was put forward in order to explain the pecu-
liar wavelength dependence of the transmission [7]. 

A surface plasmon on a plane surface is a non-radiative elec-
tromagnetic mode, associated with a collective excitation of elec-
trons at the interface between a conductor and an insulator. In
this way, a surface plasmon cannot be excited directly by light,
and it cannot decay spontaneously into photons. The non-ra-
diative nature of SPs is due to the fact that interaction between
light and SPs cannot simultaneously satisfy energy and momen-
tum conservation laws. Moreover, the momentum conservation
requirement can be achieved by roughening or corrugating

the metal surface, for
instance. It is exactly
the situation in those
devices. In this case,
the transmission peaks
were interpreted as
SPs resonances [7]. Sur-
prisingly, this approach
seems to have been sug-
gested independently of
the knowledge of some

earlier works about the reflecting one-dimensional gratings.
Then, the first attempt to understand the Ebbesen experiments
has missed some important earlier results of the optical grat-
ings study.

In this way, in these first interpretations, the exact role of SPs
was not clearly assessed, and many questions remained to clarify
completely the scattering processes involved in these experiments.

As a consequence, some other explanations had been devel-
oped which could compete with the SPs model. For instance, it
was suggested that these phenomena could also be described in
terms of cavity resonances taking place into the holes [8]. More
recently, T. Thio and H. Lezec had also suggested a diffracted
evanescent wave model [9].

In addition, some doubts against the SPs hypothesis relied
on some experimental results about subwavelength hole arrays
made in non-metallic films. Though SPs cannot exist, the trans-
mission pattern was found to be very similar to that obtained
with a metallic film [9]. Surprisingly, the very fact that the typ-
ical transmission pattern can be observed even in non-metal-
lic systems convinced some authors to fully reject the SPs
hypothesis and rather consider models involving nonresonant
evanescent waves diffraction. To our knowledge, this point of
view is not supported by recent results. In fact, the SPs must be
replaced by other kinds of eigenmodes in the nonmetallic cases.

As a consequence, despite alternative theoretical interpreta-
tions, a large experimental consensus, many theoretical results,
tend to prove that the SPs interpretation was correct in the
metallic films cases, and must be extended to a bounded mode
interpretation in the most general cases [10-12]. It is only the
transposition of the 1960’s results about one-dimensional re-
flection gratings to bidimensional transmission gratings.

Let us clarify this. 

Bounded modes and transmission
Basically, the gratings considered here are simply drilled slabs.
In this case, a bounded mode, i.e. an eigenmode of the grating,
is an electromagnetic field configuration such that the field is
trapped along the slab. The mode can propagate along the slab,
but not elsewhere. The amplitude of the field decays then, ex-
ponentially from each side of the slab. Typically, two amplitude
patterns exist, which correspond to symmetric and antisym-
metric modes. As the thickness of the slab increases, in some
cases, the modes can refer to pure surface modes (Fig.4), i.e.
both slab interfaces are decoupled. Surface plasmons are such
modes for instance.

As previously suggested, bounded modes cannot be excited
directly by incident light or decay spontaneously into photons.
Moreover, the coupling between the outside electromagnetic
field and the bounded modes is allowed by the use of rough or
corrugated surface, as in the present case. The eigenmodes, and
their coupling with outside light, can be described mathemat-
ically as follow.  

As in quantum mechanics, a scattering problem can be
treated in electromagnetism via the use of the scattering matrix
formalism (S matrix). In such a representation, it is assumed
that the electromagnetic field can be described by two super-
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� Fig. 2: The typical 
bidimensional array of 
subwavelength holes. 

Thin optical absorbing slab

Holes

Dielectric substrate (with an imagi-
nary part of the permittivity almost
equal to zero



vectors IFin>> and IFscatt>> (with the use of ‘‘ket’’ representation),
which correspond to the incident electromagnetic field that lit
the studied device and to the field scattered by the device. For
instance, each component of these vectors corresponds to a
specific diffraction order. Then, incident and scattered field are
linked via the scattering matrix defined as

IFscatt>>= S(λ)IFin>> (2)

so that S(λ) contains all the physical information about the
studied device, such as a diffraction grating. In addition, it can
be shown that S(λ) can be explicitly defined from the Maxwell’s
equations.  For instance, the simulations in our papers are based
on such a method, which combines scattering matrix formal-
ism with a plane wave representation of the fields. This tech-
nique provides a computation scheme for the amplitude and
polarization (s or p) of reflected and transmitted fields in any
diffracted order.

A fundamental key to the understanding of diffraction grat-
ing phenomenology is to define the eigenmodes of the studied
device. Eigenmodes then obey the homogeneous equation 

S-1(λp)IFeigen>>= 0 (3)

in such a way that the eigenmodes can also be defined by the
poles λp of the scattering matrix. Then, the poles are the solu-
tions of the equation 

det{S-1(λp)}= 0 (4)

If we extract the singular part of S(λ) corresponding to the
eigenmodes of the structure, we can write S(λ) in an analytical
form as

S(λ) = ∑
p

Rp—
λ-λp

+Sh(λ) (5)

This is a generalized Laurent series, where Rp are the residues
associated with each pole λp. One notes that λp = λp

R+ iλp
I are

complex numbers, and that the imaginary part  λpI can be linked
to lifetimes of the eigenmodes. The divergent behaviour of the
fractional terms underlines the resonant character of the eigen-
modes (one talks then about the resonant terms of the S ma-
trix). Sh(λ) is the holomorphic part of S(λ) which corresponds
to purely non-resonant processes. Ideally, in the vicinity of a
specific pole, the holomorphic part can be assumed to be al-
most constant. Then, as the amplitude s(λ) of a specific dif-

fraction order is related to an element of the scattering matrix,
the intensity I�Is(λ)I2 of an order can be easily derived. One
then obtains

IF = I~0
(λ-λRz—
(λ-λRp)2+λ I

p
2

)2+λ I
z

2

— (6)

where λz= λz
R+ iλz

I is the complex zero of s(λ) in the vicin-
ity of λp in the complex plan. This function leads to a typical
asymmetrical profile, a Fano profile, related to a Fano reso-
nance. A typical Fano profile appears in Fig.5 (black curve).
Now, if the holomorphic part is considered as negligible, one
gets the following expression of the amplitude

IBR= I0—
1

(λ-λRp)2+λ I
p

2— (7)

which gives a simple Lorentzian profile, related to a Breit-
Wigner resonance (see for instance the red curve of Fig.5). As
shown in Fig.5, for a given eigenmode (i.e. λp imposed), the
value of λ for which IBR is a maximum (i.e. λ = λp

R ) does not
correspond to the location of IF maximum or minimum (i.e.
(a) or (b) in Fig.5).

In order to illustrate the physical mechanisms responsible
for the behaviour described by the scattering matrix formal-
ism, we represent the corresponding processes involved. 

In Fig. 6, circles A and B represent diffracting elements e.g.,
holes. So an incident homogeneous wave i (in red) diffracts in
A and generates a nonhomogeneous diffraction order (blue
dashed line). Such an order is coupled with an eigenmode,
which is characterized by a complex wavelength λp. It then be-
comes possible to excite this eigenmode, which leads to a feed-
back reaction on the nonhomogeneous order (one can talk
then about a resonant order). This process is related to the res-
onant term of the scattering matrix.  In Fig.5, the red curve is
the electromagnetic field amplitude calculated for such a non-
homogeneous resonant order. The resonant diffraction order  •••
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� Fig. 4: Diagrams of slab modes. The electrostatic potential V of modes
is plotted as a function of the location in the slab. Above: antisymmetric and
symmetric modes. Below: pure surface mode, with each interface decou-
pled from each other. 

� Fig. 3: Com-
puted optical
transmission 
of a thin gold
film (200 nm)
deposited on
glass. 100 nm 
is set for the
radius of each
hole and the lat-
tice parameter
is taken to be 
a = 700 nm.



••• diffracts then in B, and generates a contribution to a ho-
mogenous diffraction order, in our case the specular beam.
Thus one can ideally expect to observe a resonant profile, i.e.
Lorentzian-like, for the amplitude sr of the homogenous spec-
ular diffraction order that appears in B. Nevertheless, it is also
necessary to account for nonresonant diffraction processes re-
lated to the holomorphic term Sh(λ). So the incident wave i,
generates also a homogeneous order Sh (in green), which ap-
pears as another contribution to the specular beam. So, as one
observes the specular transmitted beam, one observes the sum
of two rates, i.e. sr+ sh. So, the Fano profiles of the transmission
(but also of the reflection) result from a superposition of reso-
nant and nonresonant contributions to the observed diffrac-
tion order [10-11]. As a result, in Fig.5 one can observe the
calculated transmission  (black curve) in comparison with the
non-homogeneous resonant order amplitude (red curve).  

Consequences and observations
As shown in Fig.3, the observed optical transmission through
subwavelength hole arrays, exhibits a set of peaks and dips. Fol-
lowing the previously described approach, we have shown in
recent works that the transmission spectrum is better depicted
as a series of Fano profiles (see Fig.3 and Fig.5) [10,13,14].
These recognizable line shapes result from the interference of
nonresonant transfers with resonant transfers, which involve
the eigenmodes film, and evanescent diffraction orders. We
could then point out that each transmission peak-dip pair is
nothing other than a Fano profile. The appearance of an assy-
metric Fano line shape does not necessarily locate the peak or
the dip at the eigenmode resonance (as shown in Fig.5), con-
trary to what has been suggested in some earlier works [7,8].
However, we have shown that the existence of the eigenmodes
is a condition for the presence of the Fano line shapes. It can be
noted that recent results by Genet et al confirm this descrip-
tion [11]. As a further outcome of this work it became clear that
this kind of transmission spectrum, with its Fano line shapes,

could also be obtained in a large context and that the generic
concept of eigenmodes must substitute that of SPs only. These
results implied two important ideas. First, according to the con-
tributions of resonant and nonresonant processes in the Fano
profile, eigenmodes can be associated with wavelengths closer
to the peaks or to the dips. Second, it is possible to obtain trans-
mission curves similar to those of metal films, by substituting
SPs with guided modes or other types of polaritons. Many ex-
amples can be found, including highly refractive materials
defining guided modes or ionic crystals in the restrahlen band
defining phonon polaritons. For instance, we have reported
simulations of a device, which consists of arrays of subwave-
length cylindrical holes in a tungsten layer deposited on a glass
substrate [13]. Tungsten becomes dielectric on a restricted do-
main of wavelength in the range 240–920 nm, i.e., the real part
of its permittivity becomes positive. So, whereas plasmons can-
not exist, we show that the transmission pattern is similar to
that obtained in the case of a metallic film. Indeed, it was also
shown that in this case, instead of SPs, guided modes are ex-
cited [13]. Nevertheless, these modes give less intense fields
than those achieved with SPs. In this way the benefit for the
transmission is less important than with SPs modes. In the
same way, it was also demonstrated that the transmission pro-
file of a chromium film, in the restricted wavelength domain
(1112–1292 nm), where the dielectric constant is positive,
should involve eigenmodes, which are not SPs or guided modes.
In this case, SPs can be substituted by Brewster-Zennek (BZ)
modes [14]. Lastly it should be noted that in both cases, these
theoretical computations are supported by experimental results. 

As a consequence, it appears that bounded modes can act as
a mediator of the optical transmission in bidimensional sub-
wavelength hole arrays. Although it appears that the mecha-
nisms involved in these devices have been implicitly known for
a long time, it seemed important to us to recall it. Indeed, an
important engine of the technological development is also the
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� Fig. 6: Diagrammatic representation of the processes responsible for the
behaviour of the transmission properties.

� Fig. 5: Computed optical transmission (black curve) and amplitude of the
related resonant order (red curve) of a thin fictitious film (the permittivity is
equal to  i1) deposited on glass. 500 nm is set for the radius of each hole
and the lattice parameter is taken to be a = 1000 nm. A discontinuity
appears at the Rayleigh wavelength λRay.



improvement of our theoretical knowledge of the phenomena
with which we are confronted. �
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