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ABSTRACT

Aims. In a previous paper (Libert & Henrard 2005, Celest. Mech. & Dyn. Astron., 93, 187) we used a twelfth-order expansion of the
perturbative potential in powers of eccentricities to represent the secular effects of two coplanar planets. This expansion was applied
successfully to non resonant exoplanetary systems. This study was based on a first order (in the masses of the planets) model and will
fail for systems too close to a resonance. In this paper we test the effects of the proximity of a mean-motion resonance on the secular
motion of the planets.
Methods. We analyse the proximity of several exoplanetary systems to a mean-motion resonance zone by using a first-order (in the
mass ratios) Lie algorithm on the perturbative potential expanded to the twelfth order in the eccentricities. This perturbation method
evaluates the difference between osculating elements and averaged ones. It permits us to decide whether resonant contributions
dominate the terms of this difference or not.
Results. This study is applied to several exosystems. We find that HD 168443, HD 38529, HD 74156, HD 217107, and HD 190360
are far away from a mean-motion resonance zone. υ Andromedae and HD 12661 are rather close to the 5/1 resonance, HD 169830 to
the 9/1 one. Hence, a secular theory is enough to depict correctly the behaviour of all these systems. On the other hand, HD 108874
and HD 202206 suffer from large perturbations in their motion due to the closeness of the 4/1 and 5/1 resonances, respectively. We
also perform a complete investigation of the proximity of the υ Andromedae system to mean-motion resonances, by studying the
changes in behaviour due to different values of the outer semi-major axis. The υ Andromedae system begins to be really influenced
by the 5/1 resonant terms when the value of the outer semi-major axis decreases from 2.53 to 2.445.

Key words. celestial mechanics – planetary systems – methods: analytical

1. Introduction

At present more than 18 multiple exoplanetary systems have
been discovered. Some of them are in mean-motion resonances,
for example GJ876 and HD 82943 in resonance 2/1. This first-
order resonance has been studied by several authors (Beaugé
et al. 2006; Psychoyos & Hadjidemetriou 2005, etc.). Looking at
the period ratio of the other two-planet systems discovered so far
(see the orbital parameters listed in Table 1), it seems that most
of them are not close to mean-motion resonances so that their
behaviour can be explained by their mutual secular interactions
alone. The secular dynamics of some of these have already been
studied in several papers. We may cite for instance the works of
Chiang et al. (2001), Ji et al. (2003), Michtchenko & Malhotra
(2004), and Lee & Peale (2003).

In a previous paper (Libert & Henrard 2005), we showed
that an analytical theory based on a high-order expansion of the
secular Hamiltonian in powers of eccentricities could correctly
depict the motion of these exosystems. In order to obtain the
expansion of the secular perturbation, we simply discarded the
terms that depend upon the mean anomalies of the planets. This
amounts to an “averaging by scissors”, or a first-order (in the
mass ratios) averaging of the non secular terms of the perturba-
tion. Of course, this averaging will fail inside the mean-motion
resonance, but also will be a bad approximation if the system is
close to the resonance. This is well-known in the solar system,

� FNRS Research Fellow.

where Jupiter and Saturn are close to a 5 to 2 resonance, leading
to large perturbations in their motion, the so-called “great in-
equality”. The neighbourhood of this resonance region has been
studied by Michtchenko & Ferraz-Mello (2001) among others.
The same kind of work has been performed by Callegari et al.
(2004) for the Uranus-Neptune system.

In order to test the possibility of “great inequalities” in
the exosystems (υ Andromedae, HD 168443, HD 169830,
HD 38529, HD 74156, and HD 12661) that we studied earlier
and new ones like HD 108874, HD 202206, HD 217107, and
HD 190360, we implement a complete first-order (in the mass
of the planets) perturbation method. For a system very close to
a resonance such that k1n1 − k2n2 = 0, the solution is dom-
inated by terms that include a combination of “k1λ1 − k2λ2”;
the amplitudes of these terms give a measure of the closeness
to the resonance. For systems farther away from the resonance,
short periodic terms dominate. The dominating terms (tabulated
in Table 2) also measure the difference between osculating ele-
ments and averaged elements, giving an idea of what resonant
and non resonant terms influence significantly the motion.

2. Effects of the closeness of exoplanetary systems
to mean-motion resonances

2.1. First-order Lie averaging

Let us consider a system consisting of a central star of mass m0
and two coplanar planets of mass m1 and m2. Mass m1 is
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Table 1. Orbital parameters of some exoplanetary systems released on the web site www.obspm.fr/encycl/encycl.html (March 2006).

a1 a2 e1 e2 �1(deg) �2(deg) m1/MJ m2/MJ

υ Andro (c-d) 0.829 2.53 0.28 0.27 250 260 1.89 3.75
HD 168443 0.29 2.87 0.529 0.228 172.9 63 7.2 17.1
HD 169830 0.81 3.6 0.31 0.33 148 252 2.88 4.04
HD 38529 0.129 3.68 0.29 0.36 87.7 14.7 0.78 12.7
HD 74156 0.294 3.4 0.636 0.583 181.5 242.4 1.86 6.17
HD 12661 0.83 2.56 0.35 0.2 291.73 162.4 2.3 1.57
HD 108874 1.051 2.68 0.07 0.25 248.4 17.3 1.36 1.018
HD 202206 0.83 2.55 0.435 0.267 161.18 78.99 17.4 2.44
HD 217107 0.074 4.3 0.13 0.55 21.1 164 1.37 2.1
HD 190360 0.128 3.92 0.01 0.36 153.7 153.7 0.057 1.502

assumed to be the one closest to the central star. The Hamiltonian
of the dynamics of this system, in the usual Jacobi coordi-
nates and limited to the first order in the mass ratios m1/m0
and m2/m0, is:

H = −Gm0m1

2a1
− Gm0m2

2a2
−Gm1m2

⎡⎢⎢⎢⎢⎣ 1
|r1 − r2| −

(r1|r2)

r3
2

⎤⎥⎥⎥⎥⎦ , (1)

where ai, ri, and ri are, respectively, the osculating semi-major
axis, the position vector, and the norm of the position vector of
mass mi (see for instance Brouwer & Clemence 1961).

Using the classical modified Delaunay’s elements (truncated
at the first order in the mass ratios) that are (see reference above
or Laskar 1990)

λi = mean longitude of mi, Li = mi

√
Gm0ai,

pi = − the longitude of the pericenter of mi,

Pi = Li

[
1 −
√

1 − ei
2
]
,

the last term of Eq. (1) can be expanded in powers of the eccen-
tricities (see for instance Murray & Dermott 1999). Considering
the expressions Ei =

√
2Pi/Li (we call them “canonical” eccen-

tricities because they are closely related to the action Pi) rather
than the eccentricities ei (for small to moderate eccentricities Ei
is close to ei), the Hamiltonian reads

H = −Gm0m1

2a1
− Gm0m2

2a2

−Gm1m2

a2

∑
Bk

i1,i2, j1, j2
E | j1|+2i1

1 E | j2|+2i2
2 cosΦ, (2)

where Φ = [(k + j1)λ1 − (k + j2)λ2 + j1 p1 − j2 p2] and the sum
runs on all values of the integer indices (k, i1, i2, j1, j2) (the first
three being positive). The coefficients Bk

i1,i2, j1, j2
depend only on

the ratio a1/a2 of the semi-major axes.
As shown in our previous paper (Libert & Henrard 2005),

the numerical convergence of the secular part of the series (2)
(those terms for which j1 = j2 = −k) is excellent for the ex-
osystems under consideration. Some readers may wonder if this
does not contradict the results of Henrard & Lemaître (1987)
and Lemaître & Henrard (1988), but we do want to point out
a basic difference: we investigate the (numerical) convergence
of the secular part only and not of the full expansion. Despite
their high eccentricities, the exosystems of Table 1 enjoy a good
convergence and, if we limit the development to order 12, the ex-
pansion of the secular part can represent the orbits with enough
accuracy. For more information on this analytical model we refer
to our previous articles (Libert & Henrard 2005, 2006).

To obtain the expansion of the secular perturbation, we sim-
ply dropped the terms depending upon the mean anomalies of

the planets from the Hamiltonian (2). This amounts to an “aver-
aging by scissors”, or a first-order (in the mass ratios) averaging
of the non secular terms of the perturbation. In this paper we
perform a complete first-order Lie transform (Hori 1966; Deprit
1969) instead. It again yields the secular Hamiltonian but also
a first-order generator necessary for the calculation of the aver-
aged initial elements:

W1 = −Gm1m2

a2

∑Bk
i1,i2, j1, j2

E | j1|+2i1
1 E | j2|+2i2

2

(k + j1)n1 − (k + j2)n2
sinΦ, (3)

where the ni =

√
Gm0/a3

i expresses the Keplerian mean-motion
of the planets.

Notice that we can substitute the non-constant mean-
motions ni for the constant averaged values in the denominators.
The error committed is of the second order in the masses. The
generator W1 enables us to define the effects of the perturbation
to the first order (in the masses). For instance, we easily compute
(with ε = m1m2/m2

0):

E2
i = Ē2

i + ε [E2
i ; W1] + O(ε2)

where the expression Ēi designates averaged values and the no-
tation [ ; ] stands for the Poisson bracket.

Indeed, E2
i = 2Pi/Li and [E2

i ; W1] = [E2
i (∂W1/∂λi) −

2(∂W1/∂pi)]/Li. Notice that in spite of the fact that ε is of or-
der 2 in the masses of the planets, the correcting term is actually
of order 1 because the denominator Li is also of order 1 in the
masses.

Taking the square root of this expression and applying a first-
order Taylor expansion, we find

Ei = Ēi

⎛⎜⎜⎜⎜⎝1 + ε

2E2
i

[E2
i ; W1]

⎞⎟⎟⎟⎟⎠ + O(ε2).

The higher the terms generated by the Poisson bracket, the
stronger their influences on the value of the “canonical” eccen-
tricities. In fact the amplitude of a periodic term gives us a mea-
sure of the proximity of the system to the corresponding mean-
motion resonances, as we will see in the next section.

2.2. Application to several exoplanetary systems

This section analyses the closeness of several systems to
a mean-motion resonance zone. The orbital parameters of
the considered exosystems are released on the web site
www.obspm.fr/encycl/encycl.html and listed in Table 1.
The υ Andromedae system actually has three known planets but
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Table 2. Proximity of several planetary sytems to mean-motion resonances by analysing the largest terms of ε

2E2
1

[E2
1 ; W1] and ε

2E2
2

[E2
2 ; W1]:

HD 168443 (a1/a2 = 0.1), HD 38529 (a1/a2 = 0.035), HD 74156 (a1/a2 = 0.086), υ Andromedae (a1/a2 = 0.328), HD 12661 (a1/a2 = 0.324),
HD 169830 (a1/a2 = 0.225), HD 108874 (a1/a2 = 0.392), and coplanar Jupiter-Saturn (a1/a2 = 0.546).

ε

2E2
1
[E2

1 ; W1] ε

2E2
2
[E2

2 ; W1]

HD 168443 −0.00192 cos (2λ2 + 2p1) −0.0598 cos (λ2 + p2)
−0.00103 cos (3λ2 + 2p1 + p2) −0.0138 cos (2λ2 + 2p2)

HD 38529 −0.000214 cos (2λ2 + 2p1) −0.00293 cos (λ2 + p2)
−0.000183 cos (3λ2 + 2p1 + p2) 0.00107 cos (2λ2 + 2p2)

HD 74156 0.00102 cos (8λ2 + 2p1 + 6p2) −0.00555 cos (λ2 + p2)
0.00101 cos (9λ2 + 2p1 + 7p2) −0.00341 cos (2λ2 + 2p2)

υ Andro (c-d) 0.0121 cos (λ1 − 5λ2 − 2p1 − 2p2) −0.0111 cos (λ2 + p2)
−0.00998 cos (λ1 − 5λ2 − p1 − 3p2) −0.00931 cos (λ1 − 5λ2 − p1 − 3p2)
−0.00481 cos (λ1 − 5λ2 − 3p1 − p2) 0.00375 cos (λ1 − 5λ2 − 2p1 − 2p2)

HD 12661 −0.00257 cos (λ1 − 5λ2 − 2p1 − 2p2) −0.0222 cos (λ2 + p2)
−0.00172 cos (λ1 − 5λ2 − 3p1 − p2) −0.00987 cos (λ1 − 5λ2 − p1 − 3p2)
−0.00126 cos (λ1 − 5λ2 − p1 − 3p2) 0.0067 cos (λ1 − 5λ2 − 2p1 − 2p2)

HD 169830 0.00183 cos (λ1 − 9λ2 − 2p1 − 6p2) −0.0122 cos (λ2 + p2)
−0.00144 cos (λ1 − 9λ2 − 3p1 − 5p2) −0.00417 cos (2λ2 + 2p2)

−0.00115 cos (2λ2 + 2p1) −0.00206 cos (λ1 − 9λ2 − p1 − 7p2)
HD 108874 −0.1337 cos (λ1 − 4λ2 − p1 − 2p2) −0.0173 cos (λ1 − 4λ2 − p1 − 2p2)

0.0338 cos (λ1 − 4λ2 − 2p1 − p2) −0.0117 cos (λ2 + p2)
0.0186 cos (λ1 − 4λ2 − p1 − 2p2) −0.00973 cos (λ1 − 4λ2 − 3p2)

Jup-Sat −0.0272 cos (λ1 − 2λ2 − p1) 0.0486 cos (2λ1 − 5λ2 − p1 − 2p2)
−0.0133 cos (2λ1 − 5λ2 − 2p1 − p2) −0.0462 cos (λ2 + p2)

0.0123 cos (2λ1 − 5λ2 − p1 − 2p2) −0.0444 cos (2λ1 − 5λ2 − 3p2)

our study only concerns the two outer ones (c-d). Table 2 pro-
vides information about the largest coefficients of the expres-
sions ε

2E2
1

[E2
1; W1] and ε

2E2
2

[E2
2; W1] (developed to order 12 in

the eccentricities).

First we observe that the exoplanetary systems HD 168443,
HD 38529, and HD 74156 from Table 2 are far away from
a mean-motion resonance zone, their behaviour being in fact de-
termined by terms that do not include any combination of “k1λ1−
k2λ2”. These systems are also called hierarchical systems be-
cause of their small semi-major axes ratio. This is also the case
for HD 217107 and HD 190360 of Table 1.

However Table 2 shows that the exosystems υ Andromedae
and HD 12661 are rather close to the 5/1 resonance. Actually
their behaviour is determined this time by terms including
a combination of “λ1 − 5λ2”, but the coefficients of these pe-
riodic terms remain small (order 10−3). We also see the greater
influence of non resonant terms on the outer body than of res-
onant ones. HD 169830 seems close to the 9/1 resonance, but
a secular theory is enough to depict the behaviour of such near-
resonant systems correctly, as it is shown by the figures in the
next section.

To see the influence of the proximity of mean-motion reso-
nances on the magnitude of the coefficients, we also added the
well-known Jupiter-Saturn system, which is here assumed to be
coplanar. It is known that these planets suffer from large per-
turbations in their motion due to the closeness of the 5/2 reso-
nance. The coefficients of the resonant periodic terms are domi-
nant this time and of higher order (10−1 or 10−2). The exosystems
HD 108874 (close to 4/1 resonance) and HD 20206 of Table 1
(close to 5/1 resonance) tend to show the same behaviour as the
Jupiter-Saturn system. For these last three systems, a secular the-
ory is not enough to depict their behaviour correctly, as we see
in the next section.

3. Investigation of the proximity
of the υ Andromedae system to mean-motion
resonances

As seen in Table 2, the motion of the υ Andromedae system is
influenced by its proximity to the 5/1 resonance. In order to study
the extent of the influence of the 5/1 zone, we vary the ratio of
the semi-major axes in this section, keeping the other parameters
and initial conditions at the same values.

Table 3 shows the largest terms of ε
2E2

1
[E2

1; W1] and
ε

2E2
2
[E2

2; W1] for several values of the outer semi-major axis. All

the other parameters (including the inner semi-major axis) are
constant and are those of the υ Andromedae system. First, if
a1/a2 = 0.322, the proximity of the 11/2 resonance (at a1/a2 =
0.321) has some influence on the results. When a1/a2 = 0.328,
it is the resonance 5/1 (at a1/a2 = 0.342) that becomes domi-
nant. Figure 1 shows the comparison between our secular ana-
lytical approach and the numerical integration of the full three-
body problem, using the SWIFT software package developed by
Duncan & Levison (Wisdom-Holman mapping, 1991). But actu-
ally we see that for these two first semi-major axis ratios, the dy-
namics of the system is dominated by non resonant terms, so the
secular theory should give a good approximation of their motion.

The same result has been pointed out by Rodríguez &
Gallardo (2005) concerning the system HD 12661. With the or-
bital parameters obtained by D. Fischer, they show that it was
dominated by a purely secular evolution that is reproduced very
well with a disturbing function that includes only sixth-order
terms in the eccentricities. We may point out that, in evaluat-
ing the closeness to resonance, they consider only the size of
the combination of frequencies (the denominator of the resonant
term), while we also consider the size of the perturbing term
(the numerator of the resonant term). For instance, in the case of
HD 12661 (with the values of the parameters adopted in Table 1),
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Table 3. Largest terms of ε

2E2
1
[E2

1 ; W1] and ε

2E2
2
[E2

2 ; W1] for the υ Andromedae system with different outer semi-major axis a2.

a1/a2
ε

2E2
1
[E2

1 ; W1] ε

2E2
2
[E2

2 ; W1]

0.322 0.0127 cos (2λ1 − 11λ2 − 3p1 − 6p2) −0.01106 cos (λ2 + p2)
−0.0101 cos (2λ1 − 11λ2 − 4p1 − 5p2) −0.00983 cos (2λ1 − 11λ2 − 2p1 − 7p2)
−0.0091 cos (2λ1 − 11λ2 − 2p1 − 7p2) 0.00785 cos (2λ1 − 11λ2 − 3p1 − 6p2)

0.328 0.0121 cos (λ1 − 5λ2 − 2p1 − 2p2) −0.0111 cos (λ2 + p2)
−0.00998 cos (λ1 − 5λ2 − p1 − 3p2) −0.00931 cos (λ1 − 5λ2 − p1 − 3p2)
−0.00481 cos (λ1 − 5λ2 − 3p1 − p2) 0.00375 cos (λ1 − 5λ2 − 2p1 − 2p2)

0.339 0.0673 cos (λ1 − 5λ2 − 2p1 − 2p2) −0.0511 cos (λ1 − 5λ2 − p1 − 3p2)
−0.0539 cos (λ1 − 5λ2 − p1 − 3p2) 0.0213 cos (λ1 − 5λ2 − 2p1 − 2p2)
−0.0277 cos (λ1 − 5λ2 − 3p1 − p2) 0.0129 cos (λ1 − 5λ2 − p1 − 3p2)
−0.0199 cos (λ1 − 5λ2 − 2p1 − 2p2) −0.01117 cos (λ2 + p2)

0.341 0.206 cos (λ1 − 5λ2 − 2p1 − 2p2) −0.156 cos (λ1 − 5λ2 − p1 − 3p2)
−0.164 cos (λ1 − 5λ2 − p1 − 3p2) 0.0652 cos (λ1 − 5λ2 − 2p1 − 2p2)
−0.0852 cos (λ1 − 5λ2 − 3p1 − p2) 0.0392 cos (λ1 − 5λ2 − p1 − 3p2)
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Fig. 1. Comparison between the time evolution of e1 and e2 as given by our analytical secular theory (solid line for e1 and dashed line for e2) and
the numerical integration of the full three-body problem computed using SWIFT with the time of periastron passage of the outer planet as the
initial epoch (curves including short-period variations). We take all initial conditions of υ Andromedae system except the outer semi-major axis
for which we choose: a2 = 2.575 (top left), a2 = 2.530 (top right), a2 = 2.445 (bottom left), a2 = 2.431 (bottom right).

the main perturbing term is a non resonant one; also the 11/2 res-
onance (0.1818) is very close to the ratio of frequencies (0.1846),
but this resonance does not seem to affect the motion.

For a1/a2 = 0.339, the terms in “λ1 − 5λ2” are dominant.
The motion is still described qualitatively by the secular theory
but not quantitatively, as seen from Fig. 1. Finally, in the case of
a1/a2 = 0.341, the system is inside the mean-motion resonance,
so our approach fails completely.

As for comparing the time evolutions of the eccentricities, let
us point out that the analytically averaged evolutions over time
were computed on the basis of osculating initial conditions. It
is expected that a better fit would be obtained by using initial

conditions for averaged variables that could be computed from
Sect. 2.

4. Conclusion

We have analysed the proximity of several exoplanetary systems
to mean-motion resonances by using a first-order (in the mass
ratios) Lie algorithm on the perturbative potential expanded in
powers of the eccentricities. It has enabled us to find the limit
of application of our secular analytical model for systems close
to resonances. We have seen that the exosystems HD 168443,
HD 38529, HD 74156, HD 217107, and HD 190360 are far away
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from a mean-motion resonance zone. In contrast, υAndromedae,
HD 12661, and HD 169830 systems are rather close to the 5/1 or
the 9/1 resonance, but their behaviour can be adequately depicted
by purely secular perturbation alone. Finally, the exosystems
HD 108874 and HD 202206 suffer from large perturbations in
their motion due to the closeness of the 4/1 and 5/1 resonances,
respectively. Such resonant terms have to be taken into account
in the long-term evolution of these exosystems.

Acknowledgements. We thank U. Locatelli for his constructive remarks in
Celmec IV. We also would like to thank M. Duncan and H. Levison for the use
of the SWIFT software package.
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