
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

KAOS Construct Analysis using the UEML Approach Template

Matulevicius, Raimundas; Heymans, Patrick

Publication date:
2005

Link to publication
Citation for pulished version (HARVARD):
Matulevicius, R & Heymans, P 2005, KAOS Construct Analysis using the UEML Approach Template..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198254499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/kaos-construct-analysis-using-the-ueml-approach-template(f9a8dcba-8fc3-4986-a8a5-4f6cd7900797).html

Namur University
Computer Science Department

KAOS Construct Analysis using
 the UEML Approach Template

(Technical report)

Raimundas Matulevičius
and Patrick Heymans

Namur, Belgium
2005

KAOS Construct Analysis using
the UEML Approach Template

 2

KAOS Construct Analysis using
the UEML Approach Template

 3

Outline

KAOS : Achieve goal ..5
KAOS : Agent..9
KAOS : Assignment ..13
KAOS : Avoid goal..17
KAOS : Boundary condition..21
KAOS : Cease goal ..25
KAOS : Conflict ..29
KAOS : Control ...33
KAOS : Domain property ..35
KAOS : Environment agent ...39
KAOS : Event ..41
KAOS : Expectation ..43
KAOS : Goal..47
KAOS : Goal refinement ...51
KAOS : Input ...55
KAOS : Maintain goal ...59
KAOS : Monitor ..63
KAOS : Object ...65
KAOS : Operation..69
KAOS : Operationalisation ..73
KAOS : Output ..79
KAOS : Performance ...83
KAOS : Requirement...87
KAOS : Softgoal ..91
KAOS : Software agent ...93

KAOS Construct Analysis using
the UEML Approach Template

 4

KAOS Construct Analysis using
the UEML Approach Template

 5

KAOS : Achieve goal

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

Achieve goals are goals requiring that some property eventually holds.
Achieve goals state that some target condition should hold in some (bounded) future state.

1. Preamble
Builds on

Goal

Built on by

Construct name
Achieve goal

Alternative construct names
goal, requiring that a property eventually holds

Related, but distinct construct names
goal with a pattern achieve

Related terms
Goal : a prescriptive assertion capturing some objective to be met by cooperation of agents from the agent

model.
Maintain goal: a goal requiring that some property always holds.
Avoid goal: a goal requiring that some property never holds.
Cease goal: a goal requiring that some property eventually stops to hold.

Softgoal: goal that do not have a clear-cut criterion for their satisfaction.
Terminal goals: a goal which has no G-refinement.
Requirement: a goal assigned to an agent in the software to be.
Expectation (assumption): a goal assigned to an agent in the environment.

Comment: Can a goal with a pattern be softgoal, terminal goal (requirement and expectation)?

Language
KAOS, http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Goal model

KAOS Construct Analysis using
the UEML Approach Template

 6

2. Presentation
Builds on

Built on by

Icon, line style, text

User-definable attributes

Relations to other constructs

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
 Both type and instance level

Classes of things
1:1, “goalOwner” played by StakeholderThing.

Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing.

1:1, “concernedObject” played by AllThing.
Describing object concerned by a goal.

Comment: Achieve goal has the same classes as a goal. It belongs to a goal owner and has the sub-properties. These
classes are described here as they are used in property definition.

Properties (and relationships)

1:1, “theAchieveGoal” played by ComplexTransformationLaw.

Belongs to: 0:1 [1:1], goalOwner.
Trasformation law: a change is required between a state where the concerned object properties are false and one
where they are true.
Representing the achieve goal which is held by a goal owner and requires that some concerned object properties
eventually hold.

Comment: For more achieve goal properties (such as concExplicitObjAttribute, concImplicitObjAttribute,

attributeName, attributeDef, attributeFormalSpec, attributePriority, and attributeCategoty), see goal.

Achieve goal

Achieve

[Goal name]

KAOS Construct Analysis using
the UEML Approach Template

 7

Behaviour
 Existence

Modality (permission, recommendation etc)
Intention of a goal owner;

4. Open Issues

Change List

KAOS Construct Analysis using
the UEML Approach Template

 8

KAOS Construct Analysis using
the UEML Approach Template

 9

KAOS : Agent

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

An agent is an active object (or “processor”) which plays a specific role towards goal achievement by controlling
specific object behaviours. The focus is thus on a specific role rather than a specific individual.

Agents are active objects, that is, they are capable of performing operations.

1. Preamble
Builds on

Object

Built on by
Environment agent
Software agent

Construct name
Agent

Alternative construct names
An active object
A processor

Related, but distinct construct names
• Environment agent : e.g., pre-existing software component, sensor, actuator, human, organizational unit, etc.
• Software agent : an agent in the system-to-be.

Related terms

Language
KAOS,
http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
 Agent model

2. Presentation
Builds on

KAOS Construct Analysis using
the UEML Approach Template

 10

Built on by
Assignment,
Performance,
Controls,
Monitors

Icon, line style, text

User-definable attributes
[1:1] Name: String = “”. A string allowing for unambiguous reference to corresponding instances at the application

level.
[1:1] Def: FreeText = “”. Free text used for precise, unambiguous definition of the corresponding instances at the

application level.

Relations to other constructs
• Belongs 1:1 to agent model.

• 1:n [1:1] responsibleAgent : assignment. Agent has assignment to satisfy the goal.

Comment: Agents are objects. This means that agent could also not be a responsible agent as they could be defined in
the object hierarchy.

• 0:n [1:n] performs : operation. Agent performs operation in order to satisfy operationalised by this operation goal,
which is assigned to this agent.

• 0:n [0:n] monitors : object. Agent monitors (“reads”) the attribute of the object.

• 0:n [0:n] controls : object. Agent controls (“writes”) the attribute of the object.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
 Both type and instance level

Classes of things
1:1 “theAgent” played by ActiveComponentThing.

Represents the agent.

1:1 “monitoredControlledObject” played by ComponentThing.
Represents object, controlled or monitored by an agent.

Properties (and relationships)
1:1 [1:1], “attributeName” played by AnyRegularProperty.

Belongs to: theAgent.
Represents agent attribute name.

Agent Agent name

KAOS Construct Analysis using
the UEML Approach Template

 11

1:1 [1:1], “attributeDef” played by AnyRegularProperty.
Belongs to: theAgent.
Represents agent attribute def.

1:n [1:n], “monitoredImplicitObjAttribute” played by EmergentBindingMutualProperty
Belongs to: 0:n [0:n], monitoredControlledObject
Belongs to: 0:n [0:n], theAgent
An agent monitors an object, without defining the concrete attribute of the control.
Also represented: Monitors.

1:n [1:n], “monitoredExplicitObjAttribute” played by EmergentBindingMutualProperty
Belongs to: 0:n [0:n], monitoredControlledObject
Belongs to: 0:n [0:n], theAgent
An agent monitors an object attribute.
Also represented: Monitors.

1:n [1:n], “controlledImplicitObjAttribute” played by EmergentBindingMutualProperty
Belongs to: 0:n [0:n], monitoredControlledObject
Belongs to: 0:1 [0:n], theAgent
An agent controls an object, without defining the concrete attribute of the control.
Also represented: Controls.

1:n [1:n], “controlledExplicitObjAttribute” played by EmergentBindingMutualProperty
Belongs to: 0:n [0:n], monitoredControlledObject
Belongs to: 0:1 [0:n], theAgent
An agent controls an object attribute.
Also represented: Controls.

Behaviour
Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues
TBF – Dependency constraint between agents as through goal or through operation.
TBF – A goal defines a set of admissible histories in the composed system. Intuitively, a history is a temporal sequence
of states of the system. Specify Scenario, Snapshot, Interaction, Source, Target, and State transition constraints. This is
related to Agent, Event, and Operation constraints.

KAOS Construct Analysis using
the UEML Approach Template

 12

KAOS Construct Analysis using
the UEML Approach Template

 13

KAOS : Assignment

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

The Assignment is introduced as target of an OR-Assignment meta-relationship from Goal to capture alternative
assignments of the same terminal goal to different agents; alternative assignments result in different system proposals in
which more or less is automated.

1. Preamble
Builds on

Built on by

Construct name
Assignment

Alternative construct names
Responsibility assignment

Related, but distinct construct names

Related terms

Language
 KAOS,

http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Agent model

2. Presentation
Builds on

Built on by

KAOS Construct Analysis using
the UEML Approach Template

 14

Icon, line style, text

User-definable attributes
[0:1] AltName : String = “”. Name of alternative OR-assignments.

Relations to other constructs
• Belongs to 1..1 agent model.
• 1:1 [0:n], assignedGoal: goal. A goal, if it is a terminal goal, could be assigned.
• 1:1 [1:n], responsibleAgent: agent. Responsible agent (software agent or environment agent) is responsible for goal

satisfaction.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Goal
Agent

Built on by

Instantiation level
Instance and type level

Classes of things
1:1 “responsibleAgent” played by ActiveComponentThing.

Represents the responsible agent.

1:1, “goalOwner” played by StakeholderThing.
Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing.

Goal name Agent1 name

Assignment
(AND assigned)

Goal name

Agent2 name

Goal name

Agent2 name

Resp.

Agent1 name

Resp.

Resp.

OR
Assignment
(OR assigned)

KAOS Construct Analysis using
the UEML Approach Template

 15

Properties (and relationships)
1:1, “theGoal” played by ComplexLawProperty.

Belongs to: 0:1 [1:1], goalOwner.
Law: restricts the the possible values of the object attributes.
Representing the goal which is held by a goal owner.

1:1, “terminalGoal” played by StateLaw.
Belongs to: 0:1 [1:1], goalOwner.
Sub-property: 1:1 [1:1], theGoal.
State law: ∀g ∈ Goal, ∀a ∈ Assignment, a.assignedGoal = g
 ⇒ ¬∃ gr ∈ G-refinement: gr.superGoal = g
Only terminal goals can by assigned.

1:1, “theAssignment” played by ComplexBindingMutualProperty.
Type: OR relationship.
Belongs to: 1:1 [1:n] responsibleAgent.
Sub-property: 1:1 [0:n] terminalGoal.
Describing the assignment.

0:1, “attributeAltName” played by AnyRegularProperty.
Sub-property: theAssignment.
Represents assignement attribute altName.

Behaviour
Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 16

KAOS Construct Analysis using
the UEML Approach Template

 17

KAOS : Avoid goal

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

Avoid goals are goals requiring that some property never holds.
Avoid goals state that some target condition on system states should never hold under some current condition.

1. Preamble
Builds on

Goal

Built on by

Construct name
Avoid goal

Alternative construct names
goal, requiring that some property never holds

Related, but distinct construct names
goal with a pattern avoid

Related terms
Goal : a prescriptive assertion capturing some objective to be met by cooperation of agents from the agent

model.
Maintain goal: a goal requiring that some property always holds.
Cease goal: a goal requiring that some property eventually stops to hold.
Achieve goal: a goal requiring that some property eventually hold.

Softgoal: goal that do not have a clear-cut criterion for their satisfaction.
Terminal goals: a goal which has no G-refinement.
Requirement: a goal assigned to an agent in the software to be.
Expectation (assumption): a goal assigned to an agent in the environment.

Comment: Can a goal with a pattern be softgoal, terminal goal (requirement and expectation)?

Language
KAOS, http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Goal model

KAOS Construct Analysis using
the UEML Approach Template

 18

2. Presentation
Builds on

Built on by

Icon, line style, text

User-definable attributes

Relations to other constructs

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
 Both type and instance level

Classes of things
1:1, “goalOwner” played by StakeholderThing.

Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing.

1:1, “concernedObject” played by AllThing.
Describing object concerned by a goal.

Comment: Avoid goal has the same classes as a goal. It belongs to a goal owner and has the sub-properties. These
classes are described here as they are used in property definition.

Properties (and relationships)

1:1, “theAvoidGoal” played by ComplexStateLaw.

Belongs to: 0:1 [1:1], goalOwner.
State law: indicates states that cannot be in concerned object.
Representing the avoid goal which is held by a goal owner and requires some properties of the concerned object
never holds.

Comment: For more avoid goal properties (such as concExplicitObjAttribute, concImplicitObjAttribute, attributeName,

attributeDef, attributeFormalSpec, attributePriority, and attributeCategoty), see goal.

Avoid goal

Avoid

[Goal name]

KAOS Construct Analysis using
the UEML Approach Template

 19

Behaviour
 Existence

Modality (permission, recommendation etc)
Intention of a goal owner;

4. Open Issues

Change List

KAOS Construct Analysis using
the UEML Approach Template

 20

KAOS Construct Analysis using
the UEML Approach Template

 21

KAOS : Boundary condition

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

Boundary condition describes inconsistencies in the considered domain – this means that two or more different goals
could not be achieved together.

1. Preamble
Builds on

Built on by

Construct name
Boundary condition

Alternative construct names
Inconsistencies in the considered domain

Related, but distinct construct names

Related terms
Conflict

Language
KAOS,
http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
 Goal model

2. Presentation
Builds on

Built on by

Icon, line style, text

bc

Boundary condition

KAOS Construct Analysis using
the UEML Approach Template

 22

User-definable attributes
[1:1] Name: String = “”. A string allowing for unambiguous reference to corresponding instances at the application

level.

[1:1] Def: FreeText = “”. Free text used for precise, unambiguous definition of the corresponding instances at the
application level.

[0:1] FormalSpec: KAOS real time temporal logic expression. Its values at the application level specify the
corresponding Def attribute in the KAOS real-time temporal logic.

[0:1] Likelihood : propability ∈ [0..1]. Its values at the application level specify how likely the boundary condition is.

[0:1]Criticality : set_of{critical, …, not critical}. Its values at the application level specify how severe the consequences
of the resulting conflict are.

Relations to other constructs
Belongs 1:1 to goal model.

1:1 [1:1], existUnder : conflict. Conflict exist only under some boundary condition.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Conflict

Built on by

Instantiation level
 Instance level
Comment: can we define classes of boundary conditions?

Classes of things

Properties (and relationships)
1:1, “theBoundaryCondition” played by StateLaw.

Type: Boolean, default value: true.
Sub-property: 1:1 [1:1] theConflict.
State law: two (or more) goals in the same G-refinement cannot be satisfied together.
Describing boundary condition.

1:1 [1:1], “attributeName” played by AnyRegularProperty.

Sub-property: theBoundaryCondition.
Represents boundary condition attribute name.

1:1 [1:1], “attributeDef” played by AnyRegularProperty.
Sub-property: theBoundaryCondition.
Represents boundary condition attribute def.

1:1 [1:1], “attributeFormalSpec” played by AnyRegularProperty.
Sub-property: theBoundaryCondition.
Represents boundary condition attribute formalSpec.

0:1 [1:1], “attributeLikelihood” played by AnyRegularProperty.
Sub-property: theBoundaryCondition.
Represents boundary condition attribute likelihood.

KAOS Construct Analysis using
the UEML Approach Template

 23

0:1 [1:1], “attributeCritically” played by AnyRegularProperty.
Sub-property: theBoundaryCondition.
Represents boundary condition attribute critically.

Behaviour
State

“logicalInconsistency” played by unstableState.
Defining property: theBoundaryCondition,
State constraint: Two or more different goals could not be achieved together.

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues
TBD – describe state law in a more formal way.

KAOS Construct Analysis using
the UEML Approach Template

 24

KAOS Construct Analysis using
the UEML Approach Template

 25

KAOS : Cease goal

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

Cease goals are goals requiring that some property eventually stops to holds.
Cease goals state that some target condition should not hold in some (bounded) future state.

1. Preamble
Builds on

Goal

Built on by

Construct name
Cease goal

Alternative construct names
goal, requiring that some property eventually stops to hold.

Related, but distinct construct names
goal with a pattern cease

Related terms
Goal : a prescriptive assertion capturing some objective to be met by cooperation of agents from the agent

model.
Maintain goal: a goal requiring that some property always holds.
Avoid goal: a goal requiring that some property never holds.
Achieve goal: a goal requiring that some property eventually hold.

Softgoal: goal that do not have a clear-cut criterion for their satisfaction.
Terminal goals: a goal which has no G-refinement.
Requirement: a goal assigned to an agent in the software to be.
Expectation (assumption): a goal assigned to an agent in the environment.

Comment: Can a goal with a pattern be softgoal, terminal goal (requirement and expectation)?

Language
KAOS, http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Goal model

KAOS Construct Analysis using
the UEML Approach Template

 26

2. Presentation
Builds on

Built on by

Icon, line style, text

User-definable attributes

Relations to other constructs

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
 Both type and instance level

Classes of things
1:1, “goalOwner” played by StakeholderThing.

Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing.

1:1, “concernedObject” played by AllThing.
Describing object concerned by a goal.

Comment: Cease goal has the same classes as a goal. It belongs to a goal owner and has the sub-properties. These
classes are described here as they are used in property definition.

Properties (and relationships)

1:1, “theCeaseGoal” played by ComplexTransformationLaw.

Belongs to: 0:1 [1:1], goalOwner.
Trasformation law: a change is required between a state where the concerned object properties are true and one
where they are false.
Representing the cease goal which is held by a goal owner and requires that some concerned object properties
eventually stops to hold.

Comment: For more cease goal properties (such as concExplicitObjAttribute, concImplicitObjAttribute, attributeName,
attributeDef, attributeFormalSpec, attributePriority, and attributeCategoty), see goal.

Behaviour
 Existence

Achieve goal

Cease
[Goal name]

KAOS Construct Analysis using
the UEML Approach Template

 27

Modality (permission, recommendation etc)
Intention of a goal owner;

4. Open Issues

Change List

KAOS Construct Analysis using
the UEML Approach Template

 28

KAOS Construct Analysis using
the UEML Approach Template

 29

KAOS : Conflict

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

Two or more goals are considered to be conflicting when under some boundary condition the goals become logically
inconsistent in the considered domain – these goals could not be achieved together.
Goals G1, G2, ..., Gn are said to be conflicting (or “divergent”) if under some boundary condition the goals become
logically inconsistent in the domain considered, that is, they cannot be achieved altogether.

1. Preamble
Builds on

Built on by

Construct name
Conflict

Alternative construct names
Conflicting goals
Divergent goals

Related, but distinct construct names

Related terms

Language
 KAOS,

http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Goal model

2. Presentation
Builds on

Built on by

Icon, line style, text

Conflict

KAOS Construct Analysis using
the UEML Approach Template

 30

User-definable attributes

Relations to other constructs
2:n [0:n], conflictBetweenGoals : goals.
0:n [0:n], isInDomain : domain properties.
1:1 [1:1], existUnder: boundary condition.

Diagram layout conventions
Cross between conflicting goals is represented in red.

Other usage conventions

3. Representation
Builds on

Two or more goals

Built on by
Boundary condition
Domain property

Instantiation level
Instance level

Comment: can we define classes of conflicts?

Classes of things
1:1, “goalOwner” played by StakeholderThing.

Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing (specified in goal template).
If goals are conflicting, this means conflict between the goal owners.

1:1, “concernedObject” played by ComponentThing.
Describing object concerned by a goal. This object is characterised by a domain property.

Properties (and relationships)
1:1, theConflict played by MutualProperty. Describing the conflict.

Sub-property of 2:n [0:n] theGoal.
Sub-property of 0:n [0:n] domainHypothesis.
Sub-property of 0:n [0:n] domainInvariant.
Conflict specifies mutual property between two or more goal owners (we consider what two conflicting goals have
different goal owners).

Comment: theGoal property is specified in the template for the goal construct.

1:1 [1:1], boundaryCondition played by StateLaw
Sub-property of 1:1 [1:1] theConflict.
State law: Conflict exist under some boundary condition.
The conflict exists only if some boundary condition, which defines why two or m ore goals can not be satisfied
together exists.
Also represented by: boundary condition.

0:n [0:n], domainHypothesis played by AnyProperty.
Conflicts are described in the domain which is specified by the domain properties.
Also represented by: domain property.

KAOS Construct Analysis using
the UEML Approach Template

 31

0:n [0:n], domainInvariant played by AnyProperty.
Conflicts are described in the domain which is specified by the domain properties.
Also represented by: domain property.

Behaviour
Regular assertion

Modality (permission, recommendation etc)
Obligation of Boundary Condition.

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 32

KAOS Construct Analysis using
the UEML Approach Template

 33

KAOS : Control

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

Agent controls (“writes”) the value of the object attribute.

1. Preamble
Builds on

Built on by

Construct name
Controls

Alternative construct names
Writes

Related, but distinct construct names

Related terms
Monitors : Agent monitors (“reads”) the value of the attribute.

Language
 KAOS,

http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Agent model

2. Presentation
Builds on

Built on by

Icon, line style, text

Object
name

Agent name Controls

KAOS Construct Analysis using
the UEML Approach Template

 34

User-definable attributes
• WhichAtt : String = “”.indicate which attributes of the object are specifically controlled.

Relations to other constructs
• Belongs to 1..1 agent model.
• 0:n [1:1], Object. Object is controlled by an agent.
• 0:n [1:1], Agent. Agent controls an object.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Agent
Object

Built on by

Instantiation level
Instance and type level

Classes of things
1:1 “controlledObject” played by ComponentThing.

Represents object, controlled by an agent.

1:1 “controllingAgent” played by ActiveComponentThing.
Represents the agent.

Properties (and relationships)
1:1, “theControls” played by BindingMutualProperty.

Belongs to: 1:1 [0:n], controllingAgent.
Describing controls relationship.

1:n, “explicitObjAttribute” played by AnyProperty.
Belongs to: controlledObject.
Sub-property of: theControls.
Defines explicitly which attribute of the object is controlled.

1:n, “implicitObjAttribute” played by AnyProperty.
Belongs to: controlledObject.
Sub-property of: theControls.
Does not define explicitly which attribute of the object is controlled.

Behaviour
 Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 35

KAOS : Domain property

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

A domain property is a property that is naturally true about the composite system.
A domain property (DomProp) is a descriptive assertion about objects in the environment which holds independently of
the software-to-be.

1. Preamble
Builds on

Built on by
Domain invariant. A domain invariant is a property known to hold in every state of some domain object. It is an

indicative statement of domain knowledge.
Domain hypothesis. A domain hypothesis is a domain property about some domain object supposed to hold and used

when arguing about the sufficient completeness of G-refinement.

Construct name
Domain property

Alternative construct names
A property that is naturally true about the composite system
A descriptive assertion about objects in the environment

Related, but distinct construct names

Related terms
• Domain invariant : a property known to hold in every state of some domain object
• Domain hypothesis : a property about some domain object supposed to hold and used when arguing about

the sufficient completeness of goal refinements.

Language
 KAOS,

http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Goal model
Object model

KAOS Construct Analysis using
the UEML Approach Template

 36

2. Presentation
Builds on

Built on by

Icon, line style, text

User-definable attributes
[1:1], Name = “”. A string allowing for unambiguous reference to corresponding instances at the application level.
[1:1], Def: FreeText = “”. Free text used for precise, unambiguous definition of the corresponding instances at the

application level.
[0:1], FormalSpec: KAOS real time temporal logic expression. Its values at the application level specify the

corresponding Def attribute in the KAOS real-time temporal logic.

Relations to other constructs
0:n [0:n], subProperty: goal. Domain properties refine the goal through the G-refinement relationship.

0:n [0:n], isInDomain: Conflict. Conflicts between goals are defined in a domain by domain properties.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
 Instance level

Classes of things
1:1 “theDomainObject” played by CompositeThing.

Describing object to which domain property belongs.

Properties (and relationships)
1:1, “theDomainProperty” played by AnyThing.

Belongs to: theDomainObject.
Representing the domain property. Domain property is a property of an object.

1:1 [1:1], “attributeName” played by AnyRegularProperty.
Sub-property: theDomainProperty.
Represents domain property attribute name.

1:1 [1:1], “attributeDef” played by AnyRegularProperty.
Sub-property: theDomainProperty.
Represents domain property attribute def.

Domain property

KAOS Construct Analysis using
the UEML Approach Template

 37

0:1 [1:1], “attributeFormalSpec” played by AnyRegularProperty.
Sub-property: theDomainProperty.
Represents domain property attribute formalSpec.

Behaviour
Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 38

KAOS Construct Analysis using
the UEML Approach Template

 39

KAOS : Environment agent

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

Environment agent (e.g., pre-existing software component, sensor, actuator, human, organizational unit, etc.)

1. Preamble
Builds on

Agent

Built on by

Construct name
 Environment agent

Alternative construct names

Related, but distinct construct names

Related terms
• Agents : active objects capable of performing operations.
• Software agent : an agent in the system-to-be.

Language
KAOS,
http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Agent model

2. Presentation
Builds on

Built on by

Icon, line style, text

User-definable attributes

Environment agent AgentName

KAOS Construct Analysis using
the UEML Approach Template

 40

Relations to other constructs

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
 Type level

Classes of things
1:1, “isEnvironmentAgent” played by ActiveComponentThing.

Environment agents are agents and inherits all agent attributes and properties.

Properties (and relationships)

Behaviour
 Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 41

KAOS : Event

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

Event is an instantaneous object.

1. Preamble
Builds on

Object

Built on by

Construct name
Event

Alternative construct names
An instantaneous object

Related, but distinct construct names

Related terms
Object

Language
KAOS,
http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
 Object model
 Operation model

2. Presentation
Builds on

Built on by

Icon, line style, text

EvName Event

KAOS Construct Analysis using
the UEML Approach Template

 42

User-definable attributes
Event inherits all the attributes of the object.

Relations to other constructs
 Event inherits all the relationships of the object.

1:1 [1:n], occurs : operation. The applications of an operation may be caused by event(s).

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
 Instance level

Classes of things
1:1, “theEvent” played by ChangingThing.

Describing the event.

Properties (and relationships)

Behaviour
Event

REPRESENTED STATE ENTRIES

“initialState” played by StateOfAThing

State constraints: State constraints are defined by object implicit and explicit attributes (inputs to the operation).

“resultState” played by StateOfAThing
State constraints: State constraints are defined by object implicit and explicit attributes (outputs from the
operation).

REPRESENTED EVENT ENTRIES

“occur” played by EventInAThing

From state: initialState
To state: resultState
Trigger: reqTrig sub-property of operationalisation.
Condition: reqPre and reqPost in operationalisation and domPre and domPost in operation.
Action: when event occurs the operation is caused.

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues
TBF – A goal defines a set of admissible histories in the composed system. Intuitively, a history is a temporal sequence
of states of the system. Specify Scenario, Snapshot, Interaction, Source, Target, and State transition constraints. This is
related to Agent, Event, and Operation constraints.

KAOS Construct Analysis using
the UEML Approach Template

 43

KAOS : Expectation

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

An expectation is a goal assigned to an environment agent.

1. Preamble
Builds on

Goal

Built on by

Construct name
Expectation

Alternative construct names
Assumption

Related, but distinct construct names
Terminal goal: goal which has no G-requirement.

Related terms
Requirement: a goal assigned to an agent in the software-to-be.
Softgoal: a goal that cannot be said to be satisfied in a clearcut sense.

Comment: can an expectation be a softgoal?
Maintain goal: a goal requiring that some property always holds.
Avoid goal: a goal requiring that some property never holds.
Achieve goal: a goal requiring that some property eventually hold.
Cease goal: a goal requiring that some property eventually stops to hold.

Language
KAOS,
http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Goal model

KAOS Construct Analysis using
the UEML Approach Template

 44

2. Presentation
Builds on

Built on by

Icon, line style, text

User-definable attributes
Requirement inherits all the attributes of the goal.

Relations to other constructs
• Belongs 1:1 to goal model.

• 1:n [1:n], responsible : environment agent. Expectation is assigned through responsibility relationship to an
environment agent.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Comment: Expectation is a goal and has most of the goal classes and properties. But expectation is also a terminal
goal, so it has no G-refinement.

Built on by

Instantiation level
Instance level

Comment: Can we have classes of environment agents and these classes or individual expectations assigned?

Classes of things
1:1, “environmentAgent” played by ActiveComponentThing.

Describing the agent an expectation is assigned.

Properties (and relationships)
1:1, “theExpectation” played by ComplexStateLaw.

Belongs to: 0:1 [0:n] environmentAgent.
Belongs to: 0:1 [1:1] goalOwner.
State law: Is restricted by the assignement relationship. An expectation himself restricts state of the concerned
object.
Representing the expectation. Expectation as a goal, has a goal owner.

1:1, “isTerminalGoal” played by StateLaw.
Sub-property: 1:1 [1:1], theExpectation.
State law: ∀g ∈ Goal, ∀a ∈ Assignment, a.assignedGoal = g

 Expectation

KAOS Construct Analysis using
the UEML Approach Template

 45

 ⇒ ¬∃ gr ∈ G-refinement: gr.superGoal = g
Expectation is a terminal goal which means that an expectation can not have G-refinement.

Behaviour
Existence

Modality (permission, recommendation etc)
Intention of a goal owner;
Obligation of an environment agent.

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 46

KAOS Construct Analysis using
the UEML Approach Template

 47

KAOS : Goal

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

A goal is a prescriptive assertion capturing some objective to be met by cooperation of agents from the agent model. A
goal prescribes a set of desired behaviours. A goal defines an objective the composite system should meet usually
through the cooperation of multiple agents.

1. Preamble
Builds on

Built on by
softgoal
maintain goal
achieve goal
cease goal
avoid goal
requirement
expectation (assumption)

Comment: All the mentioned constructs are goals having additional features to the ones defined in this template.

Construct name
Goal

Alternative construct names
a prescriptive assertion
a set of desirable behaviours
an objective a desirable system should meet
a sub-goal
a parent goal
a super goal

Related, but distinct construct names

Related terms
Softgoal: goal that do not have a clear-cut criterion for their satisfaction.
Maintain goal: a goal requiring that some property always holds.
Avoid goal: a goal requiring that some property never holds.
Achieve goal: a goal requiring that some property eventually hold.
Cease goal: a goal requiring that some property eventually stops to hold.
Terminal goals: a goal which has no G-refinement.
Requirement: a goal assigned to an agent in the software to be.
Expectation (assumption): a goal assigned to an agent in the environment.

KAOS Construct Analysis using
the UEML Approach Template

 48

Language
KAOS, http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
 Goal model

2. Presentation
Builds on

Built on by

Icon, line style, text

User-definable attributes
[1:1] Name: String. A string allowing for unambiguous reference to a corresponding goal at the application level.
[1:1] Def: String. Free text used for precise, unambiguous definition of the goal at the application level.
[0:1] FormalSpec: KRTTL. Its values at the application level specify the corresponding Def attribute in the KAOS real-

time temporal logic.
[0:1] Priority: PriorityType. Values at the application level specify the extent to which the goal is mandatory or

optional.
[0:1] Owner: String. Defines stakeholder which identified and argued for that goal.
[0:1] Category: set_of Strings {satisfaction, safety, security, information, accuracy, and others}. Category provides a

classification of goals that can be used to guide the acquisition, definition and refinement.
Any other attributes that the user wished to add.

Relations to other constructs
Belongs 1:1 to Goal model.
0:n [1:1] assignedGoal : assignment. Defines relationship between goal and assignment.
0:n [0:n] concerns : object. Goal definition refers to the objects and their attributes.
1:1 [0:n] superGoal : goal. Goal is a super (parent) goal in the G-refinement relationship.
0:n [1:n] subGoal : goal. Goal refines a super (parent) goal through the G-refinement relationship.
0:n [0:n] subProperty : domain properties. Super (parent) goals are refined to a subgoal and domain properties through

the G-refinement relationship.
0:n [1:1] op_goal : operationalisation. Operationalisation defines operations which operationalise this goal through

required conditions (reqPre, reqTrig, and reqPost).
0:n [2:n] betweenGoals : conflict. One or several goals could be part of the conflict when boundary condition is

determined.

Goal

 Goal name

KAOS Construct Analysis using
the UEML Approach Template

 49

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by
Assignment – defines how goals can be assigned to agents.
Operationalisation – defines how goals are operationalised.
G-refinement – defines how goals are refined.
Conflict – defines the way conflicts between goals are represented.

Instantiation level
Both type and instance level

Classes of things
1:1, “concernedObject” played by AllThing.

Describing object concerned by a goal.

1:1, “goalOwner” played by StakeholderThing.
Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing.

Properties (and relationships)
1:1, “theGoal” played by ComplexLawProperty.

Belongs to: 0:1 [1:1] goalOwner.
Law: goal restricts state of the object by concerning it.
Representing the goal which is held by a goal owner.

1:n [1:n], “concExplicitObjAttribute” played by AnyProperty.
Belongs to: 0:n [0:n], concernedObject.
Sub-property: theGoal.
Sub-property: attributeDef.
Sub-property: attributeFormalSpec.
A goal concerns an object’s attribute.

1:n [1:n], “concImplicitObjAttribute” played by AnyProperty.
Belongs to: 0:n [0:n], concernedObject.
Sub-property: theGoal.
Sub-property: attributeDef.
Sub-property: attributeFormalSpec.
A goal concerns an object, without defining the concrete attribute of the concern.

1:1 [1:1], “attributeName” played by AnyRegularProperty.
Sub-property: theGoal.
Represents goal attribute name.

1:1 [1:1], “attributeDef” played by AnyRegularProperty.
Sub-property: theGoal.
Represents goal attribute def.

0:1 [1:1], “attributeFormalSpec” played by AnyRegularProperty.
Sub-property: theGoal.
Represents goal attribute formalSpec.

KAOS Construct Analysis using
the UEML Approach Template

 50

0:1 [1:1], “attributePriority” played by AnyRegularProperty.
Sub-property: theGoal.
Represents goal attribute priority.

0:1 [1:1], “attributeCategoty” played by AnyRegularProperty.
Sub-property: theGoal.
Represents goal attribute category.

Behaviour
Existence

Modality (permission, recommendation etc)
Intention of a goal owner;
Obligation of an agent.

4. Open Issues
In this template it is not considered:

Obstacle constructs and relationship with a goal.
Dependency constructs between agents both through goal and/or through operation.
History (and its constructs) in a composed system.

KAOS Construct Analysis using
the UEML Approach Template

 51

KAOS : Goal refinement

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

Goals refinement is a relationship which is used to refine goals to subgoals and to domain properties. Parent goal could
have alternative refinements.

1. Preamble
Builds on
 OR-refinement
 AND-refinement

Built on by

Construct name
Goal refinement

Alternative construct names
Refines
G-refinement

Related, but distinct construct names

Related terms

Language
KAOS,
http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Goal model

2. Presentation
Builds on

Built on by

KAOS Construct Analysis using
the UEML Approach Template

 52

Icon, line style, text

User-definable attributes
[1:1]Complete: Boolean. Indicate whether the refinement is arguably sufficient (value "complete") or not arguably

sufficient (value "undetermined") to satisfy the parent goal.

[0:1] Tactics: set_of{IntroduceMileston, DecomposeAntecedentByCase, IntroduceAccuracyGoal} document the tactics
used for refining the parent goal. Values include IntroduceMileston, DecomposeAntecedentByCase,
IntroduceAccuracyGoal.

[0:1] AltName: String =“”. To name the corresponding alternative for further reference. In case a goal is refined into
multiple alternative G-refinements this meta-attribute is mandatory.

Relations to other constructs
• Belongs to 1..1 Goal model.
• 1:1 [1:1], Goal. G-refinement is used to refine a parent goal.
• 1:n [1:1], Goal. G-refinement refines parent goal to several subgoals.
• 1:n [1:1], Domain property. G-refinement refines parent goal to subgoals and domain properties.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Goal

Built on by
Domain property

Instantiation level
Instance and type levels

Classes of things
1:1, “goalOwner” played by StakeholderThing.

Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.

Complete G-refinement (AND refinement)

OR
G-refinement (OR refinement)

G-refinement (AND refinement)

KAOS Construct Analysis using
the UEML Approach Template

 53

StakeholderThing is subclass of the BWW-HumanThing (specified in goal template).
G-refinement is a mutual relationtion between goal owners.

1:1, “concernedObject” played by ComponentThing.
Describing object concerned by a goal. This object is characterised by a domain properties – either domain
invariant or domain hypothesis.

Properties (and relationships)
1:1, “theGoal” played by ComplexLawProperty.

Belongs to: 0:1 [1:1], goalOwner.
Law: restricts the the possible values of the object attributes.
Representing the goal which is held by a goal owner.

1:1 [0:n], superGoal played by ComplexLawProperty.
Sub-property: 0:1 [1:1] theGoal.
Supergoal is refined by the subgoals. Like a goal, it is complex (has attributes) and law property (has restrictions
over the concerned object –see goal template).

1:n [0:n], subGoal played by ComplexLawProperty.
Sub-property: 1:1 [1:1] theGoal.
Subgoals refine the super goal. Like goals they are complex (have attributes) and law properties (have restrictions
over the concerned object –see goal template).

0:n [0:n], domainHypothesis played by AnyProperty.
A domain hypothesis is a domain property about some domain object supposed to hold and used when arguing
about the sufficient completeness of G-refinement.
Also represented by: domain property.

0:n [0:n], domainInvarinat played by AnyProperty.
A domain invariant is a property known to hold in every state of some domain object. It is an indicative statement
of domain knowledge.
Also represented by: domain property.

1:1, “theG-Refinement” played by ComplexMutualProperty.
Type: AND/OR relationship.
Sub-property: 0:n [1:1] domainHypothesis.
Sub-property: 0:n [1:1] domainInvariant.
Sub-property: 1:1 [1:1] superGoal.
Sub-property: 0:n [1:1] subGoal
Describing goal refinement.

1:1 [1:1], “attributeComplete” played by AnyRegularProperty.
Sub-property: theG-Refinement.
Represents G-refinement attribute complete.

0:1 [1:1], “attributeAltName” played by AnyRegularProperty.
Sub-property: theG-Refinement.
Represents G-refinement attribute altName.

0:1 [1:1], “attributeTactics” played by AnyRegularProperty.
Sub-property: theG-Refinement.
Represents G-refinement attribute tactics.

Behaviour
 Existence

Modality (permission, recommendation etc)
Regular assertion

KAOS Construct Analysis using
the UEML Approach Template

 54

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 55

KAOS : Input

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

An object is among the inputs of an operation if it is among the sorts making up the domain of the relation defined by
the operation.

1. Preamble
Builds on

Built on by

Construct name
Inputs

Alternative construct names

Related, but distinct construct names

Related terms
Outputs : An object is among the outputs of an operation if it is among the sorts making up the co-domain of
the relation defined by the operation.

Language
 KAOS,

http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
 Operation model

2. Presentation
Builds on

Built on by

Icon, line style, text

Object
name

Agent name Inputs

KAOS Construct Analysis using
the UEML Approach Template

 56

User-definable attributes
[0:1] WhichAtt : String = “”. Indicate which attributes of the object are specifically taken as input of the operation.

Relations to other constructs
• Belongs to 1..1 operation model.
• 0:n [1:1], Object. Object is input to an operation.
• 0:n [1:1], Operation. Operation has input an object.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
Type level

Classes of things
1:1 “inObject” played by ComponentThing.

Represents object, which is input to operation.

0:n, “causingEvent” played by ChangingThing.

Properties (and relationships)
1:1, “theInput” played by BindingMutualProperty.

Belongs to: 0:n [1:1], inObject.
Describing input. Input is a binding mutual property between the event which causes the operation and the object
which is input to this operation.

1:n, “explicitObjAttribute” played by AnyProperty.
Belongs to: inObject.
Sub-property of: theInput.
Defines explicitly which attribute of the object is an input.

1:n, “implicitObjAttribute” played by AnyProperty.
Belongs to: inObject.
Sub-property of: theInput.
Does not define explicitly which attribute of the object is an input.

0:1, “attributeWhichAtt” played by AnyRegularProperty.
Sub-property: theInput.
Representing the input attribute whichAtt.

0:n [1:1], “forOperation” played by TransformationLaw.
Belongs to: causingEvent.
Sub-property: theInput.
Transformation law: operation gets input.
Describing the operation which has input.
Also represented by operation.

KAOS Construct Analysis using
the UEML Approach Template

 57

Behaviour
 Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 58

KAOS Construct Analysis using
the UEML Approach Template

 59

KAOS : Maintain goal

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

Maintain goals are goals requiring that some property always holds
Maintain goals state that some target condition on system states should always hold under some current condition.

1. Preamble
Builds on

Goal

Built on by

Construct name
Maintain goal

Alternative construct names
goal, requiring that some property always holds

Related, but distinct construct names
goal with a pattern maintain

Related terms
Goal : a prescriptive assertion capturing some objective to be met by cooperation of agents from the agent

model.
Cease goal: a goal requiring that some property eventually stops to hold.
Achieve goal: a goal requiring that some property eventually hold.
Avoid goal: a goal requiring that some property never holds.

Softgoal: goal that do not have a clear-cut criterion for their satisfaction.
Terminal goals: a goal which has no G-refinement.
Requirement: a goal assigned to an agent in the software to be.
Expectation (assumption): a goal assigned to an agent in the environment.

Comment: Can a goal with a pattern be softgoal, terminal goal (requirement and expectation)?

Language
KAOS, http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Goal model

KAOS Construct Analysis using
the UEML Approach Template

 60

2. Presentation
Builds on

Built on by

Icon, line style, text

User-definable attributes

Relations to other constructs

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
 Both type and instance level

Classes of things
1:1, “goalOwner” played by StakeholderThing.

Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing.

1:1, “concernedObject” played by AllThing.
Describing object concerned by a goal.

Comment: Maintain goal has the same classes as a goal. It belongs to a goal owner and has the sub-properties. These
classes are described here as they are used in property definition.

Properties (and relationships)

1:1, “theMaintainGoal” played by ComplexStateLaw.

Belongs to: 0:1 [1:1], goalOwner.
State law: indicates states that cannot be in concerned object.
Representing the maintain goal which is held by a goal owner and requires that some properties of the concerned
object always holds.

Comment: For more avoid goal properties (such as concExplicitObjAttribute, concImplicitObjAttribute, attributeName,

attributeDef, attributeFormalSpec, attributePriority, and attributeCategoty), see goal.

Maintain goal

Maintain

[Goal name]

KAOS Construct Analysis using
the UEML Approach Template

 61

Behaviour
 Existence

Modality (permission, recommendation etc)
Intention of a goal owner;

4. Open Issues

Change List

KAOS Construct Analysis using
the UEML Approach Template

 62

KAOS Construct Analysis using
the UEML Approach Template

 63

KAOS : Monitor

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

Agent monitors (“reads”) the value of the attribute.

1. Preamble
Builds on

Built on by

Construct name
Monitors

Alternative construct names
Reads

Related, but distinct construct names

Related terms
Controls : agent controls (“writes”) the value of the object attribute.

Language
 KAOS,

http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Agent model

2. Presentation
Builds on

Built on by

Icon, line style, text

User-definable attributes
• WhichAtt : String = “”.indicate which attributes of the object are specifically monitored.

Object
name

Agent name Monitors

KAOS Construct Analysis using
the UEML Approach Template

 64

Relations to other constructs
• 0:n [1:1], Object. Object is monitored by an agent.
• 0:n [1:1], Agent. Agent monitors an object.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
Instance level

Classes of things
1:1 “monitoredObject” played by ComponentThing.

Represents object, monitored by agent.

1:1 “monitoringAgent” played by ActiveComponentThing.
Represents the agent.

Properties (and relationships)
1:1, “theMonitors” played by BindingMutualProperty.

Belongs to: 1:1 [0:n], monitoringAgent.
Describing monitors relationship.

1:n, “explicitObjAttribute” played by AnyProperty.
Belongs to: monitoredObject.
Sub-property of: theMonitors.
Defines explicitly which attribute of the object is monitored.

1:n, “implicitObjAttribute” played by AnyProperty.
Belongs to: monitoredObject.
Sub-property of: theMonitors.
Does not define explicitly which attribute of the object is monitored.

Behaviour
 Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 65

KAOS : Object

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

An object is a thing of interest in the system being modeled whose instances can be distinctly identified and may evolve
from state to state.
An object instance is a thing that can be distinctly identified. A domain-level object describes a set of such instances
that share some common characteristics.

1. Preamble
Builds on

Built on by

Construct name
Object

Alternative construct names
a thing of interest
a thing that can be distinctly identified

Related, but distinct construct names

Related terms
Agent
Entity
Event
Relationship

Language
KAOS,
http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
 Object model

2. Presentation
Builds on

KAOS Construct Analysis using
the UEML Approach Template

 66

Built on by

Icon, line style, text

User-definable attributes
[1:1] Name : String =””.A string allowing for unambiguous reference to corresponding instances at the application

level. The name of the object is used to identify the object.

[1:1] Def : Text = “”. Tree text used for precise, unambiguous definition of the corresponding instances at the
application level. The definition of an object is a natural language statement that should provide a precise
interpretation for the set member(Obj), so that one can tell whether or not a particular object instance is currently an
instance of the domain-level object.

[0:1] Alive : Boolean = ”True/False”.Value in some state at the instance level indicates whether or not the corresponding
object instance exists in that state, that is, has appeared in the system without disappearing yet.

Relations to other constructs
• Belongs 1:1 to object model.
• 0:n [0:n], concerns : goal. Goals concern objects - this means that their formulation in Def refers to these objects

and their attributes.
• 1:n [0:n], input : operation. Operations are related to objects through input links.
• 1:n [0:n], output : operation. Operations are related to objects through output links.
• 0:n [0:n], monitors : agent. An agent monitors an object if the states of the object are directly observable by it.
• 0:n [0:n], controls : agent. An agent controls an object if the states of the object are directly controllable by it.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
Both type and instance level

Classes of things
1:1, “theObject” played by ComponentThing.

Properties (and relationships)
1:1 [1:1], “attributeName” played by AnyRegularProperty.

Sub-property: theGoal.
Represents goal attribute name.

1:1 [1:1], “attributeDef” played by AnyRegularProperty.
Sub-property: theGoal.
Represents goal attribute def.

Behaviour
Existence

Modality (permission, recommendation etc)
Regular assertion

KAOS Construct Analysis using
the UEML Approach Template

 67

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 68

KAOS Construct Analysis using
the UEML Approach Template

 69

KAOS : Operation

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

An operation is an input-output relation over objects; operation applications define state transitions. Operations are
characterized by pre-, post-, and trigger conditions. A distinction is made between domain pre-/post- conditions, which
capture the elementary state transitions defined by operation applications in the domain, and required pre/trigger/
postconditions, which capture additional strengthening to ensure that the goals are met.

1. Preamble
Builds on

Built on by

Construct name
Operation

Alternative construct names
An input-output relation

Related, but distinct construct names

Related terms

Language
KAOS,
http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Operation model

2. Presentation
Builds on

Built on by

Icon, line style, text

Operation
name

Operation

KAOS Construct Analysis using
the UEML Approach Template

 70

User-definable attributes
[1:1] Name: String = “”. A string allowing for unambiguous reference to corresponding instances at the application

level.
[1:1] Def: FreeText = “”. Free text used for precise, unambiguous definition of the corresponding instances at the

application level.
[0:1] modifier: Boolean. Indicate whether the operation is an object Modifier or Observer.

Relations to other constructs
Belongs 1:1 to goal model.
1:1 [0:n] operationalise : goal. Goals assigned to agents are operationalised through operations. The operationalisation

of a goal through some operation entails permissions and obligations on the operation’s applications; the latter are
captured by the ReqPre, ReqPost and ReqTrig metaattributes of the Operationalisation relationship that strengthen
the operation’s domain pre/postconditions.

0:n [1:n] input : object. Operations are related to objects through input links.
0:n [1:n] output : object. Operations are related to objects through output links.
1:n [1:1] occurs : event. The applications of an operation may be caused by event(s). This means that the operation’s

ReqTrig includes a predicate occurs on instances of that event.
1:n [1:n] performs : agent. A meta-model constraint requires any agent Responsible for some goal to Perform all the

operations that Operationalize that goal in accordance with the permissions and obligations specified in the
operation’s ReqPre, ReqTrig and ReqPost conditions. The Performance meta-relationship is thus a derived one.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
Type level

Classes of things
1:n, “causingEvent” played by ChangingThing.

Operation is caused by event(s).

1:1, “op_object” played by ComponentThing.
Operation gets input from and makes output to the object.

Properties (and relationships)
0:n [0:n] “inputForOperation” played by BindingMutualProperty.

Belongs to: op_object.
Describing input for operation.
Also represented by: Inputs.

0:n [0:n] “outputForOperation” played by BindingMutualProperty.
Belongs to: op_object.
Describing output for operation.
Also represented by: Outputs.

1:1, “theOperation” played by TransformationLaw.

Belongs to: causingEvent.
Sub-property of: inputForOperation.

KAOS Construct Analysis using
the UEML Approach Template

 71

Sub-property of: outputFromOperation.
Transformation law: operation is performed by an agent responsible for the goal fulfilment. Whenever the
required conditions hold, performing the operations satisfies the goal.
Representing the operation.

1:1, “attributeName” played by AnyRegularProperty.
Sub-property of: theOperation.
Represents operation attribute name.

1:1, “attributeDef” played by AnyRegularProperty.
Sub-property of: theOperation.
Represents operation attribute altName.

0:1, “modifier” played by AnyRegularProperty.
Sub-property of: theOperation.
Represents operation attribute altName.

1:1 [1:1] “domPre” played by StateLaw.
Sub-property of: 1:1 [1:1] operation.
Characterising the states before any application of the operation;

1:1 [1:1] “domPost” played by StateLaw.
Sub-property of: 1:1 [1:1] operation.
Defining a relation between states before and after applications of the operation;

Behaviour
Process

REPRESENTED STATE ENTRIES

“initState” played by StateOfAThing,

Defining property: inputForOperation.
State constraint: implicit and explicit attribute of an object.

“resultState” played by StateOfAThing,
Defining property: outputForOperation
state constraint: implicit and explicit attributes of an object.

REPRESENTED EVENT ENTRIES

“eventOccurs” played by ExternalEvent,

From state: initState
To state: initState
Trigger: reqTrig sub-property of operationalisation.
Condition: reqPre (sub-property of operationalisation) and domPre (sub-property of operation) holds.
Action: operation is initiated,
 effected by Event.

“getInput” played by InternalEvent,

From state: initState
To state: initState
Trigger: reqTrig sub-property of operationalisation.
Condition: reqPre (sub-property of operationalisation) and domPre (sub-property of operation) holds.
reqPost (sub-property of operationalisation) and domPost (sub-property of operation) introduced.
Action: object implicit and explicit attributes are taken as the input for the operation.

“setOutput” played by InternalEvent,

From state: initState
To state: resultState
Trigger: reqTrig sub-property of operationalisation.

KAOS Construct Analysis using
the UEML Approach Template

 72

Condition: reqPost (sub-property of operationalisation) and domPost (sub-property of operation) holds.
Action: object explicit and implicit attributes are taken as the input for the operation.

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues
TBF – Dependency constraint between agents as through goal or through operation.
TBF – A goal defines a set of admissible histories in the composed system. Intuitively, a history is a temporal sequence
of states of the system. Specify Scenario, Snapshot, Interaction, Source, Target, and State transition constraints. This is
related to Agent, Event, and Operation constraints.

KAOS Construct Analysis using
the UEML Approach Template

 73

KAOS : Operationalisation

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

The Operationalisation meta-relationship is an AND/OR relationship between goals and required pre, trigger, and post
conditions of operations. Intuitively, a set of required pre, trigger, and post conditions operationalises a goal if satisfying
the required conditions on operations guarantees that the goal is satisfied.

1. Preamble
Builds on

Built on by

Construct name
Operationalisation

Alternative construct names

Related, but distinct construct names

Related terms

Language
 KAOS,

http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Operation model

2. Presentation
Builds on

Built on by

KAOS Construct Analysis using
the UEML Approach Template

 74

Icon, line style, text

User-definable attributes
[1:1]Complete: Boolean. Indicate whether the operationalisation is arguably sufficient (value "complete") or not

arguably sufficient (value "undetermined").

 [0:1] AltName: String =“”. To name the corresponding alternative for further reference. In case a goal is
operationalised into multiple alternative operationalisations this meta-attribute is mandatory.

Relations to other constructs
Belongs to 1..1 operation model.

1:1 [1:1], op_goal. Goal is operationalised through the operation.

0:n [1:1], op_operation. Operation operationalises the goal.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Goal

OR
Operationalise (OR operationalise)

Operationalise (AND operationalise)

Goal name

Operation1
name

Operation2
name

Goal name

Operation1
name

Operation2
name

Operation3
name

Operation4
name

Goal name

Operation1
name

Operation2
name

Complete operationalisation (AND
operationalise)

KAOS Construct Analysis using
the UEML Approach Template

 75

Operation

Built on by

Instantiation level
Instance and type level

Classes of things
1:1, “goalOwner” played by StakeholderThing.

Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing (specified in goal template).

1:1, “occurringEvent” played by ChangingThing.
Operationalisation’s reqTrig includes a predicate Occurs on instances of that event.

1:1, “op_object” played by ComponentThing.
Operation gets inputs as object attributes and produces outputs as object attributes.

Properties (and relationships)
1:1, “theGoal” played by ComplexLawProperty.

Belongs to: 0:1 [1:1], goalOwner.
Law: restricts the the possible values of the object attributes.
Representing the goal which is held by a goal owner.

1:1, “terminalGoal” played by ComplexLawProperty.
Sub-property: 1:1 [1:1], theAssignedGoal.
State law: ∀g ∈ Goal, ∀a ∈ Assignment, a.assignedGoal = g
 ⇒ ¬∃ gr ∈ G-refinement: gr.superGoal = g
Only terminal goals can by assigned.

1:1, “operationalisedOperation” played by TransformationLaw.
Sub-property: inputForOperation.
Sub-property: outputForOperation.
Belongs to: 0:n[0:n] occurringEvent.
Transformation law: operation changes the states of the object.
Describing the operationalised operation.
Also represented by operation.

0:n [0:n] “inputForOperation” played by BindingMutualProperty.
Belongs to: op_object.
Describing input for operation.
Also represented by: Inputs.

0:n [0:n] “outputForOperation” played by BindingMutualProperty.
Belongs to: op_object.
Describing output for operation.
Also represented by: Outputs.

1:1, “theOperationalisation” played by ComplexMutualProperty.
Type: AND/OR relationship.
Sub-property: 1:1[0:n] terminalGoal.
Describing operationalisation. Operationalisation is a complex mutual property between goal owner, object and
event.

1:1 [1:1], “attributeComplete” played by AnyRegularProperty.
Sub-property: theOperationalisation.
Represents operationalisation attribute complete.

KAOS Construct Analysis using
the UEML Approach Template

 76

0:1 [1:1], “attributeAltName” played by AnyRegularProperty.
Sub-property: theOperationalisation.
Represents operationalisation attribute altName.

1:n [1:1], “op_operation” played by ComplexProperty.
Sub-property: 1:1 [1:n] theOperationalisation.
Sub-property: 1:1 [1:n] operationalisedOperation.

1:1 [1:1] “reqPre” played by StateLaw.
Sub-property: 1:1 [1:1] op_operation.
Necessary condition that needs to be true when the operation is applied for the corresponding operationalised goal
to be satisfied.

1:1 [1:1] “reqPost” played by StateLaw.
Sub-property: 1:1 [1:1] op_operation.
Condition that needs to be established by the operation in its final state for the corresponding operationalised goal
to be satisfied.

1:1 [1:1] “reqTrig” played by TransformationLaw.
Sub-property: 1:1 [1:1] op_operation.
Sub-property: 0:n [0:n] occuringEvent.
Sufficient condition that requires the operation to be immediately applied for the corresponding operationalised
goal to be satisfied.

Behaviour
Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 77

KAOS Construct Analysis using
the UEML Approach Template

 78

KAOS Construct Analysis using
the UEML Approach Template

 79

KAOS : Output

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

An object is among the outputs of an operation if it is among the sorts making up the co-domain of the relation defined
by the operation.

1. Preamble
Builds on

Built on by

Construct name
Outputs

Alternative construct names

Related, but distinct construct names

Related terms
Inputs : An object is among the inputs of an operation if it is among the sorts making up the domain of the
relation defined by the operation.

Language
 KAOS,

http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
 Operation model

2. Presentation
Builds on

Built on by

Icon, line style, text

Object
name

Agent name Outputs

KAOS Construct Analysis using
the UEML Approach Template

 80

User-definable attributes
[0:1] WhichAtt : String = “”. Indicate which attributes of the object are specifically monitored.

Relations to other constructs
• Belongs to 1..1 operation model.
• 0:n [1:1], Object. Object has output from an operation.
• 0:n [1:1], Operation. Operation outputs object attributes (changes its value).

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
Type level

Classes of things
1:1 “outObject” played by ComponentThing.

Represents object, which is output from operation.

0:n, “causingEvent” played by ChangingThing.

Properties (and relationships)
1:1, “theOutput” played by BindingMutualProperty.

Belongs to: 0:n [1:1] object.
Describing output. Output is a binding mutual property between the object which receives output from operation
and the event which causes this operation.

1:n, “explicitObjAttribute” played by AnyProperty.
Belongs to: outObject.
Sub-property of: theOutput.
Defines explicitly which attribute of the object is an output.

1:n, “implicitObjAttribute” played by AnyProperty.
Belongs to: outObject.
Sub-property of: theOutput.
Does not define explicitly which attribute of the object is an output.

0:1, “attributeWhichAtt” played by AnyRegularProperty.
Sub-property: theOutput.
Representing the output attribute whichAtt.

0:n [1:1], “fromOperation” played by TransformationLaw.
Belongs to: causingEvent.
Sub-property: theOutput.
Transformation law: operation produces output.
Describing the operation which has output.
Also represented by: operation.

Behaviour
 Existence

KAOS Construct Analysis using
the UEML Approach Template

 81

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 82

KAOS Construct Analysis using
the UEML Approach Template

 83

KAOS : Performance

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

An operation is related to the agent that can initiate it through a performance link. Performance is an OR meta-
relationship linking agents to operations.

1. Preamble
Builds on

Built on by

Construct name
Performance

Alternative construct names
Performs

Related, but distinct construct names

Related terms

Language
 KAOS,

http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Agent model

2. Presentation
Builds on

Built on by

Icon, line style, text

KAOS Construct Analysis using
the UEML Approach Template

 84

User-definable attributes
[0:1] Agent : Agent. Declare the agent.
[0:1] AltName : String = “”. Name of alternative OR-assignments.

Relations to other constructs
• Belongs to 1..1 agent model.
• 1:1 [1:1], Agent. Agent performs operation.
• 1:n [1:1], Operation. Operation is performed by agent.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Agent

Built on by

Instantiation level
Type level

Classes of things
1:1, “goalOwner” played by StakeholderThing.

Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing.

1:1 “responsibleAgent” played by ActiveComponentThing.
Represents the responsible agent.

Properties (and relationships)
1:1, “theGoal” played by ComplexLawProperty.

Belongs to: 0:1 [1:1], goalOwner.
Law: restricts the the possible values of the object attributes.
Representing the goal which is held by a goal owner.

1:1, “terminalGoal” played by StateLaw.
Belongs to: 0:1 [1:1], goalOwner.
Sub-property: 1:1 [1:1], theGoal.
State law: ∀g ∈ Goal, ∀a ∈ Assignment, a.assignedGoal = g
 ⇒ ¬∃ gr ∈ G-refinement: gr.superGoal = g
Only terminal goals can by assigned.

1:1, “thePerformance” played by ComplexMutualProperty.
Type: OR-relationship.

Performance

Agent name

Operation
name

KAOS Construct Analysis using
the UEML Approach Template

 85

Belongs to: 1:n [1:1] responsibleAgent.
Representing the performance. Performance is a complex mutual property of the responsible agent and the goal
owner. Agent performs the operation in order to satisfy the goal.

0:1, “attributeAgent” played by AnyRegularProperty.
Sub-property: thePerformance.
Representing the performance attribute agent.

0:1, “attributeAltName” played by AnyRegularProperty.
Sub-property: thePerformancce.
Represents performance attribute altName.

1:1 [1:1], “performedOperation” played by TransformationLaw.
Sub-property: thePerformance.
Transformation law: agent performs operation to satisfy the goal.
Describing the operation which is performed by agent.
Also represented by: operation.

1:n [1:1], “operationalisation” played by ComplexMutualProperty.
Sub-property: performedOperation.
Sub-property: terminalGoal.
Describing the operationalisation relationship.
Also represented by: operationalisation.

Behaviour
Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 86

KAOS Construct Analysis using
the UEML Approach Template

 87

KAOS : Requirement

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

A requirement is a goal assigned to an agent in the software-to-be.

1. Preamble
Builds on

Goal

Built on by

Construct name
Requirement

Alternative construct names

Related, but distinct construct names
Terminal goal: goal which has no G-requirement.

Related terms
Expectation (assumption): a goal assigned to an agent in the environment.
Softgoal: a goal that cannot be said to be satisfied in a clearcut sense.

Comment: can a requirement be a softgoal?
Maintain goal: a goal requiring that some property always holds.
Avoid goal: a goal requiring that some property never holds.
Achieve goal: a goal requiring that some property eventually hold.
Cease goal: a goal requiring that some property eventually stops to hold.

Language
KAOS,
http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
 Goal model

KAOS Construct Analysis using
the UEML Approach Template

 88

2. Presentation
Builds on

Built on by

Icon, line style, text

User-definable attributes
Requirement inherits all the attributes of the goal.

Relations to other constructs
• Belongs 1:1 to goal model.

• 1:n [1:n], responsible : software agent. Requirement is assigned through responsibility relationship to a software
agent.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Comment: Requirement is a goal and has most of the goal classes and properties. But requirement is also a terminal
goal, so it has no G-refinement.

Built on by

Instantiation level
Instance level

Classes of things
1:1, “softwareAgent” played by ActiveComponentThing.

Describing the agent a requirement is assigned.

Properties (and relationships)
1:1, “theRequirement” played by ComplexStateLaw.

Belongs to: 0:1 [0:n] softwareAgent.
Belongs to: 0:1 [1:1] goalOwner.
State law: Is restricted by the assignement relationship. A requirement himself restricts state of the concerned
object.
Representing the requirement. Requirement as a goal, has a goal owner.

1:1, “isTerminalGoal” played by StateLaw.
Sub-property: 1:1 [1:1], theRequirement.
State law: ∀g ∈ Goal, ∀a ∈ Assignment, a.assignedGoal = g

 Requirement

KAOS Construct Analysis using
the UEML Approach Template

 89

 ⇒ ¬∃ gr ∈ G-refinement: gr.superGoal = g
Requirement is a terminal goal which means that an requirement can not have G-refinement.

Behaviour
Existence

Modality (permission, recommendation etc)
Intention of a goal owner;
Obligation of a software agent.

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 90

KAOS Construct Analysis using
the UEML Approach Template

 91

KAOS : Softgoal

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

A softgoal is a goal that cannot be said to be satisfied in a clearcut sense. It prescribes classes of preferred behaviour.

1. Preamble
Builds on

Goal

Built on by

Construct name
Softgoal

Alternative construct names
Goal
Preferred behaviour

Related, but distinct construct names

Related terms
Requirement : a goal assigned to an agent in the software to be.
Assumption : a goal assigned to an agent in the environment.

Language
KAOS,
http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Goal model

2. Presentation
Builds on

Built on by

KAOS Construct Analysis using
the UEML Approach Template

 92

Icon, line style, text

User-definable attributes
[0:1] Type : set_of [Minimize, Maximize, Reduce, Increase, Improve]. Describes type of the softgoal.

Relations to other constructs

Diagram layout conventions

Other usage conventions

3. Semantics
Builds on
Comment: Softgoals can be And/Or refined like any other KAOS goals, conflicts between softgoals goals can also be

captured. An important research issue concerns the precise definition of optimization goals, reasoning techniques
about softgoals, and the role of such goals in selecting among alternative goal refinements.

Built on by

Instantiation level
Instance level

Classes of things

Properties (and relationships)
1:1, “theSoftGoal” played by ComplexLawProperty.

Representing the softgoal.

1:1, “notSatisfiedClearly” played by AnyProperty.
The softgoal has property (rather feature) not to be satisfied in a clearcut sense.

0:1 [1:1], “attributeType” played by AnyRegularProperty.
Sub-property: theSoftGoal.
Represents goal attribute type.

Behaviour
Existence

Modality (permission, recommendation etc)
Intention of a goal owner;

4. Open Issues

Comment: Further investigation about all softgoal (as goal) features is needed!

Softgoal

KAOS Construct Analysis using
the UEML Approach Template

 93

KAOS : Software agent

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version:
Date: 2005.11.30
Status: 2nd iteration
Authors: Raimundas Matulevičius
Distribution list: DEM
Document history:

Software agent is an agent in the system-to-be.

1. Preamble
Builds on
 Agent

Built on by

Construct name
Software agent

Alternative construct names
Agent in the system-to-be

Related, but distinct construct names

Related terms
• Agents : active objects capable of performing operations.
• Environment agent : e.g., pre-existing software component, sensor, actuator, human, organisational unit, etc.

Language
KAOS,
http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Agent model

2. Presentation
Builds on

Built on by

Icon, line style, text

Software agent AgentName

KAOS Construct Analysis using
the UEML Approach Template

 94

User-definable attributes

Relations to other constructs

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Instantiation level
Type level

Classes of things
1:1, “theSoftwareAgent” played by ComponentSoftwareThing.

Representing the software agent. Software agents are agents and inherits all agent attributes and properties.

Properties (and relationships)

Behaviour
Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

 95

KAOS Construct Analysis using
the UEML Approach Template

 96

KAOS Construct Analysis using
the UEML Approach Template

 97

