
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Non-destructive Integration of Form-based Views

Hidders, Jan; Paredeans, Jan; Thiran, Philippe; Houben, Geert-Jan; van Hee, Kees

Publication date:
2005

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Hidders, J, Paredeans, J, Thiran, P, Houben, G-J & van Hee, K 2005, Non-destructive Integration of Form-based
Views: Extended version with proofs..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198254206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/nondestructive-integration-of-formbased-views(57a25988-5165-40e2-a679-ed685dbe0cae).html

Non-destructive Integration of Form-based
Views

Jan Hidders1, Jan Paredaens1, Philippe Thiran2, Geert-Jan Houben2, and
Kees van Hee2

1 University of Antwerp, Belgium
2 Eindhoven University of Technology, The Netherlands

Abstract. Form documents or screen forms bring essential information
on the data manipulated by an organization. They can be considered
as different but often overlapping views of its whole data. This paper
presents a non-destructive approach of their integration. The main idea
of our approach is to keep the original views intact and to specify con-
straints between overlapping structures. For reasoning over constraints,
we provide a set of inference rules that allows not only to infer implied
constraints but also to detect conflicts. These reasoning rules are proved
to be sound and complete. Although the form-based views are hierarchi-
cal structures, our constraints and reasoning rules can also be used in
non-hierarchical data models.

1 Introduction

In the design process for data-intensive applications the design of the global
data model is a crucial step. Often this step involves the integration of different
data models that each describe the information need of different groups of end
users. In the case of workflow and case management systems these data models
or views are usually defined as a form, hence form-based views and the tasks that
are managed by the system are typically manipulations of these forms. For large
and complex workflows the task of modeling the forms is often split according
to the different case types. The consequence is often that we obtain a set of
different data models that contain synonyms (different class names that refer to
the same class) and homonyms (the same class name is used in different models
with a different meaning).

A classical solution for resolving this problem is to integrate the different
views into a single global schema [1]. However, in this paper we will integrate
the different views by taking a disjoint union of them and adding constraints that
express semantical relationships between the classes and relations in the different
data models. Since the original views remain part of the global data model we
call this non-destructive integration. The fact that the original views remain part
of the global data model is important in the case of workflow systems because the
the views are part of the description of the execution of the workflow. However,
even for other types of data-intensive information systems such a design has

2

benefits. Since the original class and relation names from the views are kept in
the global data model this will make communication easier with the end-users for
which the views described an information need. Moreover, since the relationships
between the different views are made explicit it will be easy to see how changes
to the global data model affect the different views and vice versa.

The main contribution of this paper is the presentation of a small but pow-
erful set of semantical relationships between classes and relations in different
views, and a sound and complete set of inference rules that allows us to derive
implied relationships and in particular whether there is a conflict in the resulting
global schema.

The paper is organized as follows. Section 2 develops a small example that
allows us to informally present our non-destructive approach of form-based view
integration. In Section 3, we formally specify the problem. The schema and their
instances are defined as well as the different constraints we consider. Sections
4, 5 and 6 present different sets of inference rules for deriving constraints and
detecting conflicts. For each set, we prove their soundness and their completeness.
In Section 7, we discuss related works. We give our concluding remarks in Section
8.

2 Informal problem definition

We assume that the process of data integration starts with so-called form-based
views which are essentially hierarchical data structures that describe complex
values which can be roughly thought of as tree-shaped graphs. Three examples of
such views are given in Figure 1. Each view has the form of a tree which defines all
the data that is shown in the view. The nodes of these graphs can be interpreted
as classes that contain sets of objects, and the edges can be interpreted as binary
relationships between these classes. The root node indicates for which class the
view is defined as well as the name of the view. The nodes directly below a node
define the attributes of this class. For example, in the Patient view we see that
for a patient we have the patient’s names, diseases, rooms and treating doctors.
At the next level in the view we see that for a disease of a patient we have
its types and its names. For the purpose of this paper we will assume that all
attributes are set-valued, i.e., they can contain zero, one or more objects.

In the three views in the example we see that there is an overlap in the sense
that some objects such as those in the Doctor class in the Patient view and
those in the Doctor class in the Doctor view are in fact the same object. In a
similar fashion it holds that some of the pairs of the Department-Doctor-Manager
relationship in the Doctor view will also be pairs in the Department-Manager
relationship. This type of redundancy can be solved by integrating the views
into a single new schema, but we propose to leave the original views intact and
explicitly specifies such constraint between the different views as illustrated in
Figure 2.

There are 8 types of constraints that we will consider:

3

Patient

Disease Doctor

Doctor

Type Name

Patient

Name

Name Disease

Room

Floor Number

Department
Department

Doctor-Manager

 Location

Name Department

Secretary ManagerName Doctor

Floor Number

Location Phone

Fig. 1. Three form-based views

ISA The ISA constraint between classes is indicated by an edge that is labeled
with ⇒. An example is the edge between the Department class in the Doctor
view and the Department class in the Department view. The ISA constraint
indicates that the objects in one class must also be objects of the other class.

Relational ISA The relational ISA constraint between relationships is indi-
cated by an edge that is labeled with ⇒↓. An example is the edge between
the Department-Doctor-Manager relationship in the Doctor view and the
Department-Manager relationship in the Department view. This constraint
indicates that all pairs of the first relationship are also pairs of the second
relationship.

Inverse Relational ISA The inverse relational ISA constraint between rela-
tionships is indicated by an edge that is labeled with ⇒↑. An example is
the edge between the Patient-Doctor relationship in the Patient view and
the Doctor-Patient relationship in the Doctor view. This constraint indicates
that all the inverse pairs of the first relationship are also pairs of the second
relationship.

Disjointness The disjointness constraint between classes is indicated by an
edge that is labeled with �. An example is the edge between the Location
class in the Patient view and the Location class in the Department view.
This constraint indicates that the two classes cannot have common objects.

Relational Disjointness The relational disjointness constraint between rela-
tionships is indicated by an edge that is labeled with �↓. This constraint
indicates that the two relationships cannot have common pairs.

4

Patient

Disease Doctor

Doctor

Type Name

Patient

Name

Name Disease

Room

Floor Number

Department Department

Doctor-Manager

Location

Name Department

Secretary ManagerName Doctor

Floor Number

Location Phone
⇒

⇒↓

⇒↑

⇒

/~

Fig. 2. Three integrated form-based views

Inverse Relational Disjointness The inverse relational disjointness constraint
between relationships is indicated by an edge that is labeled with �↑. This
constraint indicates that there cannot be a pair in one relationship such that
the inverse pair is in the other relationship.

Totalness The totalness constraint of a relationship r is indicated by a solid
dot at the beginning of the edge of r. It indicates that the relationship r is
total, i.e.,. that for every object o in the source class of r there is a pair of r
whose first component is o. For example, every patient has a name, a room
and a doctor, but probably has no disease.

Surjectivity constraint The surjectivity constraint of a relationship r is in-
dicated by a solid dot at the end of the edge of r. It indicates that the
relationship r is surjective, i.e., for every object o in the target class of r
there is a pair of r whose second component is o.

The schema of Figure 2 has a straightforward interpretation that is similar
to that of FDM [2], binary ORM [3] and the data models that are used in
descriptive logics. Note that in all these models the instances of a schema are
essentially graphs that somehow match the schema. Since the original views are
still present in the schema it is also clear that for each view we can define a
projection on the instances of this schema. Although this projection will usually
define a graph it can always be transformed into a forest by splitting nodes with
two incoming edges. This means that the general approach is here that of the
local as view (LAV) approach as defined in [4].

When the constraints are added to the views it is possible that conflicts
appear. For example, if there is an ISA constraint between the classes A and B

5

and at the same time a disjointness constraint between them then the class A
nor B can never be populated.

In the remainder of this paper, we discuss the problem of reasoning over
schemas with such constraints in order to infer implied such constraints and to
detect conflicts.

3 Formal problem definition

For formally specifying the form-based views, we use a graph representation
instead of a tree representation as presented in the previous section. We use this
simplified data representation since our aim is to provide some constraints that
can be used in a context broader than the forms. As such, we are now considering
these two types of data models:

– Frame: graph structure related to an original form-based view,
– Schema: graph structure related to the union of disjoint form-based views,

with constraints among them.

In the following paragraphs, we present these types by giving their schema
definition and their instance definition.

A frame is a multigraph where the nodes represent classes and the edges
relationships. More formally:

Definition 1 (Frame). A frame is a tuple F = (C,R, s, t) with C a set of
classes, R a set of relationships, s : R → C a function that indicates the source
class of a relationship, and t : R → C a function that indicates the target class
of a relationship.

Definition 2 (Instance). An instance of a frame F = (C,R, s, t) is a tuple
I = (O, [[·]]) with O a set of objects, and [[·]] the interpretation function that maps
classes c ∈ C to a subset of O, denoted as [[c]], and relationships r ∈ R to subsets
of O ×O, denoted as [[r]], such that, for all relationships r ∈ R, it holds that:

[[r]] ⊆ [[s(r)]]× [[t(r)]] (1)

A schema is a frame over which some constraints are specified.

Definition 3 (Constraint). Given a frame F = (C,R, s, t) a constraint is one
of the following:

subclass c1 ⇒ c2, r1 ⇒↓ r2, r1 ⇒↑ r2

cardinality r·, ·r
disjointness c1 � c2, r1 �↓ r2, r1 �↑ r2

with r, r1, r2 ∈ R and c1, c2 ∈ C. We let I ` k denote that constraint k holds for
instance I = (O, [[·]]). Then we have:

6

I ` c1 ⇒ c2 iff [[c1]] ⊆ [[c2]] (2)

I ` r1 ⇒↓ r2 iff [[r1]] ⊆ [[r2]] (3)

I ` r1 ⇒↑ r2 iff [[r1]]−1 ⊆ [[r2]] (4)
I ` ·r iff [[s(r)]] = {o1|(o1, o2) ∈ [[r]]} (5)
I ` r· iff [[t(r)]] = {o2|(o1, o2) ∈ [[r]]} (6)
I ` c1 � c2 iff [[c1]] ∩ [[c2]] = ∅ (7)

I ` r1 �↓ r2 iff [[r1]] ∩ [[r2]] = ∅ (8)

I ` r1 �↑ r2 iff [[r1]]−1 ∩ [[r2]] = ∅ (9)

Definition 4 (Schema). A schema is a tuple S = (F,K) with F a frame and
K a finite set of constraints over F .

Definition 5 (Instance). An instance of schema S is an instance I of frame
F such that I ` k for all constraints k ∈ K.

4 Inference rules for deriving subclass constraints

In this section, we present the set of inference rules M1 that only derive con-
straints of the forms c1 ⇒ c2, r1 ⇒↓ r2, r1 ⇒↑ r2. In Figure 3, we give the
set of rules M1. We assume that the inference rules are defined given a frame
F = (C,R, s, t) and variables c, c1, c2, . . . range over C and r, r1, r2, . . . range
over R. If for a relationship r ∈ R, it holds that s(r) = c1 and t(r) = c2 then this
is denoted as c1

r→ c2. We will also assume that K∗ is the closure of K under
the rules in M1.

4.1 Instance construction

For proving the completeness of the inference rules in M1, we construct the
instances Icl and Irel given a schema S = (F,K) with F = (C,R, s, t).

Informally, the instance Icl is constructed as follows. It is assumed that d1 ⇒
d2 6∈ K∗. We introduce two objects, o1 and o2 where o1 is in only the super-
classes of d1 and o2 is simply in all classes of the schema. Then we fill the relations
with pairs that contain o1 to satisfy the surjectivity and totalness constraints.
This leads to the following formal definition.

Definition 6 (Instance Icl). Given a schema S with d1 ⇒ d2 6∈ K∗, we define
Icl = (Ocl, [[·]]cl) such that Ocl = {o1, o2} and [[·]]cl the smallest function3 that
satisfies the following rules for all classes c:

o1 ∈ [[c]] if d1 ⇒ c ∈ K∗ (10)
o2 ∈ [[c]] (11)

3 The ordering over set-valued functions over the same domain is defined such that f
is smaller than g iff f(x) ⊆ g(x) for all x in the domain.

7

Refl
c ⇒ c

Trans
c1 ⇒ c2 c2 ⇒ c3

c1 ⇒ c3

RelRfl
r ⇒↓ r

RelTr1
r1 ⇒↓ r2 r2 ⇒↓ r3

r1 ⇒↓ r3

RelTr2
r1 ⇒↓ r2 r2 ⇒↑ r3

r1 ⇒↑ r3

RelTr3
r1 ⇒↑ r2 r2 ⇒↓ r3

r1 ⇒↑ r3

RelTr4
r1 ⇒↑ r2 r2 ⇒↑ r3

r1 ⇒↓ r3

IsaPr1

c1
r1→ c2 c3

r2→ c4

r1· r1 ⇒↓ r2

c2 ⇒ c4

IsaPr2

c1
r1→ c2 c3

r2→ c4

r1· r1 ⇒↑ r2

c2 ⇒ c3

IsaPr3

c1
r1→ c2 c3

r2→ c4

·r1 r1 ⇒↓ r2

c1 ⇒ c3

IsaPr4

c1
r1→ c2 c3

r2→ c4

·r1 r1 ⇒↑ r2

c1 ⇒ c4

Fig. 3. Set of inference rules M1

and the following rules for all relationships r:

(o1, o2) ∈ [[r]] if ·r1 ∈ K∗ ∧ d1 ⇒ s(r1) ∈ K∗ ∧ r1 ⇒↓ r ∈ K∗ (12)
(o1, o2) ∈ [[r]] if r1· ∈ K∗ ∧ d1 ⇒ t(r1) ∈ K∗ ∧ r1 ⇒↑ r ∈ K∗ (13)
(o2, o1) ∈ [[r]] if ·r1 ∈ K∗ ∧ d1 ⇒ s(r1) ∈ K∗ ∧ r1 ⇒↑ r ∈ K∗ (14)
(o2, o1) ∈ [[r]] if r1· ∈ K∗ ∧ d1 ⇒ t(r1) ∈ K∗ ∧ r1 ⇒↓ r ∈ K∗ (15)
(o2, o2) ∈ [[r]] (16)

Lemma 1. Given a schema S = (F,K) such that d1 ⇒ d2 6∈ K∗, then the
corresponding Icl is an instance of S.

Proof. We first show that Icl is an instance of F (i.e., the proposition (1) holds).
We then show that all constraints in K will hold for Icl. It means that we have
to verify that the constraints from (2) to (6) are satisfied.

– Rule (1): [[r]] ⊆ [[s(r)]]× [[t(r)]].We consider each of the rules that define [[r]]cl:
• Assume that (o1, o2) ∈ [[r]]cl because ·r1 ∈ K∗, d1 ⇒ s(r1) ∈ K∗ and

r1 ⇒↓ r ∈ K∗ (rule (12)). By IsaPr3, it follows that s(r1) ⇒ s(r) ∈ K∗

and therefore that d1 ⇒ s(r) ∈ K∗, because of rule (Trans). By the
rule (10), it then follows that o1 ∈ [[s(r)]]cl and o2 ∈ [[t(r)]]cl.

• Assume that (o1, o2) ∈ [[r]]cl because r1· ∈ K∗, d1 ⇒ t(r1) ∈ K∗ and
r1 ⇒↑ r ∈ K∗ (rule (13)). With the same argument as in the previous
item, we use IsaPr2 and Trans to derive that (o1, o2) ∈ [[s(r)]]cl ×
[[t(r)]]cl.

8

• Similar arguments can be made for the rules (14) and (15) using IsaPr1,
IsaPr4 and Trans).

• For (o2, o2) ∈ [[r]]cl (rule (16)) it follows from rule (11).
– Rule (2): if c1 ⇒ c2 ∈ K∗ then [[c1]] ⊆ [[c2]]. For the rule (10) that defines

[[c1]]cl it holds that if the right-side holds for c = c1, then it holds for c = c2

if c1 ⇒ c2 ∈ K∗ because of Trans.
– Rule (3): if r1 ⇒↓ r2 ∈ K∗ then [[r1]] ⊆ [[r2]]. For each of the rules that

define [[r]]cl, it holds that if the right-hand side holds for a certain r and
r ⇒↓ r′ ∈ K∗, then by using RelTr1 or RelTr3, it also holds for r′.

– Rule (4): if r1 ⇒↑ r2 ∈ K∗ then [[r1]]−1 ⊆ [[r2]]. With the same argument as
the previous item, we use the rules RelTr2 and RelTr4.

– Rule (5): if ·r ∈ K∗ then [[s(r)]] = {o1|(o1, o2) ∈ [[r]]}. The ⊆-part is ensured
by Prop. (1) and ⊇-part is ensured by RelRfl and rule (12).

– Rule (6): if r· ∈ K∗ then [[t(r)]] = {o2|(o1, o2) ∈ [[r]]}. Similar to the previous
item except we use rule (15).

ut

The instance Irel is constructed under the assumption that r1 ⇒↓ r2 6∈ K∗.
We introduce two objects o1 and n2 that are in all classes. Then we add the
pair (o1, o2) to r1 and all super-relations of r1 and the pair (o2, o1) to all inverse
super-relation of r1. This leads to the following formal definition:

Definition 7 (Instance Irel). Given a schema S with r1 ⇒↓ r2 6∈ K∗, we
define Irel = (Orel, [[·]]rel) of S such that Orel = {o1, o2} and [[·]]rel the smallest
function such that [[c]]rel = {o1, o2} for all classes c ∈ C and for all relationships
r ∈ R:

(o1, o2) ∈ [[r]] if r1 ⇒↓ r ∈ K∗ (17)
(o2, o1) ∈ [[r]] if r1 ⇒↑ r ∈ K∗ (18)
(o1, o1) ∈ [[r]] (19)
(o2, o2) ∈ [[r]] (20)

Lemma 2. Given a schema S = (F,K) such that r1 ⇒↓ r2 6∈ K∗, then the
corresponding Irel is an instance of S.

Proof. As for the Lemma 1, we prove that Irel is an instance of F and that all
constraints in K also hold for Irel.

– Rule (1): [[r]] ⊆ [[s(r)]]× [[t(r)]]. Since [[s(r)]]rel = [[t(r)]]rel = {o1, o2} it always
holds that [[r]]rel ⊆ [[s(r)]]rel × [[t(r)]]rel.

– Rule (2): if c1 ⇒ c2 ∈ K∗ then [[c1]] ⊆ [[c2]]. [[c1]]rel ⊆ [[c2]]rel always holds.
– Rule (3): if r3 ⇒↓ r4 ∈ K∗ then [[r3]] ⊆ [[r4]]. We consider each of the rules

that define [[r]]rel:
• Assume that (o1, o2) ∈ [[r3]]rel because of r1 ⇒↓ r3 ∈ K∗ (rule (17)).

By rule RelTr1 it follows that r1 ⇒↓ r4 ∈ K∗ and therefore that
(o1, o2) ∈ [[r4]]rel.

9

• A similar argument can be made for (o2, o1) ∈ [[r3]]rel because of r1 ⇒↑

r3 ∈ K∗ (rule (18)) by using RelTr3.
• For (o1, o1) ∈ [[r3]]rel and (o2, o2) ∈ [[r3]]rel because of rule (19) and rule

(19), respectively, it follows by the same rule that they are also in [[r4]].
– Rule (4): if r1 ⇒↑ r2 ∈ K∗ then [[r1]]−1 ⊆ [[r2]]. A similar argument as for

the previous item is made by using the rules RelTr2 and RelTr4.
– Rule (5): if ·r ∈ K∗ then [[s(r)]] = {o1|(o1, o2) ∈ [[r]]}. By definition [[s(r)]]rel =
{o1, o2} and by rules 19 and 20 there are pairs in [[r]] that start with o1 and
o2.

– Rule (6): similar to the previous item.
ut

4.2 Soundness and completeness of rules

In this section we establish the soundness and completeness of the inference rules
presented in the preceding sections. By soundness we mean here that if a certain
constraint can be derived with the inference rules from K, e.g., a ⇒ b ∈ K∗,
then it should hold that if an instance I satisfies all constraints in K then it
also satisifies a ⇒ b, i.e., [[a]] ⊆ [[b]]. By completeness we mean that if it holds in
all instances that satisfy K that a constraint holds, e.g., [[a]] ⊆ [[b]], then it must
follow from the inference rules that a ⇒ b ∈ K∗. To demonstrate completeness
we show the complementary implication: if a ⇒ b 6∈ K∗ then we can find an
instance that satisifes all constraints in K, but for which [[a]] 6⊆ [[b]].

Theorem 1. Given a schema S = (F,K) with K containing only subclass con-
straints and cardinality constraints and K∗ the closure of K under the rules in
M1 then

1. c1 ⇒ c2 ∈ K∗ iff I ` c1 ⇒ c2 for all instances I of S,
2. r1 ⇒↓ r2 ∈ K∗ iff I ` r1 ⇒↓ r2 for all instances I of S, and
3. r1 ⇒↑ r2 ∈ K∗ iff I ` r1 ⇒↑ r2 for all instances I of S.

Proof. The only-if part of all the propositions is easily proved by verifying that
all the inference rules in M1 are sound which follows from the semantics of the
constraints as defined in Definition 3. The if part is proven hereafter for all the
propositions.

We consider each constraint of type subclass and show that if it is not in K∗,
then it does not hold in at least one of Icl and Irel (which by Lemmas 1 and 2
are instances of S):

1. If d1 ⇒ d2 6∈ K∗ then Icl 6` d1 ⇒ d2 because [[d1]]cl = {o1, o2} and [[d2]]cl =
{o2}.

2. If r1 ⇒↓ r2 6∈ K∗ then Icl ` r1 ⇒↓ r2 because (o1, o2) ∈ [[r1]]rel and
(o1, o2) 6∈ [[r2]]rel and by considering RelRfl.

3. For r1 ⇒↑ r2 6∈ K∗ the proof proceeds similar to that of the previous item.
ut

10

5 Inference rules for deriving cardinality constraints

We are now considering a new set of inference rules M2 that derive constraints
of the forms ·r and r·. In Figure 4, we give the set of rules M2. We will assume
that K∗ is the closure of K under the rules in M1 ∪M2.

RelPr1

c1
r1→ c2 c3

r2→ c4

c3 ⇒ c1 ·r1

r1 ⇒↓ r2

·r2

RelPr2

c1
r1→ c2 c3

r2→ c4

c4 ⇒ c1 ·r1

r1 ⇒↑ r2

r2·

RelPr3

c1
r1→ c2 c3

r2→ c4

c4 ⇒ c2 r1·
r1 ⇒↓ r2

r2·
RelPr4

c1
r1→ c2 c3

r2→ c4

c3 ⇒ c2 r1·
r1 ⇒↑ r2

·r2

Fig. 4. Set of inference rules M2

5.1 Instance construction

For proving the completeness of inference rules in M1 ∪ M2, we construct the
instances Itot, Isurj given a schema S = (F,K) with ·r 6∈ K∗ and r· 6∈ K∗,
respectively. These instances are defined by the same rules as Icl (def. 6) except
that we replace d1 with s(r) for Itot and d1 with t(r) for Isurj .

5.2 Soundness and completeness of rules

Theorem 2. Given a schema S = (F,K) with K containing only subclass con-
straints and cardinality constraints and K∗ the closure of K under the rules in
M1 ∪M2 then

1. c1 ⇒ c2 ∈ K∗ iff I ` c1 ⇒ c2 for all instances I of S,
2. r1 ⇒↓ r2 ∈ K∗ iff I ` r1 ⇒↓ r2 for all instances I of S,
3. r1 ⇒↑ r2 ∈ K∗ iff I ` r1 ⇒↑ r2 for all instances I of S,
4. ·r ∈ K∗ iff I ` ·r for all instances I of S, and
5. r· ∈ K∗ iff I ` r· for all instances I of S.

11

Proof. The only-if part of all the propositions is easily proved by verifying that
all the inference rules in M1 ∪ M2 are sound which follows from the semantics
of the constraints as defined in Definition 3.

The if part proceeds similar to that of Theorem 1. For the subclass con-
straints the proof proceeds identical. For the cardinality constraints we show
that if it is not in K∗, then it does not hold in at least one of Itot and Isurj .
Because Itot and Isurj are equal to Icl, they are instances of S by Lemma 1.
What remains to be shown is that if ·r 6∈ K∗ (r· 6∈ K∗) then this constraint is
not satisfied by Itot (Isurj):

– If ·r 6∈ K∗ then Itot 6` ·r. We prove this by contradiction. Assume that
·r 6∈ K∗ and d1 = s(r). Clearly o1 ∈ [[s(r)]]tot. We consider the only two rules
that might add a pair (o1, o

′) to [[r]]tot:
• Assume that (o1, o2) ∈ [[r]]tot because ·r1 ∈ K∗, d1 ⇒ s(r1) ∈ K∗ and

r1 ⇒↓ r ∈ K∗. By rule RelPr1, it holds that ·r ∈ K∗ which contradicts
the assumption.

• Assume that (o1, o2) ∈ [[r]]tot because r1· ∈ K∗, d1 ⇒ t(r1) ∈ K∗ and
r1 ⇒↑ r ∈ K∗. By rule RelPr4, it holds that ·r ∈ K∗ which also
contradicts the assumption.

Hence there is no pair (o1, o
′) ∈ [[r]]tot and therefore Itot 6` ·r.

– If r· 6∈ K∗ then Isurj 6` r·. The proof proceeds similar to the previous items
but with RelPr2 and RelPr3.

ut

6 Inference rules for deriving disjointness constraints

In this section we will also consider constraints of the forms c1 � c2, r1 �↓ r2

and r1 �↑ r3. We give three sets of these rules, namely M3 (Figure 5) and M4

(Figure 6). We will assume from now on that K∗ is the closure of K under the
rules in M1, . . . ,M4.

With disjointness constraints it is possible to define schemas in which certain
classes and relations cannot be populated. To find such conflicts we introduce
the following syntactical notion of conflict.

Definition 8 (conflict). A conflict is a constraint of the form c � c or r �↓ r.
If a set of constraints K does not contain such a conflict then it is said to be
conflict-free.

Note that r �↑ r is not a conflict since there are non-empty relations for which
it holds.

6.1 Instance construction

For proving the completeness of the inference rules in M1, . . . ,M4, we construct
the instances Ibase, I�, I�↑

and I�↓
given a schema S = (F,K) with F =

(C,R, s, t).

12

DsjSym
c1 � c2

c2 � c1

DsjDnSym
r1 �↓ r2

r2 �↓ r1

DsjUpSym
r1 �↑ r2

r2 �↑ r1

DsjInh
c1 � c2 c3 ⇒ c2

c1 � c3

DsjInh1
r1 �↓ r2 r3 ⇒↓ r2

r1 �↓ r3

DsjInh2
r1 �↓ r2 r3 ⇒↑ r2

r1 �↑ r3

DsjInh3
r1 �↑ r2 r3 ⇒↓ r2

r1 �↑ r3

DsjInh4
r1 �↑ r2 r3 ⇒↑ r2

r1 �↓ r3

DsjPr1

c1
r1→ c2 c3

r2→ c4

c2 � c4

r1 �↓ r2

DsjPr2

c1
r1→ c2 c3

r2→ c4

c2 � c3

r1 �↑ r2

DsjPr3

c1
r1→ c2 c3

r2→ c4

c1 � c3

r1 �↓ r2

DsjPr4

c1
r1→ c2 c3

r2→ c4

c1 � c4

r1 �↑ r2

Fig. 5. Set of inference rules M3

Informally we can describe the construction of Ibase as follows. For each class
c we introduce a distinct object oc that is in c and all its super-classes. For each
relation r we introduce the objects o1

r (and o2
r) that are in the source (target)

class of r and all its (implied) super-classes. Next we add the pair (o1
r, o

2
r) to

relation r and all its super-relations, and the inverse to all its inverse super-
relations. Finally, to satisfy the totalness and surjectivity constraints we add for
relations q with such a constraint and each object o in a class c a pair with o
and either o1

q or o2
q to q and its inverse and normal sub-relations. This leads to

the following formal definition:

Definition 9 (Instance Ibase). Given a schema S = (F,K) with F = (C,R, s, t)
we define Ibase = (Obase, [[·]]base) such that Obase = {oc|c ∈ C} ∪ {o1

r, o
2
r|r ∈ R}

and the interpretation function is defined as the smallest interpretation function
that satisfies the following rules for all classes c:

od ∈ [[c]] if d ⇒ c ∈ K∗ (21)
o1

r ∈ [[c]] if r ⇒↓ q ∈ K∗ ∧ s(q) ⇒ c ∈ K∗ (22)
o1

r ∈ [[c]] if r ⇒↑ q ∈ K∗ ∧ t(q) ⇒ c ∈ K∗ (23)
o2

r ∈ [[c]] if r ⇒↓ q ∈ K∗ ∧ t(q) ⇒ c ∈ K∗ (24)
o2

r ∈ [[c]] if r ⇒↑ q ∈ K∗ ∧ s(q) ⇒ c ∈ K∗ (25)

13

CnflPr1

c1
r→ c2

r �↓ r ·r
c1 � c1

CnflPr2

c1
r→ c2

r �↓ r r·
c2 � c2

IsaCnfl
c1 � c1

c1 ⇒ c2

IsaDnCnfl
r1 �↓ r1

r1 ⇒↓ r2

IsaUpCnfl
r1 �↓ r1

r1 ⇒↑ r2

TotCnfl
c1

r→ c2 c1 � c1

·r

SurjCnfl
c1

r→ c2 c2 � c2

r·
DisjCnfl

c1 � c1

c1 � c2

DisjDnCnfl
r1 �↓ r1

r1 �↓ r2

DisjUpCnfl
r1 �↓ r1

r1 �↑ r2

Fig. 6. Set of inference rules M4

and the following rules for all relationships r:

(o1
q, o

2
q) ∈ [[r]] if q ⇒↓ r ∈ K∗ (26)

(o2
q, o

1
q) ∈ [[r]] if q ⇒↑ r ∈ K∗ (27)

(o, o2
q) ∈ [[r]] if o ∈ [[s(q)]] ∧ q ⇒↓ r ∈ K∗ ∧ ·q ∈ K∗ (28)

(o1
q, o) ∈ [[r]] if o ∈ [[t(q)]] ∧ q ⇒↓ r ∈ K∗ ∧ q· ∈ K∗ (29)

(o, o1
q) ∈ [[r]] if o ∈ [[t(q)]] ∧ q ⇒↑ r ∈ K∗ ∧ q· ∈ K∗ (30)

(o2
q, o) ∈ [[r]] if o ∈ [[s(q)]] ∧ q ⇒↑ r ∈ K∗ ∧ ·q ∈ K∗ (31)

Lemma 3. Given a schema S = (F,K) such that K∗ is conflict-free, then the
corresponding Ibase is an instance of S.

Proof. We first show that Ibase is an instance of F (i.e., the proposition (1)
holds). We then show that all constraints in K will also hold for Ibase. It means
that we have to verify that the constraints from (2) to (9)) are satisfied.

– Rule (1): [[r]] ⊆ [[s(r)]] × [[t(r)]]. We consider each of the rules that defines
[[r]]base:
• Assume that (o1

q, o
2
q) ∈ [[r]]base because q ⇒↓ r ∈ K∗ (rule (26)). By

rule Refl it holds that s(r) ⇒ s(r) ∈ K∗ and t(r) ⇒ t(r) ∈ K∗. By the
rules (22) and (24) it then follows that o1

q ∈ [[s(r)]]base and o2
q ∈ [[t(r)]]base,

respectively. A similar argument can be made for the pairs (o2
q, o

1
q) added

by rule (27).
• Assume that (o, o2

q) ∈ [[r]]base because o ∈ [[s(q)]]base, q ⇒↓ r ∈ K∗ and
·q ∈ K∗ (rule (28)). With the same argument as in the previous item it

14

follows that o2
q ∈ [[t(r)]]base. Similar arguments can be made for the rules

(29), (30) and (31).
– Rule (2): If c1 ⇒ c2 ∈ K∗ then [[c1]] ⊆ [[c2]]. For each of the rules that defines

[[c1]]base it holds that if the right-hand side holds for c = c1 then it also holds
for c = c2 if c1 ⇒ c2 ∈ K∗, because of rule Trans.

– Rule (3): If r1 ⇒↓ r2 ∈ K∗ then [[r1]] ⊆ [[r2]]. For each of the rules that
defines [[r1]]base it holds that if the right-hand side holds for a certain r and
r ⇒↓ r′ ∈ K∗ then, because of RelTr1 and RelTr3, it also holds for r′.

– Rule (4): If r1 ⇒↑ r2 ∈ K∗ then [[r1]]−1 ⊆ [[r2]]. Assume that (o1
q, o

2
q) ∈

[[r1]]base because q ⇒↓ r1 ∈ K∗ (rule (26)). By rule RelTr2 it follows that
q ⇒↑ r2 ∈ K∗ and therefore (o2

q, o
1
q) ∈ [[r2]]base by rule (27). A similar

argument can be made for each of the rules for [[r]]base, i.e., if the right-
hand side is true then by applying RelTr2 or RelTr4 we can derive the
right-hand side of the rule that adds the inverse pair.

– Rule (5): If ·r ∈ K∗ then [[s(r)]] = {o1|(o1, o2) ∈ [[r]]}. The ⊆-part is ensured
by Prop. (1) and ⊇-part is ensured by RelRfl and rule (28).

– Rule (6): If r· ∈ K∗ then [[t(r)]] = {o2|(o1, o2) ∈ [[r]]}. Similar to the previous
item except we use rule (29).

– Rule (7): If c1 � c2 ∈ K∗ then [[c1]] ∩ [[c2]] = ∅. We assume the intersection
is non-empty and consider each of the rules for [[c]]base:
• Assume that od ∈ [[c1]]base because d ⇒ c1 ∈ K∗ and od ∈ [[c2]]base

because d ⇒ c2 ∈ K∗ (rule (21) and (21)). By DsjSym and DsjInh it
follows that d � d ∈ K∗, which contradicts the assumption that K∗ is
conflict-free.

• Assume that o1
r ∈ [[c1]]base because r ⇒↓ q ∈ K∗ and s(q) ⇒ c1 ∈ K∗,

and that o1
r ∈ [[c2]]base because r ⇒↓ q′ ∈ K∗ and s(q′) ⇒ c1 ∈ K∗ (rule

(22) and (22)). By DsjInh and DsjPr3 it follows that q �↓ q′ ∈ K∗,
and by DsjInh1 that r �↓ r ∈ K∗ which contradicts the assumption
that K∗ is conflict-free. For the combination of rule (22) and (23) we
can use DsjPr2, DsjInh3 and DsjInh4 to derive a contradiction. For
the combination of rule 23 and 23 we can use DsjPr1, DsjInh2 and
DsjInh4 to derive a contradiction. Similar arguments can be made for all
the combinations of rule (24) and (25) using DsjPr1, DsjPr2, DsjPr3,
DsjInh1, DsjInh2, DsjInh3 and DsjInh4.

Since all other combinations cannot add the same object, it holds that the
assumption that the intersection is not empty is false.

– Rule (8): If r1 �↓ r2 ∈ K∗ then [[r1]]∩ [[r2]] = ∅. We assume the intersection
is non-empty and consider each of the rules for [[r]]base:
• For all pairs from the set of rule (26), (28) and (29) it must hold that

q ⇒↓ r1 and q ⇒↓ r2. With DsjInh1 we can then derive that q �↓ q ∈
K∗ which contradicts the assumption that K∗ is conflict-free.

• For all pairs from the set of rule (27), (30) and (31) it must hold that
q ⇒↑ r1 and q ⇒↑ r2. With DsjInh2 and DsjInh4 we can then derive
that q �↓ q ∈ K∗ which contradicts the assumption that K∗ is conflict-
free.

15

Since all other combinations cannot add the same pair of objects, it holds
that the assumption that the intersection is not empty is false.

– Rule (9): If r1 �↑ r2 ∈ K∗ then [[r1]]−1∩[[r2]] = ∅. We assume the intersection
is non-empty and consider each of the rules for [[r]]base. For all combinations
that add a pair to [[r1]]base and its inverse to [[r2]]base it holds that either
q ⇒↓ r1, q ⇒↑ r2 ∈ K∗ or q ⇒↑ r1, q ⇒↓ r2 ∈ K∗. In both cases we can
derive with DsjInh3 and DsjInh4 that q ⇒↓ q ∈ K∗ which contradicts the
assumption that K∗ is conflict-free.

ut

Informally we can describe the construction of I� as follows. We assume that
a � b 6∈ K∗. Then we construct the instance as for Ibase except that we introduce
a special object oab that is placed both in class a and in class b and in all their
super-classes. This leads to the following formal definition:

Definition 10 (Instance I�). Given a schema S = (F,K) with F = (C,R, s, t)
and a � b 6∈ K∗ we define I� = (O�, [[·]]�) such that O� = Obase ∪ {oab} and
the interpretation as for Ibase but with the following additional rule:

oab ∈ [[c]] if a ⇒ c ∈ K∗ ∨ b ⇒ c ∈ K∗ (32)

Lemma 4. Given a schema S = (F,K) such that K∗ is conflict-free and a �
b 6∈ K∗, then the corresponding I� is an instance of S.

Proof. The proof proceeds similar to that of Lemma 3 except that for some
propositions we need to consider extra cases:

– Rule (2): If oab ∈ [[c1]]� because of rule (32) then by Trans it follows that
oab ∈ [[c2]]� because of the same rule.

– Rule (7): Assume that oab ∈ [[c1]]� because a ⇒ c1 ∈ K∗ ∨ b ⇒ c1 ∈ K∗

and oab ∈ [[c2]]� because a ⇒ c2 ∈ K∗ ∨ b ⇒ c2 ∈ K∗. We consider all
combinations:
• If a ⇒ c1 ∈ K∗ and a ⇒ c2 ∈ K∗ then a � a ∈ K∗ by DsjInh, which

contradicts the assumption that K∗ is conflict-free. The case where a is
replaced with b is similar.

• If a ⇒ c1 ∈ K∗ and b ⇒ c2 ∈ K∗ then a � b ∈ K∗ by DsjInh, which
contradicts the assumption that a � b 6∈ K∗. The case where a and b are
swapped is similar.

ut

Informally we can describe the construction of I�↓
as follows. We assume

that p �↓ q 6∈ K∗. Then we construct the instance as for Ibase except that we
introduce a special pair (o1

pq, o
2
pq) that is placed both in the relation p and in

the relation q and in all their super-relations, and the inverse is placed in all the
inverse super-relations. This leads to the following formal definition:

Definition 11 (Instance I�↓
). Given a schema S = (F,K) with F = (C,R, s, t)

and p �↓ q 6∈ K∗ we define I�↓
= (O�↓

, [[·]]�↓
) such that O�↓

= Obase∪{o1
pq, o

2
pq}

16

and the interpretation function as for Ibase but with the following additional rules
for all classes c:

o1
pq ∈ [[c]] if (p ⇒↓ r ∈ K∗ ∨ q ⇒↓ r ∈ K∗) ∧ s(r) ⇒ c ∈ K∗ (33)

o1
pq ∈ [[c]] if (p ⇒↑ r ∈ K∗ ∨ q ⇒↑ r ∈ K∗) ∧ t(r) ⇒ c ∈ K∗ (34)

o2
pq ∈ [[c]] if (p ⇒↓ r ∈ K∗ ∨ q ⇒↓ r ∈ K∗) ∧ t(r) ⇒ c ∈ K∗ (35)

o2
pq ∈ [[c]] if (p ⇒↑ r ∈ K∗ ∨ q ⇒↑ r ∈ K∗) ∧ s(r) ⇒ c ∈ K∗ (36)

and for all relationships r:

(o1
pq, o

2
pq) ∈ [[r]] if p ⇒↓ r ∈ K∗ ∨ q ⇒↓ r ∈ K∗ (37)

(o2
pq, o

1
pq) ∈ [[r]] if p ⇒↑ r ∈ K∗ ∨ q ⇒↑ r ∈ K∗ (38)

Informally we can describe (o1
pq, o

2
pq) as the typical pair that is both in the rela-

tionship p and q.

Lemma 5. Given a schema S = (F,K) such that K∗ is conflict-free and p �↓

q 6∈ K∗, then the corresponding I�↓
is an instance of S.

Proof. The proof proceeds similar to that of Lemma 4 and considers the extra
cases for Prop. (1), Constr. (7), Constr. (8) and Constr. (9) using the assumption
that p �↓ q 6∈ K∗. ut

Definition 12 (Instance I�↑
). Given a schema S = (F,K) with F = (C,R, s, t)

and p �↑ q 6∈ K∗ we define I�↑
similar to I�↓

but here we add a pair (o12
pq, o

21
pq)

such that it is in [[p]]�
↑

and its inverse, (o21
pq, o

12
pq), is in [[q]]�

↑
.

Lemma 6. Given a schema S = (F,K) such that K∗ is conflict-free and p �↑

q 6∈ K∗, then the corresponding I�↑
is an instance of S.

Proof. The proof proceeds similar to that of Lemma 5. ut

6.2 Soundness and completeness of rules

Theorem 3. Given a schema S = (F,K) with K∗ the closure of K under the
rules in M1, . . . ,M4 then

1. c1 ⇒ c2 ∈ K∗ iff I ` c1 ⇒ c2 for all instances I of S,
2. r1 ⇒↓ r2 ∈ K∗ iff I ` r1 ⇒↓ r2 for all instances I of S,
3. r1 ⇒↑ r2 ∈ K∗ iff I ` r1 ⇒↑ r2 for all instances I of S,
4. ·r ∈ K∗ iff I ` ·r for all instances I of S,
5. r· ∈ K∗ iff I ` r· for all instances I of S,
6. c1 � c2 ∈ K∗ iff I ` r1 � r2 for all instances I of S,
7. r1 �↓ r2 ∈ K∗ iff I ` r1 �↓ r2 for all instances I of S, and
8. r1 �↑ r2 ∈ K∗ iff I ` r1 �↑ r2 for all instances I of S.

17

Proof. The only-if part of all the propositions is easily proved by verifying that
all the inference rules in M1, . . . ,M4 are sound, which follows straightforwardly
from the semantics of the constraints as defined in Definition 3.

The if part is proven in two steps. We first show that for each type of con-
straint that if K∗ is conflict-free then it holds, and then we show that from this
it follows that it holds for any K.

Under the assumption that K∗ is conflict-free we consider each type of con-
straint and show that if it is not in K∗ then in at least one of Ibase, I�, I�↓

and
I�↑

(which by Lemmas 3, 4, 5 and 6 are instances of S) it does not hold:

– If a ⇒ b 6∈ K∗ then Ibase 6` a ⇒ b because oa ∈ [[b]]base iff a ⇒ b ∈ K∗.
– If p ⇒↓ q 6∈ K∗ then consider the pair (o1

p, o
2
p) ∈ [[p]]base. The rules that

might add this pair to [[q]]base are (26), (28) and (29), but these all require
that p ⇒↓ q ∈ K∗, and therefore Ibase 6` p ⇒↓ q.

– If p ⇒↑ q 6∈ K∗ then consider the pair (o1
p, o

2
p) ∈ [[p]]base. The rules that might

add its inverse, i.e.,(o2
p, o

1
p), to [[q]]base are (27), (30) and (31), but these all

require that p ⇒↑ q ∈ K∗, and therefore Ibase 6` p ⇒↑ q.
– If ·p 6∈ K∗ and d = s(p) then assume there is a pair (od, o) ∈ [[p]]base. This

pair can only be added by rules (28) and (30). For rule (28) it would follow
that od ∈ [[s(q)]]base, q ⇒↓ p ∈ K∗ and ·q ∈ K∗. Since only rule (21) can
put od in [[s(q)]]base, it follows also that d ⇒ s(q) ∈ K∗ and then RelPr1
derives that ·p ∈ K∗ which contradicts the assumption. A similar argument
holds if the pair is added by rule (30) using RelPr4. Hence there is no pair
(od, o) ∈ [[p]]base and therefore Ibase 6` ·p.

– If p· 6∈ K∗ and d = t(p) then we can argue similarly as in the previous item
that a pair (o, od) ∈ [[p]]base cannot exist by considering the rules (29) and
31 and RelPr3 and RelPr2, respectively.

– If a � b 6∈ K∗ then I� 6` a � b because oab ∈ [[a]]� ∩ [[b]]�.
– If p �↓ q 6∈ K∗ then I�↓ 6` p �↓ q because (o1

pq, o
2
pq) ∈ [[p]]�

↓ ∩ [[q]]�
↓
.

– If p �↑ q 6∈ K∗ then I�↑ 6` p �↑ q because (o21
pq, o

12
pq) ∈ ([[p]]�

↑
)−1 ∩ [[q]]�

↑
.

In the next step, we show that the same holds for any K∗. We define the schema
Sok = (F ok,Kok) as the restriction of S to classes and relationships for which
there is no conflict in K∗, i.e., Cok = {c ∈ C|c � c 6∈ K∗}, Rok = {r ∈ R|r �↓

r ∈ K∗} and Kok is the subset of K∗ that mentions only classes in Cok and
relationships Rok. This indeed defines a valid schema because if we assume that
there is a relationship r in Rok but s(r) (or t(r)) is not in Cok then by DsjPr3
(DsjPr1) it follows that s(r) � s(r) ∈ K∗ (t(r) � t(r) ∈ K∗). Moreover, it
holds that Kok is closed under the inference rules because it as a subset of K∗

and all inference rules are monotone.
As shown in the previous step, it then follows that for each constraint k over

F ok that is not in Kok (and therefore also not in K∗) there is an instance of
Sok that does not satisfy this constraint. Then we can construct from this an
instance Ik of S by letting [[c]] = ∅ and [[r]] = ∅ for all classes c and relationships
r with conflicts in K∗. To show that this is is indeed an instance of S we have
to show that it satisfies all constraints in K. Clearly this holds for those in Kok

18

so we consider all constraints that mention a class or relationship with a conflict
in K∗:

– Consider a ⇒ b ∈ K. If a � a ∈ K∗ then this holds trivially. If b � b ∈ K∗

then a � a ∈ K∗ by DsjInh. A similar argument can be made for p ⇒↓ q ∈
K and p ⇒↑ q ∈ K using DsjInh1 for the first and DsjInh2 and DsjInh4
for the second.

– Consider ·p ∈ K. If p �↓ p ∈ K∗ then by CnflPr1 we derive s(p) � s(p) ∈
K∗ and it holds trivially. A similar argument holds for p· using CnflPr2.

– Consider a � b ∈ K. If a � a ∈ K∗ or b � b ∈ K∗ then this holds trivially.
A similar argument can be made for p �↓ q ∈ K and p �↑ q ∈ K.

Clearly the constraint k will not be satisfied by Ik.
In the preceding step we did not consider the constraints that mention a class

or relationship that have a conflict in K∗:

– Assume that a ⇒ b 6∈ K∗ and a � a ∈ K∗ or b � b ∈ K∗. By DsjInh
it follows that always a � a ∈ K∗ and by IsaCnfl that a ⇒ b ∈ K∗. A
similar argument can be made for p ⇒↓ q and p ⇒↑ q using DsjInh1 for the
first and DsjInh2 and DsjInh4 for the second to derive that p �↓ q and
IsaDnCnfl and IsaUpCnfl to derive that have to be in K∗.

– Consider ·p 6∈ K∗ and p �↓ p ∈ K∗. Then by CnflPr1 we derive s(p) �
s(p) ∈ K∗ and it follows by TotCnfl that ·p ∈ K∗. A similar argument
holds for p· using CnflPr2 and SurjCnfl.

– Consider a � b 6∈ K∗ and a � a ∈ K∗ or b � b ∈ K∗. If a � a ∈ K∗ then
by DisjCnfl and DsjSym we derive a � b ∈ K∗. A similar argument can
be made for p �↓ q and p �↑ q using DisjDnCnfl and DisjDnSym for the
first, and DisjUpCnfl and DisjUpSym for the second.

ut

Corollary 1. Deciding whether a certain constraint k holds for all instances of
a schema S is in PTIME.

Proof. If there are n classes and m relationships in S then the size of the set of
all constraints over S is in O(n2 + m2). Since K∗ is always a subset of this and
each inference rule can be computed in polynomial time, K∗ can be computed
in PTIME. ut

Corollary 2. The rules in M1, . . . ,M3 are complete if the closure of K under
M1, . . . ,M3 is conflict-free.

Proof. All the rules in M4 have a conflict in the premise. So if the closure of K
under M1, . . . ,M3 does not contain a conflict then it will be equal to the closure
of K under M1, . . . ,M4. ut

Corollary 3. The rules in M1, . . . ,M3 are sufficient to detect if K∗ is conflict-
free.

19

Proof. From the preceding corollary it follows that if the closure of K under
M1, . . . ,M3 does not contain a conflict then the closure under M1, . . . ,M4 will
also not contain a conflict. It is also clear that if the first closure contains a
conflict then so does the second closure. Therefore the first closure contains a
conflict iff the second closure does. ut

7 Related work

There has already been a large amount of research on the topic of data inte-
gration [4] and reasoning about taxonomies in general [5] and database schemas
in particular [6]. As is argued in [7] the two subjects are closely linked together
since the ability to reason over the views can be used to check the representation
for inconsistencies and redundancies, and to maintain the system in response to
changes in the data needs. In particular, [8] presents a reasoning approach for
automating a significant part of the schema integration process and [9] relies on
a reasoning support to improve the quality of data.

Description Logics (DL) are a well-known family of knowledge representation
formalisms that descend from KL-ONE [10]. Long since, they have been applied
to data management [11] and information integration [12]. The basic idea is to
express database schemas as DL knowledge bases so that DL reasoning tech-
niques can be used to reason about the schema. Although this approach can be
restricted to useful fragments where reasoning is still tractable, e.g. [13] and [14],
it often already becomes intractable for relatively small fragments [15] and even
more so when the concept of inverse role is added [16]. It was to the best of
our knowledge not yet known that the fragment that is proposed in this paper,
which can express such inverse roles, has a relatively simple set of inference rules
that is sound and complete and allows tractable reasoning.

8 Conclusion

In this paper we have proposed a view integration method that leaves the origi-
nal views intact and allows their relationships to be defined by constraints that
explicitly express semantical relationships between the components of the differ-
ent views. Although the motivation of this approach comes from workflow and
case management systems where the original views are important for the descrip-
tion of the workflow, this approach can also be beneficial for data integration
in more general settings. To support the integration process we have proposed
a set of inference rules that allows us to derive implied semantical relationships
and especially whether there are conflicts in the integrated schema. We have
shown that these sets of rules are sound and complete for all proposed types of
constraints, and that subsets of these rules can be already complete for certain
subsets of the constraints. Finally it was shown that the inference rules provide
in all cases a tractable inference mechanism.

20

References

1. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies
for database schema integration. ACM Comput. Surv. 18 (1986) 323–364

2. Shipman, D.W.: The functional data model and the data language DAPLEX.
ACM Trans. Database Syst. 6 (1981) 140–173

3. Halpin, T.: Information modeling and relational databases: from conceptual analy-
sis to logical design. Morgan Kaufmann Publishers (2001)

4. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS. (2002)
233–246

5. Bergamaschi, S., Sartori, C.: On taxonomic reasoning in conceptual design. ACM
Trans. Database Syst. 17 (1992) 385–422

6. Formica, A., Missikoff, M.: Inheritance processing and conflicts in structural gen-
eralization hierarchies. ACM Comput. Surv. 36 (2004) 263–290

7. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Information
integration: Conceptual modeling and reasoning support. In: Proc. of the 6th Int.
Conf. on Cooperative Information Systems (CoopIS’98). (1998) 280–291

8. Kashyap, V., Sheth, A.P.: Semantic and schematic similarities between database
objects: A context-based approach. VLDB J. 5 (1996) 276–304

9. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Source inte-
gration in data warehousing. In: Proc. of the 9th Int. Workshop on Database and
Expert Systems Applications (DEXA’98), IEEE Computer Society Press (1998)
192–197

10. Brachman, R., Schmolze, J.: An overview of the KL-ONE knowledge representation
system. Cognitive Science (1985) 171–216

11. Kirk, T., Levy, A.Y., Sagiv, Y., Srivastava, D.: The Information Manifold. In
Knoblock, C., Levy, A., eds.: Information Gathering from Heterogeneous, Distrib-
uted Environments, Stanford University, Stanford, California (1995)

12. Calvanese, D., Giacomo, G.D., Lenzerini, M., Nardi, D., Rosati, R.: Description
logic framework for information integration. In: KR. (1998) 2–13

13. Brachman, R., Levesque, H.: The tractability of subsumption in frame-based de-
scription languages. In: AAAI-84, Austin, Texas (1984) 34–37

14. Borgida, A., Brachman, R.J., McGuinness, D.L., Resnick, L.A.: CLASSIC: a struc-
tural data model for objects. In: Proc. of the ACM SIGMOD International Con-
ference on Management of Data, Portland, Oregon (1989) 58–67

15. Nutt, W., Donini, F.M., Lenzerini, M., Nardi, D.: The complexity of concept
languages. Inf. Comput. 134 (1997) 1–58

16. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. Journal of Logic and Computation 9 (1999) 385–410

