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Abstract

We consider the Liénard equation and we give a sufficient condition to ensure existen
uniqueness of limit cycles. We compare our result with some other existing ones and we giv
applications.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the Liénard equation:

ẍ + f (x)ẋ + g(x) = 0, (1)

wheref,g : R → R, with particular attention to the existence and uniqueness of
cycles. This is a classical problem of non-linear oscillation for second order differe
equations. Different assumptions onf andg and different methods used to study the pr
lem, gave rise to a large amount of literature on this topic; for a review of results

* Corresponding author.

E-mail addresses:t.carletti@sns.it (T. Carletti), villari@math.unifi.it (G. Villari).

0022-247X/$ – see front matter 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.01.054



764 T. Carletti, G. Villari / J. Math. Anal. Appl. 307 (2005) 763–773

ive

m for
l

) is

which
sign

he
aper.

-

t cycle

ll dis-
ueness

heir

of

B), (C)
heses
methods, reader can consult [9], [15, Chapter IV] or [14]. In the following we will g
some more references.

We make the following assumptions onf andg:

(A) f is a continuous function andg verifies a locally Lipschitz condition.
(B) f (0) < 0, f (x) > 0 for |x| > δ, for someδ > 0, andxg(x) > 0 for x �= 0.

Condition (A) assures existence and uniqueness of the Cauchy initial value proble
the Liénard equation. In fact, passing to theLiénard planethe second order differentia
equation isequivalentto the following first order system:{

ẋ = y − F(x),

ẏ = −g(x),
(2)

whereF(x) = ∫ x

0 f (ξ) dξ . Hence assuming hypothesis (A) the right-hand side of (2
Lipschitz continuous, from which the claim follows.

Assumption (B) guarantees that the origin is the only singular point of the system,
results a repeller. Moreover, orbits of (2) turn clockwise around it. Hypothesis on the
of f (0) can be weakened by askingxF(x) < 0 for |x| small. We nevertheless prefer t
former formulation (A) because of the applications we will give in the last part of the p

Assuming assumptions (A) and (B) onf andg, our main result will be the following
theorem.

Theorem 1.1. LetG(x) = ∫ x

0 g(ξ) dξ and suppose thatF andG verify:

(C) F has only three real transversal zeros, located atx0 = 0, x2 < 0< x1. Assume, more
over, thatF is monotone increasing outside the interval[x2, x1].

(D) G(x1) = G(x2).
(E) lim supx→+∞[G(x) + F(x)] = +∞ and lim supx→−∞[G(x) − F(x)] = +∞.

Then system(2) has a unique periodic orbit in the(x, y)-plane which is stable.

Because of the equivalence of Eq. (1) and system (2) the former has a unique limi
if Theorem 1.1 applies.

We postpone the proof of the Theorem 1.1 to the next section. In Section 3 we wi
cuss the role of our hypotheses and compare this result with other existence and uniq
results concerning Liénard systems.

Our result follows from investigating the geometry of limit cycles, in particular t
(eventual) intersections with the linesx = x1 andx = x2. With Proposition 2.1 we give
sufficient conditions to ensure intersection of limit cycles with one or both linesx = x1
and x = x2. Our result will then follow joining these informations with the result
[11, Theorem 1].

First of all we stress that assumptions are quite standard ones. Hypotheses (A), (
and (E) guarantee existence of limit cycles as it will be shown in Section 2.1. Hypot
on F and the equality forG at roots ofF(x) = 0 arefundamentalfor our proof. While

we can already find in literature such hypotheses ofF , the link between zeros ofF and
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values ofG at these points are new, as far as we know. We remark that hypothesis (
be weakened by allowingF to have zeros inside(x2, x1), other thanx0 = 0, where it does
not change sign.

We already gave some bibliography of results concerning existence and/or uniq
of limit cycles for Liénard equations; we do not try to compare our result with all
existing ones, we will restrict ourselves to emphasize the strong point of our Theore
to compare it with some general results.

First of all wedo not assume any parity conditionson F and/org, on the contrary ifF
andg are odd, then Theorem 1.1 contains the Levinson–Smith result [4] as particula
let x1 = −x2 be the non-zeros root ofF(x) = 0,G(x) is even because of oddness ofg, and
thenG(x1) = G(−x2).

The monotonicity onF is required only outside the interval determined by the sma
and largest zeros, namely its derivativeF ′(x) = f (x) can have several zeros inside th
interval, this is a more general situation than the results of Massera [5] and Sanso
The last one follows from our result by remarking that ifg(x) = x, thenG(x) = x2/2 and
let ∆ > 0 be such thatF(∆) = F(−∆) = 0, we getG(∆) = G(−∆).

The second remark concerns the hypothesis (D): it is easy to verify if this conditi
G holds, just compare the function at two points. We do not need to use the invers
any function as in the Filippov case [3] (and in all results inspired by his method),
impose conditions on functions obtained by composition and inversion. These facts
our theorem easily applicable as the results of Section 3 will show.

2. Main result

The aim of this section is to prove our main result, Theorem 1.1. The proof is div
in two steps, presented in Sections 2.2 and 2.3. Before let us introduce two prelim
results, first, Proposition 2.1, whose role is to give information about the geometry o
cycles with respect to linesx = xi , wherexi are non-zero roots ofF(x) = 0. Second, give a
proof (Section 2.1) of existence of limit cycles assuming hypotheses (A), (B), (C) an
as claimed in the Introduction.

Proposition 2.1. Let f and g verify hypotheses(A) and (B). Let F(x) = ∫ x

0 f (ξ) dξ

G(x) = ∫ x

0 g(ξ) dξ and assumeF(x) verify hypothesis(C). Then

• if G(x1) � G(x2) all (eventual) limit cycles of(2) will intersect the linex = x2;
• whereas ifG(x1) � G(x2) all (eventual) limit cycles of(2) will intersect the line

x = x1.

Proof. Let us denote byXL(x, y) = (y − F(x),−g(x)) the Liénard field associate to (2
and let us consider the family of ovals given byEN = {(x, y) ∈ R

2: y2/2+G(x)−N = 0}.
Let us consider the caseG(x1) � G(x2), the other can be handle similarly and we w

omit it. The ovalEG(x2) does not intersect the linex = x1, whereasEG(x1) passes throug
points (x2,±√

2(G(x1) − G(x2))). NamelyEG(x1) contains in its interiorEG(x2) which

contains the origin in its interior.
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The flow of Liénard system (2) is transversal toEG(x2) (more precisely it points outwar
with respect toEG(x2)):〈∇EG(x2),XL(x, y)

∣∣
EG(x2)

〉 = −F(x)g(x) � 0,

equality holds only forx = 0 andx = x2. Let us call(x∗
1,0) the unique intersection poin

of EG(x2) with the positivex-axis.
Hence from Poincaré–Bendixson theorem no-limit cycle can be completely cont

in the strip[x2, x
∗
1) × R. Moreover, orbits of (2) spiral outward leavingEG(x2). Thus any

(eventual) limit cycle must intersect the linex = x2. �
2.1. Existence of limit cycles

Let us investigate the existence of limit cycles. Consider assumption (E), th
limx→±∞ G(x) = +∞, we observe that assumption (C) guarantees the existence ofε > 0
andα < 0 < β such that

∫ β

α
f (ξ) dξ > ε. Moreover,f (x) > 0 for x /∈ [α,β]. We can then

apply [10, Theorem 1] to obtain existence of limit cycles.
On the other hand, let us assume limx→+∞ G(x) < +∞ (the case limx→−∞ G(x) <

+∞ can be handle similarly and we omit it). Then using [12, Theorem 3] we complet
proof of the existence of limit cycles.

2.2. Uniqueness: Step I

In [11] the following result has been proved.

Theorem 2.2. Let f andg verify hypotheses(A), (B) and letF verify hypothesis(C). Let
x2 < 0< x1 be the non-zero roots ofF(x) = 0. Assume that all limit cycles of(2) intersect
the linesx = x2 andx = x1. Then system(2) has at most one limit cycle, if it exists it
stable.

Let us give its proof for completeness.

Proof. We claim that for any limit cycle,γ , of system (2) we have:∮
γ

g(x) dt = 0,

∮
γ

g(x)y dt = 0 and
∮
γ

g(x)
[
y − F(x)

]
dt = 0.

This can be proved easily by remarking thatg(x)y = d
dt

(1
2y2

)
. Hence:

∮
γ

g(x)F (x)dt = 0. (3)

Hypotheses (B) and (C) giveF(x)g(x) < 0 for all x ∈ (x2,0) ∪ (0, x1). Then using the

monotonicity ofF outside[x2, x1] and the hypothesis that all limit cycles intersect both
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the linesx = x1 andx = x2, we conclude that ifγ1 andγ2 are two limit cycles of (2), with
γ1 contained in the interior ofγ2, one has∮

γ1

g(x)F (x)dt <

∮
γ2

g(x)F (x)dt,

which contradicts (3) and so the number of limit cycles is at most one.�
The weak point of this result is the assumption that all limit cycles must intersect

the linesx = x1 andx = x2. In general, this is not true and, moreover, it may be diffic
to verify. With our result we give sufficient hypotheses to ensure this fact. Theorem
based on a slightly generalization of Theorem 2.2 that we state here without proof,
can be obtained following closely the previous one.

Theorem 2.3. Assume(A), (B) and(C) of Theorem1.1 hold, letNx1,x2 denote the numbe
of limit cycles of system(2) which intersect both the linesx = xi , i = 1,2. ThenNx1,x2 � 1.

Now we are able to prove the main part of our result.

2.3. Uniqueness: Step II

The number of limit cycles of system (2) is by definitionNlc = Nx1,x2 + Nx1 + Nx2,
beingNxi

the number of limit cycles which intersect only the linex = xi . So to prove our
main result we only need to controlNxi

.
From Proposition 2.1 and assumption (D) we know that all limit cycles must inte

boththe linesx = xi , i = 1,2. NamelyNxi
= 0, i = 1,2.

As already remarked in Section 2.1 our hypotheses imply existence of at least on
cycle,Nlc � 1, thus we finish our proof by recalling that Theorem 2.3 givesNlc � 1.

Before passing to the applications of our theorem, let us consider in the next para
what can happen when we do not assume hypothesis (D).

2.4. Removing the assumptionG(x1) = G(x2)

The first remark is that assumption (D) cannot be removed without avoiding case
more than one limit cycle, as the following example shows.

Remark 2.4 (A case withG(x1) < G(x2)). Starting from a classical counterexample
Duff and Levinson [2] to the H. Serbin conjecture [8], we exhibit a polynomial sys
where all hypotheses (A)–(E) are verified but (D), which has 3 limit cycles.

Let us consider the equation:

ẍ + εf (x)ẋ + g(x) = 0, (4)

where ε is a small parameter,g(x) = x and f is a polynomial of degree 6,f (x) =∑3
l=0 a2lx

2l + Ax + Bx3, wherea0I0 = −4/81,a2I2 = 49/81, a4I4 = −14/9, a6I6 = 1,∫

I2k = 2π

0 sin2 θ cos2k θ dθ and A,B to be determined. Coefficients(a2l )2l are fixed in
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such a way that, passing to polar coordinates, forε small enough andA,B = 0, system (4)
has three limit cycles.

In fact, let us introduce polar coordinatesx = r cosθ , y = r sinθ . Then (4) can be rewrit
ten as{

ẋ = y,

ẏ = −g(x) − εf (x)y.

Thus

dr

dθ
= εrf (r cosθ)sin2 θ

1+ εf (r cosθ)sinθ cosθ
.

If r and|ε| are small enough, we can rewrite the previous equation as

dr

dθ
= ε

[
H0(r, θ) + εH1(r, θ) + ε2H2(r, θ, ε)

]
, (5)

whereHi are analytic functions ofr, θ andε. Let ρ > 0 and let us denote byr(θ, ρ, ε) the
solution of (5) with initial datumr = ρ. Then our system has a limit cycle if and only ifρ

is an isolated positive root ofr(2π,ρ, ε) − ρ = 0. Integrating (5) we get

r(2π,ρ, ε) − ρ = εF̄ (ρ) + ε2R2(ρ, ε), (6)

whereF̄ (ρ) = ∫ 2π

0 ρf (ρ cosθ)sin2 θ dθ andR2(ρ, ε) is some analytic remainder functio
With our choice of(a2l )0�l�3 we obtainF̄ (ρ) = ρ(ρ2 − 1/9)(ρ2 − 4/9)(ρ2 − 1), and
then from (6) we conclude that if|ε| is sufficiently small,r(2π,ρ, ε)−ρ has three positive
isolated simple roots,ε-close to 1/3, 2/3 and 1.

The method used to find the number of limit cycle does not involve the values ofA,B.
We claim that we can vary these parameters in such a way thatF(x) = ∫ x

0 f (ξ) dξ verifies
hypothesis (C), with|x2| > x1 and thenG(x) = x2/2 does not verify hypothesis (D). Ju
as an example consider

F(x) = x

π

(
− 4

81
+ 196

81

x2

3
− 112

9

x4

5
+ 64

5

x6

7
+ 1

200
x + 1

2
x3

)
,

which has three real zerosx0 = 0, x2 < 0 < x1 and its monotone increasing outsi
(x2, x1). Moreover,f (x) = F ′(x) has four zeros in the same interval.1

To conclude this part let us remark that adding further assumptions onF(x), one can en
sure that all limit cycles must intersect both linesx = x1, x = x2, thus obtaining aexistence
and uniquenessresult for (2). For instance one can prove the following theorem.

Theorem 2.5. Assumef andg verify hypotheses(A) and (B). LetF andG be the primi-
tives off andg vanishing atx = 0 and assume they verify hypotheses(C) and(E). Assume
one of the following conditions holds:

1 Using Sturm’s method to find real roots of polynomials we obtain that the zeros ofF belong to the in-
tervals,x2 ∈ [−1.130,−1.129] and x1 ∈ [0.247,0.248], whereas zeros off verify x′

4 ∈ [−0.969,−0.9688],

x′

3 ∈ [−0.343,−0.342], x′
2 ∈ [−0.173,−0.172] andx′

1 ∈ [0.139,0.140].
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(D′) G(x1) > G(x2) and there existsx∗
2 ∈ (x2,0) such thatF(x∗

2) �
√

2G(x1);
(D′′) G(x1) < G(x2) and there existsx∗

1 ∈ (0, x1) such thatF(x∗
1) � −√

2G(x2).

Then Liénard system(2) has one and only one limit cycle.

Proof. We only prove the theorem assuming (D′), being the other case very similar. L
us assumeG(x1) > G(x2) and that there existsx∗

2 ∈ (x2,0) such thatF(x∗
2) �

√
2G(x1),

we will prove that any orbit which intersects the linex = x∗
2 must intersect also the lin

x = x1.
Considering the ovalEG(x1) = {(x, y) ∈ R

2: y2/2+G(x)−G(x1) = 0} one realizes tha
there exists a unique point(0, yA) with yA <

√
2G(x1), whose future orbit will intersec

the linex = x1 at the point(x1,0).
Let us consider now a point(x∗

2, yB), with yB � F(x∗
2), we claim that its future orbi

will intersect they-axis at some(0, yB ′) such thatyB ′ >
√

2G(x1). This can be proved
by considering the evolution of the functionΛ(x,y) = y2/2+ G(x) under the flow of the
Liénard system.

Summarizing, the orbit of all points of the form(x∗
2, yB), yB > F(x∗

2), will intersect the
line x = x1 with positive coordinatey. This concludes the proof once we remark that or
of points(x∗

2, y′), y′ < F(x∗
2), turn clockwise and will intersect again the linex = x∗

2 at
the some point(x∗

2, y′′) with y′′ � F(x∗
2).

To complete the proof of the theorem one remark that by Proposition 2.1 all limit c
must intersect the linex = x2. Hence they must intersect the linex = x∗

2, beingx2 < x∗
2. By

the first part these limit cycles intersect also the linex = x1 and then applying Theorem 2
we conclude the proof. �

3. Some applications

In this section we give some applications of Theorem 1.1. The first application
cerns Liénard’s systems (2), whereF andG verify all hypotheses of Theorem 1.1 but (D
(Sections 3.1 and 3.2). Our aim is to show that we can find a new Liénard system (s
modified version of the original one) for which Theorem 1.1 holds, exhibiting one
only a limit cycle. The second application is of different nature, starting with a given
nard system, which does not verify assumptions of Theorem 1.1, we prove existen
uniqueness of limit cycles for a new system obtained from the first one just by introd
two parameters. We will consider the polynomial case (Section 3.3) and a more g
one (Section 3.4).

3.1. Case I: Deformg

Let us recall thatF has three real zeros,x0 = 0 andx2 < 0< x1, let us assumeG(x1) �=
G(x2). Let us introduce the 1-parameter family of functions:{

g(x) if x � 0,

gλ(x) =

λg(x) if x < 0.
(7)
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Then(gλ)λ verifies hypotheses (A) and (B) of Theorem 1.1, providedλ > 0. Let us define
Gλ(x) = ∫ x

0 gλ(ξ) dξ . Let λ∗ = G(x1)/G(x2) > 0, thenGλ∗(x1) = Gλ∗(x2). Hence also
hypotheses (D) and (E) hold and the differential equation

ẍ + f (x)ẋ + gλ∗(x) = 0,

has a unique isolated periodic solution.

3.2. Case II: DeformF

Let us assumeG(x1) < G(x2). The idea is now to modify the roots ofF in such a way
hypothesis (D) holds. We do this in a simple way, more sophisticated ones are poss

Let λ > 0 and let us introduce the 1-parameter family of functions(Fλ)λ, defined by

Fλ(x) =
{

F(x) if x � 0,
F(λx) if x < 0.

Clearly (Fλ)λ verifies hypothesis (E) ifF does;(Fλ)λ is no longer Lipschitz atx = 0 but
existence and uniqueness of the Cauchy problem are still verified.

Thanks to the form ofg and hypothesis onG, there exists the uniquex∗
2 < 0 such that

G(x∗
2) = G(x1), moreoverx2 < x∗

2. Letλ∗ = |x2|/|x∗
2| andx̄λ∗ = x2/λ∗. We claim that̄xλ∗

is the unique negative zero ofFλ(x) and hence hypotheses (C) and (D) hold.Fλ, in fact,
has three zeros,x0, x1 > 0 (asF does) and̄xλ, moreover,G(x̄λ) = G(x∗

2) = G(x1). Hence{
ẋ = y − Fλ∗(x),

ẏ = −g(x),

has the unique limit cycle.

3.3. Polynomial case

Let us consider a polynomialP2n+1(x) = a2n+1x
2n+1 + a2nx

2n + · · · + a1x. Assume
n � 1, a2n+1 > 0 and hypothesis (C) does not hold. We claim that we can introdu
modified polynomialPλ(x) = P2n+1(x) − λx and a functiong verifying hypotheses (A)
(B) and (D) such that{

ẋ = y − Pλ(x),

ẏ = −g(x),
(8)

has the unique limit cycle.
P2n+1(x) has at most 2n local maxima and minima, so let us define:

ξ+ = min
{
x > 0: ∀y > x P ′

2n+1(y) > 0 andP ′′
2n+1(y) > 0

}
,

ξ− = max
{
x < 0: ∀y < x P ′

2n+1(y) > 0 andP ′′
2n+1(y) > 0

}
.

Let us considerλ± � 0 such that

P2n+1(x) � λ+x for all 0< x < ξ+ and
P2n+1(x) � λ−x for all ξ− < x < 0.
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Such theλ± can be obtained as follows. Consider the straight linesy = µx tangent to
y = P2n+1(x) for x ∈ (0, ξ+). They are in finite number, so one can takeλ+ = max|µi |; if
P2n+1(x) < 0 on(0, ξ+) we setλ+ = 0. A similar construction can be done forλ−.

Let λ̄ = max{λ+, λ−}. We claim that for allλ > λ̄, Pλ(x) = P2n+1(x) − λx satisfies
hypothesis (C). By construction,Pλ(x) < 0 for all x ∈ (0, ξ+) andPλ(x) > 0 for all x ∈
(ξ−,0). Because ofa2n+1 > 0 for sufficiently large|x|, Pλ(x) has the same sign asx.
Then forx > 0 large enough,Pλ(x) > 0 and hence there is at least one zero ofPλ(x).
Actually this will be the only one. On contrary, suppose there are more zeros2 and call
them x̄1 < x̄2 < x̄3. By construction for allx ∈ (x̄1, x̄2) we haveP2n+1(x) > λx whereas
P2n+1(x) < λx for x ∈ (x̄2, x̄3). This impliesP2n+1(x) non-convex forx > ξ+, against the
definition ofξ+. The case for negativex can be handle in a similar way. Let us callx1 the
positive zeros andx2 the negative one. Summarizing:Pλ(x) has three real zeros:x0 = 0,
x2 < 0 < x1, moreover,Pλ(x) < 0 for 0< x < x1, andPλ(x) > 0 for x2 < x < 0. Remark
thatx1 > ξ+ andx2 < ξ−, namelyPλ(x) is monotone increasing outside[x2, x1].

Let g be any locally Lipschitz function such thatxg(x)>0 for x �=0 and∫ x1
x2

g(ξ) dξ =0, then Theorem 1.1 applies and (8) has a unique limit cycle.

3.4. Generalization of the polynomial case

In this section we will generalize the result of the previous section, by proving an
tence and uniqueness result for the Liénard equation.

Theorem 3.1. Let us consider the Liénard equation

ẍ + f (x)ẋ + g(x) = 0, (9)

wheref andg verify:

(A) f is continuous andg is locally Lipschitz;
(B′) limx→±∞ f (x) = +∞ andxg(x) > 0 for all x �= 0.

Then there existŝλ, such that for allλ � λ̂ there existsµ = µ(λ) and system

ẍ + fλ(x)ẋ + gµ(x) = 0, (10)

has the unique limit cycle, wherefλ(x) = f (x) − λ andgµ are defined in(11).

Remark 3.2. Hypothesis (B′) is a strong one, even though it is verified for the import
class of polynomial Liénard equations. It can be relaxed by assuming limx→±∞ F(x) =
±∞ andF to be monotone increasing outside some interval containing the origin, w
as usualF(x) = ∫ x

0 f (ξ) dξ .

Proof. For anyλ1 > f (0), system (9) wherefλ1(x) = f (x) − λ1 replacesf (x), has at
least a limit cycle (see [12, Theorem 3]). Then one can find aλ̂ � λ1 such that for allλ � λ̂,

2 They will be at least three, if transversal, becausePλ(ξ+) < 0 andPλ(x) > 0 for x large enough. Non

transversal zeros can be removed by small increment ofλ.
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Fλ(x) = −λx + ∫ x

0 f (ξ) dξ verifies hypotheses of Theorem 1.1. Just use monoton
of F , as we did in the previous section for the polynomial case, to ensure that withλ large
enough,Fλ has only two non-zeros roots and it is monotone increasing outside the in
whose boundary is formed by the two non-zeros roots.

Let us callx2(λ) < 0< x1(λ), the non-zeros roots ofFλ(x) = 0. Then we can modifyg
(for instance as we did in Section 3.1) by introducing

gµ(x) =
{

g(x) if x � 0;
µg(x) if x < 0,

(11)

in a way
∫ x1
x2

g(ξ) dξ = 0. Namely also hypothesis (D) of Theorem 1.1 holds, and so
tem (10) has the unique limit cycle.�

The role off and g in the previous theorem may be in some sense inverted. M
precisely, one can prove the following result.

Remark 3.3. Let us consider the global center system

ẍ + g(x) = 0, (12)

with g locally Lipschitz, xg(x) > 0 for x �= 0, G(x) = ∫ x

0 g(ξ) dξ and assume
limx→±∞ G(x) = +∞. Take anyx2 < 0 < x1 such thatG(x2) = G(x1). Then we can
perturb (12) by addingany continuous friction termf (x)ẋ, such thatF(x) = ∫ x

0 f (ξ) dξ

verifiesF(x1) = F(x2) = 0 andF(x) is monotone increasing outside the interval[x2, x1],
obtaining a Liénard system̈x + f (x)ẋ + g(x) = 0 with one and only one limit cycle.

After this paper has been submitted for publication on JMAA, we learned that a
in the same framework appeared on [13]. However, despite some obvious similari
the proof, the papers are independent and have different applications. We also wou
to mention that the present result has been already generalized in two directions [1,
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