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Abstract

We consider the Liénard equation and we give a sufficient condition to ensure existence and
uniqueness of limit cycles. We compare our result with some other existing ones and we give some
applications.

0 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the Liénard equation:
X+ f(x0)x+g(x)=0, 1)

where f, g : R = R, with particular attention to the existence and uniqueness of limit
cycles. This is a classical problem of non-linear oscillation for second order differential
equations. Different assumptions grandg and different methods used to study the prob-
lem, gave rise to a large amount of literature on this topic; for a review of results and
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methods, reader can consult [9], [15, Chapter IV] or [14]. In the following we will give
some more references.
We make the following assumptions ghandg:

(A) f is acontinuous function anglverifies a locally Lipschitz condition.
(B) f(0) <0, f(x) > 0for|x| > 8, for somes > 0, andxg(x) > O for x £ 0.

Condition (A) assures existence and uniqueness of the Cauchy initial value problem for
the Liénard equation. In fact, passing to thénard planethe second order differential
equation iquivalento the following first order system:

y=-—gkx),

where F(x) = f(f f(&)d&. Hence assuming hypothesis (A) the right-hand side of (2) is
Lipschitz continuous, from which the claim follows.

Assumption (B) guarantees that the origin is the only singular point of the system, which
results a repeller. Moreover, orbits of (2) turn clockwise around it. Hypothesis on the sign
of f(0) can be weakened by asking”(x) < 0 for |x| small. We nevertheless prefer the
former formulation (A) because of the applications we will give in the last part of the paper.

Assuming assumptions (A) and (B) ghandg, our main result will be the following
theorem.

{X=y—F@L @

Theorem 1.1. LetG(x) = fcf g(&)d& and suppose that and G verify.

(C) F has only three real transversal zeros, located@t= 0, x2 < 0 < x1. ASsume, more-
over, thatF is monotone increasing outside the interjrad, x1].

(D) G(x1) =G(x2).

(E) limsup,_, ; ,,[G(x) + F(x)] = +o0 andlimsup,_, _,[G(x) — F(x)] = +o0.

Then systen2) has a unique periodic orbit in thex, y)-plane which is stable.

Because of the equivalence of Eq. (1) and system (2) the former has a unique limit cycle
if Theorem 1.1 applies.

We postpone the proof of the Theorem 1.1 to the next section. In Section 3 we will dis-
cuss the role of our hypotheses and compare this result with other existence and uniqueness
results concerning Liénard systems.

Our result follows from investigating the geometry of limit cycles, in particular their
(eventual) intersections with the linas= x1 andx = x». With Proposition 2.1 we give
sufficient conditions to ensure intersection of limit cycles with one or both linesx;
and x = xp. Our result will then follow joining these informations with the result of
[11, Theorem 1].

First of all we stress that assumptions are quite standard ones. Hypotheses (A), (B), (C)
and (E) guarantee existence of limit cycles as it will be shown in Section 2.1. Hypotheses
on F and the equality folG at roots of F(x) = 0 arefundamentafor our proof. While
we can already find in literature such hypothese$ pthe link between zeros of and



T. Carletti, G. Villari / J. Math. Anal. Appl. 307 (2005) 763-773 765

values ofG at these points are new, as far as we know. We remark that hypothesis (C) can
be weakened by allowing to have zeros insidéxz, x1), other thanxg = 0, where it does
not change sign.

We already gave some bhibliography of results concerning existence and/or uniqueness
of limit cycles for Liénard equations; we do not try to compare our result with all the
existing ones, we will restrict ourselves to emphasize the strong point of our Theorem and
to compare it with some general results.

First of all wedo not assume any parity conditions F and/org, on the contrary ifF
andg are odd, then Theorem 1.1 contains the Levinson—Smith result [4] as particular case:
let x; = —x2 be the non-zeros root df(x) = 0, G(x) is even because of oddnessofind
thenG (x1) = G(—x2).

The monotonicity onF is required only outside the interval determined by the smallest
and largest zeros, namely its derivati#&x) = f(x) can have several zeros inside this
interval, this is a more general situation than the results of Massera [5] and Sansone [7].
The last one follows from our result by remarking thag k) = x, thenG (x) = x2/2 and
let A > 0 be such thal'(A) = F(—A) =0, we getG(A) = G(—A).

The second remark concerns the hypothesis (D): it is easy to verify if this condition on
G holds, just compare the function at two points. We do not need to use the inversion of
any function as in the Filippov case [3] (and in all results inspired by his method), or to
impose conditions on functions obtained by composition and inversion. These facts make
our theorem easily applicable as the results of Section 3 will show.

2. Main result

The aim of this section is to prove our main result, Theorem 1.1. The proof is divided
in two steps, presented in Sections 2.2 and 2.3. Before let us introduce two preliminary
results, first, Proposition 2.1, whose role is to give information about the geometry of limit
cycles with respect to lines= x;, wherex; are non-zero roots df (x) = 0. Second, give a
proof (Section 2.1) of existence of limit cycles assuming hypotheses (A), (B), (C) and (E),
as claimed in the Introduction.

Proposition 2.1. Let f and g verify hypothese¢A) and (B). Let F(x) = [g f(&)dé
Gx)= fg‘ g(&)dg and assumé (x) verify hypothesi¢C). Then

e if G(x1) > G(x2) all (eventual limit cycles of(2) will intersect the linex = x»;
e whereas ifG(x1) < G(x2) all (eventual limit cycles of (2) will intersect the line
X = X1.

Proof. Let us denote b/ (x, y) = (y — F(x), —g(x)) the Liénard field associate to (2)
and let us consider the family of ovals given&y = {(x, y) € R% y2/2+G(x) — N = 0}.

Let us consider the case(x1) > G(x2), the other can be handle similarly and we will
omit it. The oval&g(y,) does not intersect the line= x1, whereass ;) passes through
points (x2, £4/2(G (x1) — G(x2))). Namely Eg(x,) contains in its interio€g(x,) Which
contains the origin in its interior.
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The flow of Liénard system (2) is transversalig.,) (more precisely it points outward
with respect t€g x,)):

(VEGoo X, ))|g,, )= —F(x)gx) >0,

equality holds only forr = 0 andx = x,. Let us call(x], 0) the unique intersection point
of £g(x,) With the positivex-axis.

Hence from Poincaré—Bendixson theorem no-limit cycle can be completely contained
in the strip[x2, x) x R. Moreover, orbits of (2) spiral outward leavidg.,). Thus any
(eventual) limit cycle must intersect the line=x3. O

2.1. Existence of limit cycles

Let us investigate the existence of limit cycles. Consider assumption (E), then if
lim,_ +00 G(x) = 400, we observe that assumption (C) guarantees the existerce 6f
anda <0< B8 such thatff f(&)dE > €. Moreover, f (x) > 0 for x ¢ [«, B]. We can then
apply [10, Theorem 1] to obtain existence of limit cycles.

On the other hand, let us assume Jim, o, G(x) < 4o (the case lim, o G(x) <
+o0 can be handle similarly and we omit it). Then using [12, Theorem 3] we complete the
proof of the existence of limit cycles.

2.2. Unigueness: Step |
In [11] the following result has been proved.

Theorem 2.2. Let f and g verify hypothese§\), (B) and let F’ verify hypothesi¢C). Let
x2 < 0 < x1 be the non-zero roots @ (x) = 0. Assume that all limit cycles ¢2) intersect
the linesx = x2 and x = x1. Then systen2) has at most one limit cycle, if it exists it is
stable.

Let us give its proof for completeness.

Proof. We claim that for any limit cycley, of system (2) we have:

ygg(x)dt =0, ygg(x)ydt =0 and jgg(x)[y - F(x)] dt=0.
%

14 14

This can be proved easily by remarking that)y = 4 (3y?). Hence:

ygg(x)F(x)dtzo. 3)
Y

Hypotheses (B) and (C) givE (x)g(x) < 0 for all x € (x2,0) U (0, x1). Then using the
monotonicity of F outside[xz, x1] and the hypothesis that all limit cycles intersect both
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the linesx = x1 andx = x2, we conclude that if1 andy, are two limit cycles of (2), with
y1 contained in the interior of,, one has

ygg(X)F(X)dt < ygg(x)F(X)dt,
Vi V2
which contradicts (3) and so the number of limit cycles is at most one.

The weak point of this result is the assumption that all limit cycles must intersect both
the linesx = x; andx = x». In general, this is not true and, moreover, it may be difficult
to verify. With our result we give sufficient hypotheses to ensure this fact. Theorem 1.1 is
based on a slightly generalization of Theorem 2.2 that we state here without proof, which
can be obtained following closely the previous one.

Theorem 2.3. AssuméA), (B) and(C) of Theorend.1 hold, letN,, ., denote the number
of limit cycles of systert2) which intersect both the lines=x;,i = 1, 2. ThenN,, ,, < 1.

Now we are able to prove the main part of our result.
2.3. Uniqueness: Step Il

The number of limit cycles of system (2) is by definitidfic = Ny, x, + Ny, + Ny,
being N,, the number of limit cycles which intersect only the line= x;. So to prove our
main result we only need to contrdl,, .

From Proposition 2.1 and assumption (D) we know that all limit cycles must intersect
boththe linesx = x;, i =1, 2. NamelyN,, =0,i =1, 2.

As already remarked in Section 2.1 our hypotheses imply existence of at least one limit
cycle, Nic > 1, thus we finish our proof by recalling that Theorem 2.3 gitgs< 1.

Before passing to the applications of our theorem, let us consider in the next paragraph
what can happen when we do not assume hypothesis (D).

2.4. Removing the assumptiGix;) = G (x2)

The first remark is that assumption (D) cannot be removed without avoiding cases with
more than one limit cycle, as the following example shows.

Remark 2.4 (A case withG(x1) < G(x2)). Starting from a classical counterexample of
Duff and Levinson [2] to the H. Serbin conjecture [8], we exhibit a polynomial system
where all hypotheses (A)—(E) are verified but (D), which has 3 limit cycles.

Let us consider the equation:

i4+ef(x)x +gx)=0, (4)

wheree is a small parameteg(x) = x and f is a polynomial of degree 6f(x) =
>3 oaux? + Ax + Bx3, whereaplo = —4/81, axly = 49/81, asls = —14/9, apl = 1,
Iy = fOZ” sif9co*0do and A, B to be determined. Coefficientay ) are fixed in
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such a way that, passing to polar coordinatese¢ femall enough and, B = 0, system (4)
has three limit cycles.

In fact, let us introduce polar coordinates= r cosd, y = r sinf. Then (4) can be rewrit-
ten as

{i =y,
y=—g(x)—ef(x)y.
Thus

dr  erf(rcosd) sinf o
dd 1+ ef(rcosd)sind cosd
If » and|e| are small enough, we can rewrite the previous equation as

dr

o = €[Ho(r,0) + € H1(r, 0) + € Ha(r, 6, €)], (5)

whereH; are analytic functions of, 6 ande. Let p > 0 and let us denote by(0, p, €) the
solution of (5) with initial datum- = p. Then our system has a limit cycle if and onlypif

is an isolated positive root af(2r, p, €) — p = 0. Integrating (5) we get
r2m,p.€) — p=€F(p) +€*Ra(p, €), (6)

whereF (p) = f02” of (pcost) sirt 6 d andRa(p, €) is some analytic remainder function.
With our choice of(az)o<;<3 We obtainF(p) = p(p? — 1/9)(p? — 4/9)(p? — 1), and
then from (6) we conclude that|i| is sufficiently smally (27, p, €) — p has three positive
isolated simple roots;-close to ¥3, 2/3 and 1.

The method used to find the number of limit cycle does not involve the valugs Bf
We claim that we can vary these parameters in such a waythat= fé‘ f (&) d& verifies
hypothesis (C), withxz| > x1 and thenG (x) = x2/2 does not verify hypothesis (D). Just
as an example consider

x 4 196x2 112x* 64x8 1 1
F(X)Z— )

4 oxm Lilzx” baxm L 43
817813 95 57 200 "2

which has three real zerogy = 0, x2 < 0 < x1 and its monotone increasing outside

(x2, x1). Moreover, f (x) = F’(x) has four zeros in the same interval.

To conclude this part let us remark that adding further assumptiofig.on one can en-
sure that all limit cycles must intersect both lines- x1, x = x2, thus obtaining @xistence
and uniquenessesult for (2). For instance one can prove the following theorem.

Theorem 2.5. Assumef and g verify hypothese§A) and(B). Let F and G be the primi-
tives of f andg vanishing atc = 0 and assume they verify hypothe@@&pand(E). Assume
one of the following conditions holds

1 Using Sturm’s method to find real roots of polynomials we obtain that the zerds Inélong to the in-
tervals,xp € [-1.130,—1.129] and x1 € [0.247,0.248], whereas zeros of verify xﬁl € [—0.969 —-0.9688,
x5 €[—0.343 —0.342), x, € [-0.173 —0.172] andx] € [0.139 0.14Q.
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(D’) G(x1) > G(x2) and there exists € (x2, 0) such thatF (x3) > +/2G (x1);
(D”) G(x1) < G(x2) and there exists} € (0, x1) such thatF (x}) < —v/2G (x2).

Then Liénard syster2) has one and only one limit cycle.

Proof. We only prove the theorem assuming'Y[being the other case very similar. Let
us assumé(x1) > G(x2) and that there exists; € (x2, 0) such thatF (x3) > +/2G (x1),
we will prove that any orbit which intersects the lime= x; must intersect also the line
X = X1.

Considering the ovalg ;) = {(x, y) € R? y?/24G(x) — G(x1) = 0} one realizes that
there exists a unique poind, y4) with y4 < +/2G(x1), whose future orbit will intersect
the linex = x1 at the point(x1, 0).

Let us consider now a poirtks, yg), with yg > F(x3), we claim that its future orbit
will intersect they-axis at somg0, yp/) such thatyg > +/2G(x1). This can be proved
by considering the evolution of the functiof(x, y) = y2/2 + G(x) under the flow of the
Liénard system.

Summarizing, the orbit of all points of the for@;, yg), yp > F(x3), willintersect the
line x = x1 with positive coordinate. This concludes the proof once we remark that orbits
of points (x5, y), ' < F(x3), turn clockwise and will intersect again the line= x; at
the some pointx3, y”) with y” > F(x3).

To complete the proof of the theorem one remark that by Proposition 2.1 all limit cycles
must intersect the line = x2. Hence they must intersect the line= x5, beingx, < x3. By
the first part these limit cycles intersect also the kne x1 and then applying Theorem 2.2
we conclude the proof. O

3. Some applications

In this section we give some applications of Theorem 1.1. The first application con-
cerns Liénard’s systems (2), wheFeandG verify all hypotheses of Theorem 1.1 but (D)
(Sections 3.1 and 3.2). Our aim is to show that we can find a new Liénard system (slightly
modified version of the original one) for which Theorem 1.1 holds, exhibiting one and
only a limit cycle. The second application is of different nature, starting with a given Lié-
nard system, which does not verify assumptions of Theorem 1.1, we prove existence and
uniqueness of limit cycles for a new system obtained from the first one just by introducing
two parameters. We will consider the polynomial case (Section 3.3) and a more general
one (Section 3.4).

3.1. Case I: Deformy

Let us recall thaf has three real zerosyg = 0 andxz < 0 < x1, let us assume& (x1) #
G (x2). Let us introduce the 1-parameter family of functions:

_Jex) ifx=0,
() = {)Lg(x) if x <O. (7)
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Then(g,), verifies hypotheses (A) and (B) of Theorem 1.1, providedO. Let us define
G;(x) = f(j‘ g (€)d&. Let h, = G(x1)/G(x2) > 0, thenG,, (x1) = G, (x2). Hence also
hypotheses (D) and (E) hold and the differential equation

i+ fE + 8. (1) =0,

has a unique isolated periodic solution.
3.2. Case II: DeformF

Let us assumé& (x1) < G(x2). The idea is now to modify the roots &f in such a way
hypothesis (D) holds. We do this in a simple way, more sophisticated ones are possible.
Let 1 > 0 and let us introduce the 1-parameter family of functiof), , defined by

F(x) if x >0,

F) = { F(Ox) ifx<0.

Clearly (Fy); verifies hypothesis (E) it does;(F3), is no longer Lipschitz at = 0 but
existence and uniqueness of the Cauchy problem are still verified.

Thanks to the form of and hypothesis o, there exists the unique; < 0 such that
G(x3) = G(x1), moreoveny < x5. Leti, = |x2|/|x5| andx;, = x2/A.. We claim that;,,
is the unique negative zero @, (x) and hence hypotheses (C) and (D) haly, in fact,
has three zerosp, x1 > 0 (asF does) and:;, moreoverG(x;) = G(x3) = G(x1). Hence

{x=y—mgm,
y=-gx),
has the unique limit cycle.

3.3. Polynomial case

Let us consider a polynomiaty,1(x) = az,+1x2 1 + a2,x?" + - - - 4+ a1x. Assume
n > 1, az+1 > 0 and hypothesis (C) does not hold. We claim that we can introduce a
modified polynomialP; (x) = P»,+1(x) — Ax and a functiorg verifying hypotheses (A),
(B) and (D) such that

{)&:y— P, (x),
y=-gx),

has the unique limit cycle.
P2,11(x) has at most 2 local maxima and minima, so let us define:

(8)

£ =min{x > 0: Vy>x Py, ,(y) > 0andP;, ,(y) > 0},
g_=max{x <0:Vy <x Py, ,(y)>0andPy, ,(y) > 0}.
Let us considek > 0 such that

Poi1(x) <Ayx forallO<x <&, and
Poy1(x) > A_x forallé <x <O.
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Such theAaL can be obtained as follows. Consider the straight lines ux tangent to
y = Po,41(x) for x € (0, £1). They are in finite number, so one can take= max|u;|; if
P2, 1+1(x) <00n(0, &4) we seth = 0. A similar construction can be done fbr .

Let A = max{i,, A_}. We claim that for allx > X, P;(x) = Pp,11(x) — Ax satisfies
hypothesis (C). By constructior®, (x) < O for all x € (0, &4) and P, (x) > O for all x €
(5-,0). Because ofip,+1 > O for sufficiently large|x|, P,(x) has the same sign as
Then forx > 0 large enoughpPy (x) > 0 and hence there is at least one zeraPpfx).
Actually this will be the only one. On contrary, suppose there are more Zara$ call
themx; < x2 < x3. By construction for allk € (x1, x2) we havePs,;1(x) > Ax whereas
P2, 11(x) < Ax for x € (X2, X3). This impliesP,1(x) non-convex for > &, against the
definition of&,.. The case for negative can be handle in a similar way. Let us callthe
positive zeros and; the negative one. Summarizing; (x) has three real zerosp = 0,
x2 < 0 < x1, moreover,P; (x) <0 for 0 < x < x1, and Py (x) > 0 for x» < x < 0. Remark
thatxy > &, andxy < &_, namelyP; (x) is monotone increasing outsifie, x1].

Let ¢ be any locally Lipschitz function such thatg(x)>0 for x#0 and
f;;l g(£)dg =0, then Theorem 1.1 applies and (8) has a unique limit cycle.

3.4. Generalization of the polynomial case

In this section we will generalize the result of the previous section, by proving an exis-

tence and uniqueness result for the Liénard equation.
Theorem 3.1. Let us consider the Liénard equation

X+ f(x)x+g(x)=0, 9)
where f and g verify.
(A) f is continuous ang is locally Lipschitz
(B") limy_+o0 f(x) =400 andxg(x) > O0forall x #0.
Then there exists, such that for all, > A there existg. = (1) and system

X+ fo(0)x +gu(x) =0, (10)
has the unique limit cycle, wherg (x) = f(x) — X andg, are defined in11).
Remark 3.2. Hypothesis (B) is a strong one, even though it is verified for the important
class of polynomial Liénard equations. It can be relaxed by assuming,lim F(x) =

+o0 and F to be monotone increasing outside some interval containing the origin, where
as usualF (x) = [y f(&)dE.

Proof. For anyi; > f(0), system (9) wherefy, (x) = f(x) — A1 replacesf (x), has at
least a limit cycle (see [12, Theorem 3]). Then one can fihckak, such that for alh > 4,

2 They will be at least three, if transversal, becauggé) < 0 and Py (x) > O for x large enough. Non-
transversal zeros can be removed by small incremeht of
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F(x)=—-Ax + fé‘ f(&)dé& verifies hypotheses of Theorem 1.1. Just use monotonicity
of F, as we did in the previous section for the polynomial case, to ensure that Veithe
enough,F,, has only two non-zeros roots and it is monotone increasing outside the interval
whose boundary is formed by the two non-zeros roots.

Letus callxz2(A) < 0 < x1(A), the non-zeros roots df, (x) = 0. Then we can modify
(for instance as we did in Section 3.1) by introducing

ey ifx=0;
8u(¥) = {/Lg(x) if x <0, (11)

ina wayfx"z1 g(&)d& = 0. Namely also hypothesis (D) of Theorem 1.1 holds, and so sys-
tem (10) has the unique limit cycle.o

The role of f and g in the previous theorem may be in some sense inverted. More
precisely, one can prove the following result.

Remark 3.3. Let us consider the global center system
¥+gx)=0, (12)

with g locally Lipschitz, xg(x) >0 for x#0, G(x)= fg g(€)dg and assume
liMy_ 100 G(x) = +00. Take anyx, < 0 < x1 such thatG(xz) = G(x1). Then we can
perturb (12) by addingany continuous friction ternf (x)x, such thatF'(x) = f(j‘ f(&)dE
verifies F(x1) = F(x2) = 0 andF (x) is monotone increasing outside the interjval, x1],
obtaining a Liénard system+ f(x)x + g(x) = 0 with one and only one limit cycle.

After this paper has been submitted for publication on IMAA, we learned that a result
in the same framework appeared on [13]. However, despite some obvious similarities in
the proof, the papers are independent and have different applications. We also would like
to mention that the present result has been already generalized in two directions [1,6].
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