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Abstract

This paper presents the application of a new algorithm for maximizing the simulated
likelihood functions appearing in the estimation of Mixed Multinomial logit (MMNL)
models. The method uses Monte Carlo sampling to produce the approximate likeli-
hood function and dynamically adapts the number of draws on the basis of statistical
estimators of the simulation error and simulation bias. Its convergence from distant
starting points is ensured by a trust-region technique, in which improvement is en-
sured by locally maximizing a quadratic model of the objective function. Simulated
data is first used to assess the quality of the results obtained and the relative perfor-
mance of several algorithmic variants. These variants involve, in particular, different
techniques for approximating the model’s Hessian and the substitution of the trust-
region mechanism by a linesearch. The algorithm is also applied to a real case study
arising in the context of a recent Belgian transportation model. The performance
of the new Monte Carlo algorithm is shown to be competitive with that of existing
tools using low discrepancy sequences.

Key words: Discrete choice; Mixed logit model; Trust-region methods; Adaptive
Monte Carlo samplings.

* Corresponding author. Cerfacs, Av. G. Coriolis 42, 31057 Toulouse Cedex, France.
Tel.: +33 5 6119 3014, fax: +33 5 6119 3000.

Email addresses: fabian.bastin@fundp.ac.be (Fabian Bastin),
cinzia.cirillo@fundp.ac.be (Cinzia Cirillo), philippe.toint@fundp.ac.be
(Philippe L. Toint).

1 Research Fellow of the National Fund for Scientific Research (FNRS)

Preprint submitted to Elsevier Science 8th September 2005



1 Introduction

Transport models based on discrete choice methods have dramatically changed
in the last ten years (Bhat, 2003). Researchers have been proposing more flex-
ible model formulations and practitioners are now starting to use them for
a better understanding and representation of complex decisional processes in
travel demand modeling. Among others, mixed logit models (MMNL) offer
the possibility to overcome most of the limitations of multinomial and nested
logit models (MNL and NL). They are mainly used to estimate randomly dis-
tributed explanatory variables, to measure correlation across alternatives and
to account for state dependency across observations. Although the conceptual
structure of MMNL was known from the late 70s (Electric Power Research
Institute, 1977), the numerical cost associated with their evaluation delayed
their applicability to real case studies until the mid nineties (Hensher and
Greene, 2003). The non-closed mathematical form of MMNL indeed imposes
the resolution of multidimensional integrals to calculate the relative choice
probabilities. This is done by means of simulations, which can be in real large-
scale model estimation very time consuming or sometimes infeasible even on
fast machines. As a consequence, current research has turned to the cheaper
quasi-Monte Carlo approaches, based on low discrepancy sequences, which has
been shown to produce more accurate integration approximations than classi-
cal Monte Carlo samplings, when the number of draws is fixed, for instance in
the study of physics problem (Morokoff and Caflish, 1995). Bhat (2001) and
Train (1999) have proposed the use of Halton sequences (Halton, 1960) for
mixed logit model and have found that they perform much better than pure
random draws in simulation estimation. Garrido (2003) has explored the use
of Sobol sequences, while Sandor and Train (2004) have compared random-
ized Halton draws and (¢,m, s)-nets. This trend is not without drawbacks.
For instance, Bhat (2001) pointed out that the coverage of the integration
domain by Halton sequences rapidly deteriorates for high integration dimen-
sions and consequently proposed a heuristic based on the use of scrambled
Halton sequences. He also randomized these sequences in order to allow the
computation of the simulation variance of the model parameters. Hess et al.
(2005) have proposed the use of modified Latin hypercube sampling, whose
performance has been assessed in two recent papers (see Bastin et al. (2005a)
and Sivakumar et al. (2005)).

Quasi-Monte Carlo methods are not the only way to decrease the numerical
cost involved in mixed logit estimation. In this paper we attempt to capitalize
on the desirable aspects of pure Monte Carlo techniques while significantly im-
proving their efficiency. Monte Carlo techniques benefit from a credible theory
for the convergence of the calibration process, as well as of stronger statistical
foundations (see for instance Fishman 1996 for a general review, Rubinstein
and Shapiro (1993) and Shapiro 2000; 2003 for application to stochastic pro-



gramming, Bastin et al. (2005¢) for more specific developments in the context
of non-linear programming and mixed logit problems). In particular, statis-
tical inference on the objective function is possible, while the quality of the
results can only be estimated in practice, for quasi-Monte Carlo procedures,
by repeating the calibration process on randomized samples (L’Ecuyer and
Lemieux, 2002).

Our approach is to propose a new algorithm for stochastic programming using
Monte Carlo methods, that is based on the trust-region technique. Trust-region
methods are well-known in non-linear non-convex /non-concave optimization,
and have been proved to be reliable and efficient for both constrained and un-
constrained problems. Moreover, the associated theoretical corpus is extensive
(Conn et al., 2000). Our efficiency objective led us to adapt the traditional
deterministic trust-region algorithm to handle stochasticity and, more impor-
tantly, to allow an adaptive variation of the used number of draws at each
iteration, as initially presented in Bastin et al. (2003). It additionally uses
information on the bias and improved algorithmic safeguards, and has been
proved to be convergent from any starting point in a companion paper (Bastin
et al., 2005b). The technique results in an algorithm whose execution time is
competitive with existing tools for mixed logit models, while giving more infor-
mation to the practitioners, and achieving similar solution accuracy. We also
aim to underline the importance of the optimization algorithm choice when
looking for numerical performances and show that exploitation of statistical
inference is valuable, by presenting applications of the method to simulated
and real datasets.

The paper is organized as follows. We briefly review the mixed logit problem
and some of its properties in Section 2. We then introduce our new algorithm
in Section 3. Section 4 presents our numerical experimentations on simulated
data. The discussion is then enlarged to a real case model estimation. Some
conclusions and perspectives are finally outlined in Section 6.

2 The Mixed Logit model

2.1 The problem and its approximation

Discrete choice models provide a description of how individuals perform a se-
lection among a finite set of alternatives. Let I be the population size and
A(7) the set of available alternatives for individual ¢, ¢ = 1,...,I, with car-
dinal |A()|. For each individual ¢, each alternative A; (j =1,...,|A(7)|) has
an associated utility that depends on the individual characteristics and the
relative attractiveness of the alternative. The utility is assumed to have the



additive form
Uij = Vij + €3, (1)

where V;; = Vi;(8;, zi;) is a function of the model parameters vector §; and
of z;;, the observed attributes of alternative A;, while €;; is a random term
reflecting the unobserved part of the utility.

Assuming that individual i selects the alternative maximizing his/her utility,
the probability that he/she chooses alternative A; is given by

Py = Pleqg < e+ (Vij — V) , VA € A(3)] . (2)

The particular form of this choice probability depends on the random terms
€;; in (1). If we assume that they are independently Gumbel distributed with
mean zero and scale factor one, Equation (2) can be expressed with the logit

formula
eVii ()

Li(B) = ey
” AT v s)

(3)

where we have simplified our notation by dropping the explicit dependence on
the known observations z;;. Formula (3) characterizes the classical multinomial
logit model.

Mixed logit models relax the assumption that the parameters S are the same
for all individuals, by assuming instead that individual explanatory variables
vectors (i) (i = 1,...,I) are realizations of a random vector 8. We then
assume that 3 is itself derived from a random vector £ and a parameter vector
6, which we write as 8 = (&, 0), and therefore L;;(3) becomes L;;(&,8). The
probability choice is then given by

P(6) = Bp Ly (6,0) = [ Ly(&,0)P(dS) = [ Liy(&.0)f(©)de,  (4)

where P is the probability measure associated with £ and f(-) its distribution
function.

The vector of parameters 6 is then estimated by maximizing the log-likelihood
function, i.e. by solving the program

1 I
max LL(§) = max - ; In P;;,(9), (5)

where j; is the alternative choice made by the individual 7. This involves the
computation of P, () for each individual ¢, s = 1,..., I, which is impractical
since it requires the evaluation of one multidimensional integral per individual.
The value of P;j;; () is therefore replaced by some approximation, obtained in



the Monte Carlo setting by sampling over &, and given by

R
SPZ}J% (0) = % Zl Liji (67“7 9)> (6)

where R is the number of random draws &,. As a result, 6 is now computed
as the solution of the simulated log-likelihood problem

1 I
R(g) = - 1
max SLL™(0) = max — gln SP;;.(0). (7)

We will denote by 65, a solution of this last approximate problem (often called
the Sample Average Approximation, or SAA), while 6* will represent a solution
of the true problem (5).

When the same individual delivers several observations, rather than only one,
these repeated choices are usually correlated, and we must consider the prob-
ability of the individual’s choice sequence, instead of the particular obser-
vations. Typically, the tastes of a given decision-maker are then assumed to
remain constant across choice situations for each particular respondent, such
that tastes vary across individuals, but not across observations for the same
individual. With j; giving the alternative chosen by decision-maker ¢ at time
t (t=1,...,T;), conditional on the realization &, the probability of the choice
sequence is then

T;
LzTi (57 0) = H Liju (57 0)
t=1

This leads to a new version of the log-likelihood function, given by

LL0) = 3 Yoo [ L0 @)

where we use the number of observations N > I as weight factor. The simu-
lated log-likelihood function has a corresponding form.

2.2 Convergence of approrimations and useful estimators

Bastin et al. (2005¢) have shown that the mixed logit problem can be viewed
as a generalization of a classical class of stochastic programming problems,
allowing the extension of associated convergence results, as the the number of
draws R tends to infinity, for a fixed population size (as is the case in most
real applications), and taking an independently and identically distributed
sample for each individual. They deduce in particular that for almost every
sequence of random draws, there exists some limit point 6* of (03,) that is
first (second)-order critical for the true log-likelihood function under some



reasonable assumptions, if 3, (R = 1,...) are first (second)-order critical for
the corresponding SAA problem.

It is furthermore possible to estimate the error made by using the SAA problem
(7) instead of the true problem (5), since it can be show that

N (LL(9) - SLL*(0)) = N (0, ; %) (8)

as R tends to infinity, where = means convergence in distribution and where
0;;, 1s the standard deviation of P, (6). Therefore, SLL®(f) is an asymptoti-
cally unbiased estimator of LL(f), and the asymptotic radius of its confidence
interval is

R 1 |& 05,0)
€ (0) Ozang R (P07 9)
where oy is the quantile of a N(0, 1), associated to some level of signification
5. We have set ¢ to 0.9 in our tests, leading to apg ~ 1.64. €X(f) can be
numerically evaluated by replacing o0;;,(0) and P;;,(€) by their corresponding
statistical estimators o7 (6) and P ().

Finally, the simulation bias for finite R can be approximated by

I (e§<e>)2_

BY(0) := E[SLL*(6)] - LL(0) = ——, No?

(10)
The validity of these estimators for practical purposes is discussed in Sec-
tion 4.2. It should be noted that error and bias can be calculated analytically
only for Monte Carlo sequences. The extension to quasi-Monte Carlo sequences
is difficult because of their deterministic nature. However, by introducing some
randomness in low discrepancy sequences, one can use statistical methods for
error analysis (see for instance (Bastin et al., 2004) for a preliminary study in
the context of MMNL models estimation).

3 A new algorithm for solving the SAA problem

The maximization of the simulated log-likelihood remains an expensive task
since, as pointed out in the introduction, the population size I can be large as
can the number of multidimensional integrals in the expression of the objective
function. To perform this maximization, we consider here a trust-region algo-
rithm that exploits statistical inference to limit the number of draws needed
in the early iterations, away from the solution. The basic idea is to generate a
sample set prior the optimization process, with R, i.i.d. random draws per
individual. At iteration k, only a (possibly small) subset of this sample set



will be used, by selecting Ry of the R,,x random draws for each individual
(for simplicity, the first Ry draws).

3.1 A trust-region approach

As other optimization techniques, a trust-region method is an iterative proce-
dure for maximizing an objective function. The basic principle is as follows.
Consider a current iterate # at iteration k. A trial point 6y + s, is then
calculated by maximizing a model my of the objective function inside a neigh-
borhood By of 6, called the trust-region (see Step 3 in Algorithm (1) below).
The trust-region is mathematically defined as

By Y (0 e R™||6 — 64| < ¢}

where vy, is called the trust-region radius. The model my is selected in such a
way that it coincides to the true objective function as the trust-region radius
tends to zero. The predicted and actual increases in objective function values
are then compared (Step 4) in order to check if the model adequately repre-
sents the objective function for our maximization purpose. If the agreement
is sufficiently good, the trial point becomes the new iterate (Step 5) and the
trust-region radius is (possibly) enlarged (Step 6); the iteration is then said to
be successful. If this agreement is poor, the trust region is shrunk in order to
improve this correspondence between the model and the objective function. In
addition, if the model predicted increase is large compared to the error of the
simulated log-likelihood (which is dependent on the number of draws), while
being a good approximation of this objective, we surmise that a less accurate
approximation could be sufficient and therefore reduce the number of draws
(Step 4). On the other hand, if the model prediction is poor compared to the
accuracy of the objective function, we increase the number of draws in an
attempt to correct this deficiency.

Since Monte Carlo simulation is used to compute our simulated likelihood
objective function, a crucial ingredient to make our algorithm efficient is the
technique which adapts the number of draws used at each iteration. Its main
goal is to balance the number of draws (which should be kept as small as
possible to reduce algorithmic costs) with bias and error in the value of the
simulated likelihood. Its details are given in the Appendix.

A description of our algorithm follows. We will refer to it as the BTRDA
algorithm, for basic trust-region with dynamic accuracy, by analogy with the
basic trust-region (BTR) algorithm (Conn et al., 2000, Chapter 6). The two
algorithms indeed coincide if we fix Ry t0 Rpax (K = 1,...,00). Some details
are skipped for the sake of clarity, but can be found in Appendix.



Algorithm 1: Trust-region maximization algorithm (BTRDA)

Step 0. Initialization. Let tol be a (user-defined) tolerance. An initial
point Ay and an initial trust-region radius 1)y are given. The minimum

number of draws R, , the (user-defined) maximum number of draws
Rax and the initial number of draws Ry € [RY;,, Ruax] are also given.
Compute SLLT(f,) and set k, the iteration index, and ¢, the number of
successful iterations, both to 0.

Step 1. Stopping test. Stop if the maximum number of draws has been
reached and the relative gradient (see Appendix) is less than the toler-
ance. In order to avoid objective function increases insignificant compared
to simulation noise, also stop if the relative gradient is less than a fraction
of the simulation error (9).

If Ry < Ruyax, safeguard against premature convergence to inaccurate
first-order critical points and increase the minimum number of draws if
no significant increase of the log-likelihood has been observed for small
numbers of draws (see Algorithm 2 in Appendix).

Step 2. Model definition. Define a model m;* of SLL" () in the trust
region By

Step 3. Step calculation. Compute a step s that sufficiently increases
the model mkR’“ and such that 0, + s, € By; set AmkR’“ = mkR’“ (O + sk) —

Ry,
my (Hk)

Step 4. Comparison of actual and predicted increases. Set R~ :=
Ry, and compute a new number of draws R > RF. (see Algorithm 3 in
Appendix). Define

_ SLLE" (6 + sy,) — SLL® (6))

Ami*

Pk - . (11)
If pr < 0.01 and Ry # R*, modify R~ or the candidate number of draws
R™ to take account of simulation bias and error differences, and update
pr (see Algorithm 4 in Appendix).

Step 5. Acceptance of the trial point. If p, < 0.01, define the next
iterate 0,1 as 6y, and set Ry,1 := R~. Otherwise accept the candidate
iterate by defining 6,1 := 0y + si, set Rg,; := RT and increment ¢ by
one.

Step 6. Trust-region radius update. Set

min {10%°, max(2||sg||, )} if px > 0.75,
¢k+1 = 1 .
Uk otherwise.

Increment £ by 1 and go to Step 1.

Note that the algorithm only consider models where the population het-
erogeneity ensures that the maximum number of draws R, is always at-



tained (Bastin et al., 2005b). This is not necessary in the simpler multinomial
logit case, and the procedure can be stopped in Step 1 in this case provided
both simulation error and relative gradient are less than the pre-defined tol-
erance, even if the maximum number of draws has not been reached.

It can be proved (Bastin et al., 2005b) that the BTRDA Algorithm is globally
convergent, i.e., under suitable smoothness assumptions, that the algorithm
converges to a local first-order critical point of the SAA problem (7) from any
starting point (and not just from starting points that are close enough to the
local solution).

4 Numerical assessment

4.1 AMLET

The validation of the proposed methodology has been performed with our
software AMLET (for Another Mixed Logit Estimation Tool), that is avail-
able in open-source at http://www.grt.be/amlet. We analyze the package
on synthetic and real data, and in this last case, we compare obtained results
to those delivered by Gauss 5.1 and the MaxLik module (Schoenberg, 2001) (in
which we have used Halton and Monte Carlo sequences) and the codes written
by Train (1999). All results were obtained on a Pentium IV 3Ghz with 1GByte
of memory, under the Windows 2000 environment, and Cygwin for AMLET.
We first assess the validity of the bias and error asymptotic estimators. We
next compare different algorithmic options in the optimization process, in or-
der to validate the choice of the trust-region framework. We then conclude the
experimental framework by evaluating the package on a real dataset.

We always use linear utility functions. Furthermore, in experiments using sim-
ulated data, the attribute values are drawn from a standard univariate nor-
mal distribution N(0,1) and the coefficient of each independent variable is
also drawn from an univariate normal distribution N(3,1). The error term
is generated from an extreme value (Gumbel) distribution, ensuring that the
conditional choice probability follows the logit formula (3). This allows us to
compute the utility of each alternative, including observed and unobserved
terms. The individual choice is then identified for each observation as the al-
ternative with the highest utility. The optimization starting point is defined by
(arbitrarily) setting all initial parameter values to 0.1 and the initial number
of draws is set to [0.1Rpax |- The tolerance for convergence was set to 1079
(see Appendix).



4.2 Validity of bias and error estimators

Since the bias and error estimates (10) and (9) are only valid asymptotically
as R increases, it is useful to assess them numerically for practical purposes,
in particular when the simulation bias is significant. They could indeed be
quite useless if the computed informations were poor for smaller numbers of
draws. In order to assess these estimates, we consider a synthetic population
of 5000 individuals facing 5 alternatives (one of which is the null alternative)
for which the utilities involve 5 explanatory variables. We use 500, 1000, 2000,
3000, 4000, 5000 random draws per individual. For each fixed size of the draws
set, we minimize 36 different SAA approximations (constructed on the basis
of 36 independent samples of random draws, denoted by R,, s = 1,...,36),
resulting in 36 slightly different solutions (with non-negative components). We
then compute the mean of these 36 optimal values SLL: to obtain a “mean
optimal value”, which we will denote by SLLE and which can be viewed as
an estimator of F[SLLE] with

SLLE = max SLL%(6). (12)

Note that the variance of this SLLE to 02/36, where o2 is the variance of
SLLE. For each of the 36 solutions, we furthermore estimate the standard
deviation due to the sampling effect by recomputing the log-likelihood at the
corresponding solution with 36 new, independent, samples. The mean of these
newly estimated log-likelihood values is then an estimator of E[SLLE] at the
considered solution, that we will denote by E,[SLL] (s = 1,...,36). The
estimators F,[SLLE] (s = 1,...,36) are, by construction, less sensitive to the
simulation error than the corresponding values SLLZEs while they present the
same expected bias with respect to the true objective value. This suggests to
use them in order to exhibit the bias differences between the various numbers
of draws, so we also compute their average:

1 36 .
E[SLLE] = % > ESLL®. (13)
s=1

while the optimal solutions slightly differ. Results are reported in Table 1,
where we have indexed the quantities by the relevant equation reference. We
also indicate the differences in mean optimal values, bias and E[SLLE], when
the number of draws is increased. We then reproduce the experiment on a
panel dataset, made of 1000 individuals, each one delivering 5 observations,
for sampling sizes varying from 500 to 6000 random draws per individual.
Corresponding results are summarized in Table 2.

We first observe that estimated and numerical standard deviations are similar,
suggesting that the approximation (9) is adequate, even when the simulation

10
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Table 1. Validation of error and bias estimation (cross-sectional data)

Number of draws 500 1000 2000 3000 4000 5000
Mean opt. value (12) -1.4426396 -1.4420646 -1.4418132 -1.4416672 -1.4416542 -1.4416458
Mean opt. value diff. - 0.0005750 0.0002514 0.0001460 0.0000131 0.0000083
Estimated std deviation (8) 0.0006931 0.0004914 0.0003485 0.0002843 0.0002459 0.0002206
Numerical std deviation 0.0006856 0.0004864 0.0003533 0.0002855 0.0002479 0.0002242
Estimated error (9) 0.0011401 0.0008088 0.0005729 0.0004682 0.0004055 0.0003628
Estimated bias (10) -0.0012011 -0.0006044 -0.0003033 -0.0002025 -0.0001519 -0.0001216
Bias diff. - 0.0005967 0.0003011 0.0001007 0.0000506 0.0000303
Average E[SLLF| (13) “1.4427775 "1.4421316 “1.4418430 “1.4417303 “1.4416928 “1.4416572
Average E[SLLF] diff. - 0.0006459 0.0002886 0.0001127 0.0000375 0.0000356
Table 2. Validation of error and bias estimation (panel data)
Number of draws 500 1000 2000 3000 4000 5000 6000
Mean opt. value (12) -1.3115668 -1.3096944 -1.3089731 -1.3083892 -1.3084261 -1.3082348 -1.3082011
Mean opt. value diff. - 0.0018723 0.0007213 0.0005839 -0.0000369 0.0001913 0.0000337
Estimated std deviation (8) 0.0011209 0.0008258 0.0006019 0.0004820 0.0004220 0.0003806 0.0003458
Numerical std deviation 0.0011856 0.0008246 0.0006197 0.0004877 0.0004184 0.0003790 0.0003524
Estimated error (9) 0.0018622 0.0013550 0.0009738 0.0008031 0.0006967 0.0006240 0.0005703
Estimated bias (10) -0.0032046 -0.0016966 -0.0008764 -0.0005960 -0.0004485 -0.0003598 -0.0003005
Bias diff. - 0.0015080 0.0008202 0.0002804 0.0001475 0.0000887 0.0000592
Average E[SLLR] (13) -1.3114255 -1.3097113 -1.3088024 -1.3085533 -1.3083735 -1.3082790 -1.3082355
Average E’[SLLR] diff. - 0.0017142 0.0009089 0.0002491 0.0001798 0.0000945 0.0000435




bias is of the same order or even larger (for instance for the case of 500 draws).

The evolution of the estimated bias (10) reflects well that of E[SLLE] (13), as
indicated by the reported differences with increasing number of draws, but the
parallelism is less clear between the bias and the mean optimal value SLLE
(note the decrease in this quantity when the number of draws changes from
3000 to 4000 in Table 2), as expected. This can indeed be explained by the
standard error of the mean estimator since, for instance, the confidence interval
radius at level 0.95 for SLLE can be estimated to be 0.00014 and 0.00012 for
the cases of 3000 and 4000 random draws, respectively. The bias diminution
can therefore be dominated by the variance of the mean optimal value SLLE.
If all our € values were identical (and in the neighborhood of the calculated
36 values), the associated confidence interval radii at level 0.95 associated to

~

E[SLL%] would be approximately 0.000026 and 0.000022 for 3000 and 4000
random draws respectively, and the influence of bias can then be detected. In
practice, the simulation bias is therefore difficult to quantify accurately when
only approximate optimal values are available, since it can be masked by the
variance of the simulated log-likelihood values.

Table 9 also exhibits the slow convergence in O(v/R) of Monte Carlo approx-
imations. However we observe that the bias decreases in absolute value faster
than the error, this last reduction being in O(R), as predicted by equation (10).
An important additional observation is that bias and error are significantly
higher with panel data than with cross-sectional ones. For instance if 1000
Monte-Carlo draws are used in the cross-sectional situation, we have to take
3000 draws per individual for the panel data in order to observe similar error
and bias. This can be explained by the more complicated expression of the
probability choice. Note however that the total number of draws is smaller in
the panel case. This is also an indication that the number of draws that is
necessary to achieve a satisfying accuracy is dependent of the model formula-
tion.

4.8 Algorithmic options for optimization

Solving (7) requires the use of numerical optimization procedures, among
which one of the most popular for calibrating discrete choices models is the
BFGS linesearch method (Train, 2003, pages 225-226). This method is based
on using a quasi-Newton direction where the Hessian of the log-likelihood
function is approximated by the well-known BFGS variable-metric formula.
A suitable step length is then computed along this direction to yield the fi-
nal step. This method is acknowledged to be efficient whenever the function
to optimize is concave. As this is not the case for mixed logit models, it is
thus interesting to evaluate the relevance of trust-region methods, the con-
tending methodology described in Section 3, which specializes in non-concave

12



problems.

For comparison purposes, we therefore coded a BFGS algorithm, as described
by Nocedal and Wright (1999), using the efficient linesearch technique by Moré
and Thuente (1994) and associated code. Note that the BFGS algorithm in
Gauss uses the StepBT line search, as described in Dennis and Schnabel (1983,
Chapter 6). We then simulated three populations of 5000 individuals facing
five alternatives (one of which is the null alternative), with associated utilities
involving respectively two, five and ten explanatory variables. We used 2000
random draws and compared the BFGS, BTR and BTRDA algorithms for
solving the SAA problem (7). In the trust-region framework, we use a quadratic
model, defined as

mR (0, + 5) = SLLF (6) + (VoSLL® (65) , s) + %(s, Hes),  (14)

where Hj, is a symmetric approximation of V2,SLL%(6), chosen to guaran-
tee convergence under some technical conditions (Bastin et al., 2005b). We
have tested two different Hessian approximations, namely the BFGS and the
BHHH (Berndt et al., 1974) Hessian updates. This leads to a total of 5 con-
sidered methods, whose optimization times are reported in Figure 1. For each
dimension, the procedure was repeated for 10 different samplings. The three
algorithms give similar optimal log-likelihood values for a particular sampling,
that are indistinguishable in view of the simulation error. While the BTR al-
gorithm equipped with the BFGS Hessian update gives similar optimization
times to the BFGS line search, the use of BHHH significantly decreases them.
We will however show in Section 5 that these conclusions cannot be extended
to real data, since the BFGS update then performs better than the BHHH
strategy. Unless otherwise stated, we will thus use the BFGS Hessian update
in the next sections. We nevertheless see here that the trust-region approach
is, in all cases, at least competitive with the BFGS linesearch method, and that
the adaptive strategy always reduces the optimization time, independently of
the Hessian update scheme. The interest of trust-region methods compared to
linesearch techniques has also been observed by Bastin et al. (2005a).

5 Performance on a real data set

We finally test our algorithm on real data in order to evaluate its performance
on a large-scale model system (other applications can be found in Bastin et al.
(2003) and Bastin et al. (2005a)). The set, collected in Autumn 2002 in Brus-
sels (Belgium), is a stated preference exercise. One of the main objectives of the
survey was to test the propensity to switch from car to a more efficient Public
Transport network, with better access, new high-speed lanes and improved
comfort. It is only one part of a large survey conceived for the estimation
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I I
[ BFGS linesearch
B BTR-BFGS

= BTR-BHHH

[ BTRDA-BFGS
B BTRDA-BHHH

10 dims

0 250 500 750 1000 1250 1500 1750

Time (s)
Method Hessian update 2 dimensions 5 dimensions 10 dimensions
BFGS BFGS 287s 847s 16255
BTR BFGS 283s 757s 1641s
BHHH 93s 153s 200s
BTRDA BFGS 157s 4265 1051s
BHHH 55s T4s 124s

Figure 1. Computational times with various optimization algorithms

of the new transport regional model, called IRIS II. Car users (mainly com-
muters) were intercepted on the ring from 5:00 a.m. to 10:00 p.m. and were
asked to fill out a questionnaire under the direct assistance of interviewers.
They analyzed up to three scenarios based on their current trip and expressed
their choices. The design contains 7 variables, of which 6 present 3 levels of
variations and 1 has two levels of variation. In order to reduce the size of the
total set we adopted an orthogonal design. The levels of variation depend on
the total car distance from origin to destination; we distinguish three classes:
less than 10 km, between 10 and 30 km, greater than 30 km. In summary, the
variables and the levels were chosen as follows (in brackets we indicate value
levels for classes of distance between 10-30 km and greater than 30 km):

Car Time: +5(10,20) min., +10(20,30) min., +20(30,50) min. compared to
actual car time;

Car Cost: 0, +0.06 Euro/km compared to actual car cost;

Toll: 1, 3, 7 euros;

Delayed Departure Time: -45 min., +30 min., +60 min. on the actual
departure time;

PT Time: -10(-20,-30) min., +5(0,-5), +15(+10,4+10) min., compared to ac-
tual car time;

PT Cost (ticket + parking / per month): 25(40,50), 45(70,85), 75(105,130)

14



euros;
Comfort: no seats available-very crowded, no seats available-not crowded,
seats available.

We selected, for the model presented here, only trips with work as final des-
tination. After data cleaning, a total number of 2602 observations from 871
individuals were entered into the model. Four choice options were available to
respondents: car, car with delayed departing time, car on a High Occupancy
Vehicle dedicated lane (HOV) and Public Transport (PT). Each option was
specified with a different utility for car drivers (CD) and for passengers (CP),
giving a total of eight alternatives; in particular the High Occupancy Vehicle
lane was toll free when at least two passengers shared the same car.

A total of 18 exogenous variables were included in the final specification, of
which 4 alternative specific constants (car passenger with delayed departure
time, car as driver on HOV lane, shared car on HOV and Public Transport),
7 level of service variables (congested and free flow time, cost, HOV toll,
origin-destination distance, comfort on two levels of variations), 3 departure
time variables, 2 variables representing socio-economic characteristics (being
manager or self-employed) and the remaining describing trip characteristics
(trip frequency per week, dummy for stopping to pick up/drop off children).
Seven of the explanatory variables are randomly distributed, with two of them
assumed to be lognormal (congested and free flow time coefficients) and the
remaining five assumed to be normal. Results are summarized in Table 3.

Since, for this study, we were particularly interested in taste variation over new
alternatives (HOV and shared car on HOV) and over departure time switches,
we allowed those coefficients to vary normally. Although the mean value had
the same sign (negative) as the correspondent value estimated with a multino-
mial logit model, we found a significant part of the population with a positive
value for those parameters. In particular, 13% and 12% of the population have
positive alternative specific constant for HOV and shared car; while about 15
% of the respondents are willing to leave home earlier or 30 minutes later. The
average value of willingness to pay is 20.3 euros (median 13.8) during peak-
hours and 17.3 euros (median 11.5) out-of peak; those values are consistent
to what we found in a previous study conducted by our group on revealed
preference data (Bernard et al., 2003). These results correspond to the best
of a series of model variants tested. However, since these details are out of
the scope of this paper, we refer the interested reader to Cirillo and Axhausen
(2005) for more discussions on modeling issues.

The model has been estimated both with Gauss and AMLET, using the same
starting point. The comparison with the most used commercial software is
given to attest the efficiency of our method. Results are summarized in Ta-
ble 3, where solutions obtained with Monte Carlo draws have been averaged
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over ten simulations in order to evaluate the mean performance of the software,
with different sequences, while in practice we often only use one simulation in
order to derive the parameters. The alternatives associated to non-generic pa-
rameters are indicated between brackets, next to the parameter name. AMLET
results are similar to those obtained by Gauss with 250 Halton sequences (125
Halton draws seem to be insufficient for this problem with seven dimensions
of integration). The optimization time of Gauss heavily depends on the opti-
mization routine chosen. Ruud’s routine is the fastest with only 194 seconds
and 125 Halton draws, as indicated in Table 5, but results are then unaccept-
able, as can be seen by comparing the various columns of the table. Using 250
draws, it took 627 seconds and gave adequate parameters compared to the
Monte Carlo ones. We also have to keep in mind that this routine is basically
a Newton-Raphson approach, where the BHHH Hessian update is used. As
such, the convergence, while superlinear, is only local, not global. As a con-
sequence, the method can only be used with care since it may actually fail
to converge. This problem has indeed been encountered in experiments with
other model specifications, for instance when three lognormally-distributed
explanatory variables were included. Similar problems were also encountered
with other real datasets (Cirillo and Axhausen, 2005). A linesearch globaliza-
tion of the method can be found in the MaxLik module, which additionally
uses the Dennis-Schnabel stopping test (see Appendix), while Ruud’s routine
stops for a small H~! norm of the gradient. The algorithm is then much slower,
giving optimization times similar with the BTRDA approach (combined to the
BHHH Hessian update), and 8 times more draws. In our tests, running times
dramatically increase in Gauss when Monte Carlo draws are used instead of
Halton sequences. We report an average optimization time of approximately
42 minutes for Paul Ruud’s routine, and 3h46 for MaxLik-BHHH optimization
routine.

The BTRDA time decreases when the BFGS Hessian update is used, at vari-
ance with the tests performed on synthetic data. Figure 2 shows that the
optimization time crucially depends on the sample for the BHHH case, while
the algorithm is stabler with BFGS. This can be explained by the information
identity (see for instance Train (2003), Section 8.7): for a correctly specified
model at the true parameters, the covariance of the scores is equal to the
negative of the expected Hessian. Unfortunately, perfect information remains
elusive, and we only maximize an approximation of the log-likelihood. The
BHHH update therefore may not converge to the Hessian of the objective,
sometimes leading to poor performances close to the solution. This is clearly
visible for BTR with BHHH, where three of ten runs have been especially
time consuming, while seven have converged very fast. A similar phenomenon
has been observed with Gauss and 1000 Monte Carlo draws, since two runs
have badly performed with the Paul Ruud’s routine, and one with MaxLik.
We guess that, as is often the case, the function defined by our practical prob-
lem is more difficult to maximize than a synthetic data likelihood, and that
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the BFGS Hessian update then recovers local concavity better. Finally, the
BFGS MaxLik did not converge from our starting point, and numerical dif-
ficulties arose when using AMLET with line search: first iterations produced
poor iterates far from the solution, leading to slow subsequent convergence,
a phenomenon also pointed out by Bastin et al. (2005a). We have even oc-
casionally observed a breakdown of the linesearch procedure (computing the
step to the next iterate), preventing any additional progress. The step compu-
tation always starts from the steepest direction in our trust-region framework,
avoiding such difficulties. The behavior of the BFGS algorithm could possi-
bly be circumvented with adequate preconditioning or hybrid Hessian update
strategies, but more investigations are needed to assess these strategies.

EEBTRDA-BFGS
@ BTRDA-BHHH

Time (s)

6
Sample

Figure 2. Optimization time variations (IRIS survey; 1000 MC)

The beneficial effect of the variable sample size strategy is illustrated in Fig-
ure 3, giving the evolution of the sample size Ry with the iteration index k£ on
the left size, and with the objective value in the right graph. In particular we
can see that the number of draws increases toward its maximum value only
when the objective function’s value is near to its maximum.
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Table 3. IRIS survey model

Variable Gauss AMLET

125 Halton 250 Halton 1000 MC 1000 MC 10000 MC
Car Passenger (CP) -1.4369 (3.8) -1.2927 (3.3) 11122 (2.9) “1.1431 (3.3) - 1.1528 (3.2)
HOV (HOV) -5.2177 (9.1) -5.1967 (10.0)  -5.1805 (10.18)  -5.1874 (9.6) -5.2413 (9.9)
HOV (HOV) 4.9080 (9.9) 4.7893 (9.9) 4.8834 (9.5) 48241 (10.4)  4.8988 (10.1)

Shared Car on HOV (HOVs)

-6.8784 (12.6)

-7.1402 (12.3)

-7.1388 (11.7)

-7.1178 (11.9)

-7.2271 (11.5)

7

7

o

I
Shared Car on HOV (HOVs) o 6.0884 (11.0) 6.3635 (11.9) 6.2331 (10.4) 6.2356 (10.36) 6.3396 (10.0)
Public Transport (PT) u -0.6515 (1.2) -0.7498 (1.3) 0.9292 (1.5) -0.9264 (1.76) -0.9138 (1.7)
Congested Travel Time (LN) u -0.0910 (22.5) -0.0967 (21.9) 0.0903 (21.2) -0.0959 (21.7) -0.0960 (21.3)
Congested Travel Time (LN) o 0.1204 (10.8) 0.1243 (10.4) 0.1047 (8.9) 0.1123 (6.7) 0.1231 (5.73)
Free-Flow Travel Time (LN) u o -0.0769 (21.7) -0.0910 (20.2) -0.0893 (20.3) -0.0894 (20.5) -0.0890 (20.2)
Free-Flow Travel Time (LN) o 0.1029 (6.7) 0.1401 (10.1) 0.1316 (9.3) 0.1296 (7.0) 0.1283 (6.4)
Cost p o -0.2809 (4.8) -0.2545 (4.1) -0.2773 (4.3) -0.2702 (5.0) -0.2817 (5.15)
Toll (HOV) g -0.4920 (8.0) -0.4951 (8.1) -0.5062 (8.0) -0.5030 (9.8) -0.5081 (9.80)
Dist. (CD,CP,CDs,CPs,HOV,HOVs) p 0.1893 (9.0) 0.2200 (9.5) 0.2145 (8.9) 0.2102 (10.9) 0.2131 (10.3)
Dist. (CD,CP,CDs,CPs,HOV,HOVs) o 0.2114 (8.7) 0.2570 (10.7) 0.2497 (9.8) 0.2471 (11.91) 0.2508 (11.3)
Trip Frequency - once a week (PT) p o 2.6087 (2.5) 2.9988 (2.6) 3.1035 (2.7) 2.7604 (2.6) 3.2541 (3.0)
Comfort no-seats (PT,PTs) u o -0.9989 (3.9) -1.1855 (4.3) -1.1551 (4.2) -1.1405 (4.4) -1.1683 (4.44)
Comfort no seats, crowded (PT,PTs) u -1.6903 (5.9) -1.9029 (6.5) -1.8638 (6.3) -1.8732 (7.9) -1.8787 (7.8)
Earlier Departure Time (CP,CPs) u -3.2713 (7.7) -3.2713 (7.7) -3.1649 (7.8) -3.1599 (7.7) -3.2146 (7.4)
Earlier Departure Time (CP,CPs) o 2.4496 (5.3) 2.9170 (6.2) 2.8021 (5.6) 2.7707 (5.9) 2.8356 (5.8)
Later Departure Time (CP,CPs) uo -2.2247 (6.4) -2.3160 (6.6) -2.4354 (6.6) -2.3985 (6.3) -2.4569 (6.14)
Later Departure Time (CP,CPs) o 2.7758 (5.1) 2.3328 (4.7) 2.5768 (4.7) 2.4720 (4.4) 2.6486 (4.54)
Much later Departure Time (CP,CPs) pu -2.4615 (10.6) -2.6428 (10.7) -2.6667 (10.4) -2.6820 (11.6) -2.6795 (11.3)
Self-employed (CD,HOV) g 1.4941 (3.3) 1.9910 (3.8) 1.8023 (3.3) 1.8392 (3.9) 1.8631 (3.9)
Manager (HOV) g 14163 (2.1) 1.2797 (1.9) 1.2431 (1.8) 1.3295 (2.0) 1.2443 (1.8)
Number of cars - 3 per HHLD (CD) po 2.2339 (3.8) 2.0608 (3.3) 1.9836 (3.3) 2.0271 (3.3) 2.0732 (3.3)
Log-likelihood -1.06036 -1.05651 -1.05882 -1.05853 -1.0577
Error Not available Not available Not available 0.00204 0.00067
Bias Not available Not available Not available -0.00201 -0.00022




Table 4
Optimization times (IRIS survey)

Method 125 Halt. 250 Halt. 1000 MC
BHHH Ruud’s rout.!  194s 627s 2540s
BHHH Max-Lik rout. 1084s 2265s 135765
BFGS Max-Lik rout.  failure failure failure

Ifailure with other model specifications

Method Hessian update 1000 MC 2000 MC
BFGS  BFGS 2292s 2 3720s 3
BTR BFGS 1421s 281bs
BHHH 4237s 73065
BTRDA BFGS 675s 14865
BHHH 1291s 1935s

21 failure over 10 runs
39 failures over 10 runs

6 Conclusion

We have developed a new algorithm for mixed logit model estimation. The
proposed unconstrained stochastic programming method uses statistical in-
ference to accelerate computation and has been implemented in the AMLET
package. Numerical experimentations show that a trust-region method can
handle the non-concavity of the problem better than a more traditional line-
search scheme, suggesting that the choice of the optimization framework is
of crucial importance. Results also show that a strategy that uses a variable
number of draws in the estimation of the choice probabilities gives significant
gains in the optimization time compared to usual approach with a fixed num-
ber of draws, while giving additional information on the adequation between
of the Monte Carlo approximation and the true function, and not suffering of
non-uniform coverage in high integration dimensions.

However, an extension of the method to low discrepancy sequences is not
immediate, since error and bias are difficult to quantify in practice, even if
they are usually lower than with Monte-Carlo sequences for the same number
of draws. On the other hand, the use of Monte Carlo draws protects against the
loss of uniform coverage in high dimensional problems, which makes the MC
methods often more robust, both theoretically and numerically. Our procedure
can therefore be seen as a good compromise between the necessity to speed up
the estimation process and the exploitation of statistical information. Ongoing
studies are trying to efficiently assess the simulation error obtained with quasi-
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Monte Carlo techniques (Bastin et al., 2004).

Several research directions remain open. First of all, comparisons with more
complex quasi-Monte Carlo methods are desirable (this issue has been par-
tially investigated by Bastin et al. (2005a)). Secondly, further improvements
of the algorithm are not impossible, possibly yielding additional computational
gains. In particular, the impact of the Hessian update used in the optimization
may be investigated further, as it appears to be computationally significant.
However, since our observations differ between the synthetic and real data
cases, no clear-cut practical conclusions can be stated at this point. More
research is needed to investigate this issue, in particular by considering hy-
brid strategies, combining BHHH with other update strategies. Finally, the
statistical error on the estimated parameters also deserves further analysis.
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A BTRDA algorithm details

We give here some further practical details of the BTRDA algorithm described
in Section 3.

A.1 Stopping test

The stopping criterion used in Step 1 of Algorithm 1 is a modification of
the classical test based on the relative gradient (Dennis and Schnabel, 1983,
Chapter 7). The algorithm is terminated as soon as

def [[VoSLLE(H)].| max{|6.|,1.0}
g’rel(e) = mgx{ amax{|SLLR(9)|’ 10} } S tOl, (Al)

where v, is the c-th component of the vector v. This standard test however
usually leads to final iterations exhibiting increases so small that the gain in
the objective function cannot be discriminated against the simulation noise.
This leads us to adapt the condition to this situation by only requiring that
the left-hand side of (A.1) is less than a fraction of the error. In practice, we
stop if Ry = Ruax and if g,(0) < max{tol,0.1ef,}.

A.2  Safequarding against premature convergence

As stated in Step 2 of Algorithm 1, safeguards are applied in avoid conver-
gence to “phantom” first-order critical points that only appear at intermediate
numbers of draws, but not at higher ones. In particular, we have to exclude
the pathological case in which 6, is a first-order critical point for SLL%,
with Ry # Rpax. If e?’“ (0x) > tol, the algorithm does not stop, but since the
model (14) is quadratic, no increase is achieved if —Hj, is positive definite,
and the algorithm then breaks down. In order to circumvent this problem, we
force an increase of Ry, should this situation occur. We nevertheless point
out that this feature was never triggered in our experiments. Indeed, the gra-
dient norm usually changes slowly in the vicinity of such a critical point, and
a small gradient typically leads to a small model increase, which itself then
causes the number of draws to increase with the effect that R,., is always
reached in practice before the safeguard is activated.

We also increase the minimum number of draws when the adaptive strategy

does not provide sufficient numerical gains, as a safeguard ensuring that R,.x
will be reached during the final iterations.
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These safeguards are formally described in Algorithm 2 below. We first define
two Rpax-dimensional vectors v and [. The first of these vectors is used to
remember the value of the simulated likelihood at the start of the last set
of consecutive iterations where the corresponding number of draws was last
used. At iteration k = 0, v(Rp) is set to SLL(2;) and all other components
to —oo. At the beginning of iteration k£ > 0, v(i) then contains SLL! (Oh(i))
where h(i) is the index of the last iteration for which Ry;)—1 # Ry = ¢ if size
17 has already been used, or —oo if the size 7 has not been used yet. The vector
[ contains in position 7 the number of successful iterations since iteration h(z)
(included), or —1 if size 7 has not been used yet. (At iteration k£ = 0, I(R))
is set to 0 and all other components to —1.) Recall also that ¢ contains the
total number of successful iterations encountered until the current iteration k
(included).

Algorithm 2: Safeguard against premature convergence

If the relative gradient is smaller than the tolerance but the number of
draws is strictly less than R.y, increase Ry to some value not exceeding
Rax, to ensure that the relative gradient is strictly larger than the tolerance

if Rk+1 7é Rma.x-
If Rk = Rk—l—l or if

1
S LAk (Rk+1) - 'U(Rlc—{—l) > 51/1 [t — Z(Rlc+1)]66R"’+1 (019)7 (A2)

set RETL = RE. . Otherwise increase the minimum number of draws by

min min*
setting
Rﬁ;;} ‘= min { [%-‘ uRmax} if Rk < Rk—l—la
RM .= R, +1 otherwise.

If Ry # Rgy1, set [(Rgy1) :=t and v(Ryy1) := SLLR*+1(0;,1).

The initial RY;, has (arbitrarily) been set to 36 during our tests.

'min

It can be shown that the right size of (A.2) is always positive (Bastin et al.,
2005b), meaning that a violation of this condition corresponds to a poor in-
crease of the objective function, for Ry, draws. We again apply a different
strategy if the number of draws decreases or increases. In the first case, bias
difference and accuracy loss can explain a decrease or a too small increase of
the SAA objective, but it is numerically cheaper to keep small sample sizes. In
the second case, we use a more conservative approach in order to avoid poor
increases of the SAA objective associated with large sample sizes resulting in
important numerical costs.
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A.83 The adaptive strategy

We conclude the detailed description of our algorithm by indicating how the
number of draws is balanced with bias and error in the value of the simulated
likelihood.

The choice of Rt in Step 3 of Algorithm 1 first attempts to trade number of
draws and accuracy, and is described below.

Algorithm 3: Selection of the candidate number of draws
Define v, € (0,1). Use (9) to estimate the number of draws needed to
equalize accuracy and model increase, that is

R 2
R® := min { max | R*. o i (Oijf (0))
min (IAmI}:k)Q = <PR’“(0))2

2Ji

Rk

max

Compute the ratio between the model improvement and the estimated er-
ror,
k_ AmkRk
7-1 ~ Ry )
€5 (Or)
and the ratio between the current number of draws and the candidate size
R? for the next iteration:

b=
Then define
min {[Rmax/2], [R*]} if 7F > 1,
R min { [ Rmax/2], [T{“RS]} if 7F <1 and 7F > 75,
. [ Rmax/2] if vy <7F < 1and 7F <75,
Riax if 7F < 1 and 7F < 7.

Set RT = max{R', R, }.

This somewhat technical part of the algorithm is motivated as follows.

(1) If 7 > 1, the model increase dominates the estimated error: we then
reduce the number of draws to the minimum between [R*] and [ Ruyax/2],
in an attempt to increase numerical performance.

(2) If 7 < 1 the improvement is dominated by the inaccuracy. However, a
small but repeated improvement over several consecutive iterations may
lead to a global increase that is significant compared to the log-likelihood
error, while keeping the computational costs lower than if R,, draws
were used. In an attempt to exploit this fact, we then consider two cases.
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(a) If 7F > 7F, the ratio between the current number of draws and the
potential next one is less than the ratio between the model increase
and the estimated error. A larger sampling would result in an error
decrease, and so in a larger 7F for a similar model increase. We there-
fore capitalize on 7F by computing a sample size lower than R?®, such
that an increase of order eg%(6;) would be reached in approximately
[7F] iterations if 7/ is similar to 7F for j close to k.

(b) If 7F < 7F, it may nevertheless be cheaper to continue to work with
a smaller number of draws, defined again as [Rmay/2], as long as 7F

exceeds some threshold v; > 0 (set to 0.2 in our tests). Below to this

threshold, we consider that the increase is too small to allow a less
than maximum number of draws.

If R* is not equal to Ry, an additional complication unfortunately occurs in
that the computation of

SLL® (8 + sp) — SLL™ (8;)

in Algorithm 1 is affected by the change both in simulation bias and error.
This may in turn lead to a small or negative ratio p, and an unsuccessful
iteration, even when the model m,CR’c is a good approximation of the objective
function for a number of draws equal to R¥. In particular, SLLE"(0) may
exceed SLL®x (6y) for all # in a neighborhood of ). This imposes to possibly
redefine p; in Step 5 of Algorithm 1, using a procedure that distinguishes
between the cases where RT™ > R, and R™ < Rj. In this latter case, the
absolute value of the bias increases, irrespective of variations of the objective
due to changes in simulation error, and the objective function is usually worse
for a fixed §. We then introduce a new candidate number of draws R’ in an
attempt to equilibrate bias and model increase, as described below.

Algorithm 4: Number of draws revision when p; < 0.01 and Ry # R*

If the candidate number of draws R™ is less than Ry, compute the num-
ber of draws R’ that gives, according to (10), a bias equal to the predicted
increase, that is

2
v | 1 (0)
k
2Amy* 15 (Pzi’“ (0))

If R < R® < Ry, set R* := R’ and recompute pj from (11).

If the (possibly recomputed) py is still strictly less than 0.01, compare
R* and Ry. If Rt > Ry, compute SLLE"(6;), AmE" and ef' (6;), else
compute SLLE (), + s;). Set R~ to max{R;, R}, and update p; using

(11).
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