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A class of augmented Lagrangian algorithms for
infinite-dimensional optimization with equality constraints

E.W. Sachs* Annick Sartenaer!

July 13, 2005

Abstract

We consider a class of augmented Lagrangian algorithms for the solution of opti-
mization problems posed in an infinite-dimensional setting. This class extends the aug-
mented Lagrangian algorithm developed in [2] (when considering equality constraints
only) which is motivated by solving a sequence of subproblems in which the augmented
Lagrangian is approzrimately minimized — i.e., each subproblem is terminated as soon
as a stopping condition is satisfied. Global and local convergence results are outlined.
A study of the behavior of the extended class of algorithms is further presented when
the sequence of approximately solved infinite-dimensional subproblems is replaced by a
sequence of finite-dimensional subproblems obtained by a more and more refined dis-
cretization of their infinite-dimensional counterpart.

Key words: Nonlinear optimization, equality constraints, infinite-dimensional optimization,
augmented Lagrangian methods, discrete approximations

1 Introduction

The problem we consider in this paper is that of calculating a local minimizer of a smooth
function subject to general equality constraints. That is, we wish to solve the problem

minimize f(z) subjectto c¢(z)=0, =€ X, (1.1)
where f and c are maps defined as follows
f:X— R, c: X —-Y

with Hilbert spaces X and Y over the reals. A classical technique for solving problem (1.1)
is to minimize a suitable sequence of augmented Lagrangian functions. These functions are
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defined by ®: X XY x IR — IR
1
(x, A, 1) = f(2)+ < A, e(z) >y +EHC(Z’)H2Y7 (1.2)

where the vector A is known as a Lagrange multiplier estimate and p is known as the penalty
parameter (see, for instance, Bertsekas [1]). < -,- >z denotes the inner product in some
Hilbert space Z, and let ||+ ||z =< -, - >1Z/2 (or simply || -|| when it is clear from the context)
be the corresponding norm.

In this paper, we base the convergence results on [2] applied to the Hilbert space case.
In order to apply this to a sequence of discretized problems, we introduce a new set-valued
update rule for Lagrange multipliers and an algorithm based refinement rule for the dis-
cretization. In contrast to [2] we omit linear inequality constraints and use real valued
penalty parameters.

Other papers that deal with augmented Lagrangian methods in Hilbert space were
written by Ito and Kunisch (see [4] and [5]), where local and global convergence results
were given, however for fixed penalty parameters. Volkwein [7] presents in his dissertation
a Kantorovich theory which allows to derive mesh independence results for augmented
Lagrangian methods. In a paper by Sachs and Volkwein [6] these results were extended to
more general update procedures for the Lagrange multiplier.

When solving an infinite-dimensional optimization problem one often uses a sequence of
finite-dimensional discretized problems. Rather than solving these accurately at each level
of discretization, we want to start with a coarse level and increase this level as the iteration
progresses. Then the question arises how this is coupled with the penalty parameter and
the Lagrange multiplier update. We interpret each iterate as an iteration in an algorithm in
infinite dimensions. This can be done because each subproblem in the infinite-dimensional
counterpart needs not to be solved exactly allowing the discretization error being interpreted
as inexactness. This basic principle required us to introduce also a new update rule for
penalty parameter and Lagrange multiplier. The level of refinement is determined in the
algorithm based on the progress towards stationarity.

The problem and the notation are introduced in §2. Section 3 presents the proposed
algorithm including set-valued update rules and inexact solves of the minimization of the
augmented Lagrangian. The global and local convergence analysis in Hilbert space is devel-
oped in §4. In §5.1, we consider a sequence of discretized problems and define an algorithm
where at each step the discretization is refined if necessary. The resulting sequence of it-
erates is then interpreted as an iteration in an infinite-dimensional setting so that we can
apply the convergence theorems from §4. In §5.2, we use the framework of restrictions and
projections to define approximating functions and check the previously stated assumptions
with these discretized optimization problems.

2 The problem and notation

We consider the problem stated in (1.1). On the functions we make the following assump-
tions.



AS1: The functions f and c are twice continuously Fréchet-differentiable.

We now introduce the notation that will be used throughout the paper. For any function
F let V,F(z) denote the gradient of F'(z) and F'(z), F”(x) denote the operator defined
by the first and second derivative of F, respectively. The Lagrangian function is given by
O (z, A, 0) or
Uz, N) = f(z)+ < A c(z) >y .

If we define the first-order Lagrange multiplier estimate as

A@, A p) = A+ c(@)/ 1, (2.1)
we shall use the identity

Vao®(x,\ ) = Vauf At
"(2)* ANz, \, i) (2.2)

|
<
8
~»

If the map
d(x): X =Y is surjective,
then the map ¢/(z)d(x)* : Y — Y is surjective and injective and therefore has a continuous

inverse. Hence its generalized right inverse exists and we define the least-squares Lagrange
multiplier estimate

Mz) € —(¢ (@) ")V, f(z) (2.3)

where the generalized right inverse is given by
(o)t E (@) (¢ (@) (@))

We now describe more precisely the algorithm that we propose to use.

3 Description of the algorithm

As in [2], the algorithmic model we propose to solve problem (1.1) proceeds at iteration k
by computing an iterate x; that approximately solves the subproblem
min O (z, A, pix), (3.1)

where the values of the Lagrange multiplier estimate A\; and the penalty parameter uj are
fixed for the subproblem. Subsequently we update the Lagrange multiplier or decrease the
penalty parameter, depending on how much the constraint violation has been reduced. The
tests on the size of the constraint violation are designed to allow the multiplier updates to
take over in the neighbourhood of a stationary point.

The approximate minimization for problem (3.1) is performed in an inner iteration
which is stopped as soon as its current iterate is sufficiently critical, in the sense that

V2 ®(zk, Mgy i) || < wie,



where wy, is a suitable tolerance at iteration k£ decreasing to zero with k£ — oo.

Algorithm ALINF below follows closely the algorithmic model described in [2], but
introduces two relaxations, one in the tests on the size of the constraint, and another in the
update of the Lagrange multiplier estimate. These two relaxations will allow the solution of
problem (1.1) to be computed by considering a sequence of finite-dimensional subproblems,
obtained by a more and more refined discretization of their infinite-dimensional counterpart.
Indeed, we will first show in §4 that the proposed relaxations do not spoil the convergence
results derived for the algorithmic model of [2]. We will then interpret, thanks to the
relaxations, the iterates generated by the sequence of finite-dimensional subproblems as an
iteration in the infinite-dimensional setting given by our algorithmic model (see §5.1). As a
consequence of this, the convergence theory developed in §4 will then apply to the sequence
of solutions computed from the discretized subproblems.

To motivate this paper in more detail, consider the algorithm of [2]: The decision rule
in Step 3 of that algorithm which is used to decide whether either (case a) the Lagrange
multiplier is updated or (case b) the penalty parameter is reduced has the following form:

if |le(zk)|| < mr goto case a,
if Jle(zk)| = me goto case b,

where 7 is decreasing to zero. If one analyzes a sequence of approximating problems
where the constraint ¢ is approximated by c¢,, n € IN, say, then it is conceivable that for a
fixed iterate x, the sequence of function values ¢, (z)) converges to ¢(xy) under appropriate
assumptions. However, it could happen that the values ||, (x)| oscillate around 7 and
the decision for case a or case b can alternate as n tends to infinity. Note that this could
happen if ||c(xg)|| = ng. This could lead to different sequences of iterates even when ¢,
approaches c. Therefore, this leads us to revise the decision rule in Step 3 of the algorithm
in such a way that we introduce a fuzzy area for the decision: For 0 < 71 < 1 < 9 we
require that

it e(ze)ll < ymk goto case a,
if le(ze)ll € (v, v2mk) goto case a or b,
it le(ze)ll > yomk goto case b,

is executed.

The second change in the algorithm is an appoximation of the Lagrange multiplier
update. The requirement is that it has to be close to the first order multiplier update up
to an error wg:

A et1 — M@k, My o) || < wie.

We are now ready to define our algorithmic model in more detail.

Algorithm ALINF

Step O [Initialization]. An initial Lagrange multiplier estimate Ao € Y and a positive
penalty parameter pug < 1 are given. The positive constants w, < 1, g, < 1, 11 < 1,
Y2 >1,7<1, a, <1, and 3, <1 are specified. Set wy = g, Mo = ,ug”, and k = 0.



Step 1 [Inner iteration]. Find x; € X that approximately solves (3.1), i.e., such that
Ve ® (g, Aky ) | < wie (3.2)
holds.
Step 2 [Test for convergence]. If ||V, ®(z, Ag, px)|| < ws and |le(xg)]| < 7, stop.
Step 3 [Updates]. If

le(zr)ll < 17k, (3.3)
execute Step 3a. If
lle(@r) |l = Yomx, (3.4)
execute Step 3b. Otherwise if
Yk < lle(zr) || < vamk, (3.5)

execute Step 3a or Step 3b. Increment £ by one and go to Step 1.

Step 3a [Update Lagrange multiplier estimate|. Choose ;11 that satisfies

[ Mkt1 = M@y Ay i) || < wie (3.6)
and set
Hk+1 = Mk,
Wgt1 = WgHk41, (3.7)
Met1 = nkuill-

Step 3b [Reduce the penalty parameter]. Set

Met1 = A,
Hk+1 = T, (3 8)
Wk+1 = HMk+1,
_ Qn
Tht1 = Hggre

Note that, as in [2], Algorithm ALINF is coherent, in that
lim w, = lim 7, = 0. (3.9)
k—o0 k—o00
We will see in §5 how this algorithm can be used to prove convergence for a method
which is adaptively changing the discretization levels as the iteration progresses.

4 Convergence analysis for Algorithm ALINF

The convergence theory is based on that in [2] and [3]. In contrast to the problem formula-
tion in these papers, we do not include bound constraints [3] or linear inequality constraints
[2]. However, we formulate the problem in a infinite-dimensional setting. On the other
hand, the algorithm considered in this paper includes a more general decision rule for the
updates of the Lagrange multiplier, the penalty parameter and the tolerances, as well as
an inexact updating rule for the Lagrange multiplier. We moved some of the proofs of the
convergence statements into the appendix.



4.1 Global Convergence analysis

We will show that Algorithm ALINF is globally convergent under the following assumptions.

AS2: The iterates {zj} lie within a compact set €.

AS3: The operator /() is surjective at any limit point, x,, of the sequence {zy}.

Assumption AS2 implies that there exists at least a convergent subsequence of iterates,
while Assumption AS3 guarantees that the Fréchet-derivative of the constraint is surjective
in an neighborhood of z*, and we suppose w.l.o.g. that ¢/(xy) is surjective for the sequence
of iterates.

For the purpose of our convergence analysis, we assume that the convergence tolerances
ws and 7, are both zero. We now state the analog of Lemma 4.4 in [2].

Lemma 4.1 Suppose that AS1 holds. Let {z}, k € K, be a sequence satisfying AS2 which
converges to the point x, for which AS3 holds and let A\, = \(z.), where \ satisfies (2.3).
Assume that {\}, k € K, is any sequence of vectors and that {ui}, k € K, form a non-
increasing sequence of scalars. Suppose further that (3.2) holds where the wy are positive
scalar parameters which converge to zero as k € KC increases. Then

(i) There are positive constants k1 and ko such that

IA(@ky Aks i) — Al < Bawy + Rallzp — 24|, (4.1)
[A(r) = M| < Rallog — 24 (4.2)

and
lle(@r)|| < mrwppr + pll( Ak — Xl + rapelloe — 24|, (4.3)

for all k € I sufficiently large.
Suppose, in addition, that c(x.) = 0. Then

(ii) s is a Karush-Kuhn-Tucker point (first-order stationary point) for the problem (1.1),
A« 18 the corresponding Lagrange multiplier, and the sequences {A(zg, Ak, pg)} and
{A\(zg)} converge to N« for k € K;

(iii) The gradients V ,®(zk, Ak, p:) converge to V €(xy, i) for k € K.

The detailed proof of Lemma 4.1 is given in the appendix, and does not need to take
the two relaxations introduced in Algorithm ALINF into consideration. This proof can be
easily derived from the proof of Lemma 4.4 in [2], using two steps. The first step consists
in simplifying the proof of Lemma 4.4 in [2] by considering only one penalty parameter piy
and by assuming Z, = I (where I is the identity operator) and A, equals zero, since we do
not consider linear inequality constraints in our framework. The second step takes account
of the infinite-dimensional setting in which problem (1.1) is posed, and replaces J{ in [2] by



d(z1)*. Note that inequality (4.2), which is the equivalent of inequality (4.14) in [2], holds
because of the Lipschitz continuity of ¢/(x) in a neighborhood of z,, and hence of ¢/(z)™.

We now require the following lemma in the proof of the global convergence, which shows
that the Lagrange multiplier estimate cannot behave too badly. Again this lemma is adapted
from the global convergence theory in [2] (see Lemma 4.5), but since the two relaxations
intoduced in Algorithm ALINF interfere explicitly, we detail the proof.

Lemma 4.2 Suppose that jip, converges to zero as k increases when Algorithm ALINF is
executed. Then the product pg||Ak|| converges to zero.

Proof. As i converges to zero, Step 3b must be executed infinitely often. Let
K = {ko, k1, k2, ...} be the set of indices of the iterations in which Step 3b is executed and
for which
1 1/Bn 1
< (= < —. 4.4
pur, < <2> <3 (4.4)

We consider how the Lagrange multiplier estimate change between two successive iterations
indexed in the set K. At iteration k; 4 j, for k; < k; + j < k;11, we have, since A\, 11 = Ay,
and by (2.1)

Akitj = Akt Zfl;l [Akiti41 — Ak 1]
= At Z{;ll [Nkttt = A rgts Mgty 1) + (Treg0) /g +1)] (4.5)
= )‘kz + Zg;l [C(xki+l)/uki+l + eki-l—l] s

where we use the notation ey def Ak+1 — X(a:k, Ak, pi) and where the summation is null if
7 =1. We also have

Bhipr = Hki+j = Hkg+1 = T Mk - (4'6)
Now suppose that j > 1. Then for the set of iterations k; + 1,1 < [ < j, either (3.3) or
(3.5) must hold and hence the inequality |c(zg,+1)]] < Y27k;+1 must hold. From this last
inequality, (4.6) and the recursive definition of 7y, we must also have

-1 -1+
le(@r)ll < Vot = Yoy ) = vwfjfl Jrem, (4.7)

On the other hand, from (3.6), (4.6) and the recursive definition of wg, we have
—
ek 41l < Whyat = Wha 1My 11 = Hiy, - (4.8)

Combining equations (4.4) to (4.8), we obtain the bound

i—1
Mgl < I+ 2050 lle@@r ) |/ ks 0+ e ll]
1ol By(l-1) i1
< HAkilH’WZ?H > Mty + 2000 Mfwl
< Nl 2 Q= ) gy /(= )
— 1 k¢+1 /‘Lk¢+1 lukz+1 /‘I’k‘z+1
—1
< ||)‘/€1|| + 272M2:+1 + 2/‘Lki+1'



Thus we obtain that

An

T [ Ak ||+ 2v2p,) | + 20,

i+l A5 <
(e}
S ThE, ||>‘k1 || + 2(72 + 1)/~Lk7+1a

i1 (4.9)

where we used (4.6), 0 < a,) < 1 and py,,, <1 to derive the last inequality. Equation (4.9)
is also satisfied when j =1 as (3.8) and (4.6) give pg,+1|[Ag,+1ll = Tk, || Ak, ||. Hence, from
(4.9),

ki ||>\k‘i+1 | < Tﬁ”ﬂH)‘ki [ +2(y2 + 1)Hg:+1' (4.10)

Equation (4.10) then gives that p, ||\, || converges to zero as k increases. For, if we define

def def
5 | amd s % 2002 + 1)1 (411)

equations (4.6), (4.10) and (4.11) give that
Oiy1 < TO; + 7% p; and Pi+1 = T p; (4.12)

and hence that

I
—

0 <6 <7860+ (7o) (vl pg. (4.13)
=

o

Since 0 < 7 < 1 and 0 < ayy < 1, the sum in (4.13) can be bounded to give
0 <8 <760+ (79)pg /(1 — 717 ). (4.14)

But both dg and pg are finite. Thus, as ¢ increases, J; converges to zero. Moreover equation
(4.11) implies that p; converges to zero. Therefore, as the right-hand-side of (4.9) con-
verges to zero, the whole sequence p||Ax|| converges to zero and the truth of the lemma is
established. O

The next theorem gives the desired global convergence property of Algorithm ALINF,
analogously to Theorem 4.6 in [2].

Theorem 4.3 Assume that AS1 holds. Let x, be any limit point of the sequence {xy}
generated by Algorithm ALINF of §3 for which AS2 and AS3 hold and let K be the set of
indices of an infinite subsequence of the xj whose limit is x.. Finally, let A, = X(x4). Then
conclusions (i), (i) and (iit) of Lemma 4.1 hold.

Again the proof of Theorem 4.3 is detailed in the appendix. It can be easily derived from
the proof of Theorem 4.6 in [2], where, in the case where uy is supposed to be bounded
away from zero, we can use the fact that Step 3a implies that ||c(zg)| < o is always
satisfied for k large enough, such that ¢(xy) converges to zero, by (3.9).

We end this section by briefly analysing second-order conditions. By imposing the
following additional assumption, we can guarantee that Algorithm ALINF converges to an
isolated local solution.



AS4: Suppose that zp, A\x and g are generated by Algorithm ALINF of §3 and that the
sequence {xy} converges to z, for k € K. Then, we assume that V., ®(zk, Ak, 1x) is
uniformly positive definite (that is, its smallest eigenvalue is uniformly bounded away
from zero) for all k € K sufficiently large.

The following theorem is inspired from Theorem 6.1 in [2].

Theorem 4.4 Assume that AS1 holds. Let x, be any limit point of the sequence {xy}
generated by Algorithm ALINF of §3 for which AS2 and AS3 hold and let K be the set of
indices of an infinite subsequence of the xy whose limit is x4. Under Assumption ASY, the
iterates xy, k € IC, converge to an isolated local solution of (1.1).

The proof is given in the appendix.

4.2 Asymptotic convergence analysis

We now analyse the asymptotic convergence of Algorithm ALINF and show first that the
penalty parameter is bounded away from zero. We require some additional assumptions.

AS5: The second Fréchet—derivatives of the functions f(x) and ¢(z) are Lipschitz contin-
uous at any limit point z, of the sequence of iterates {zy}.

AS6: Suppose that (z., \s) is a Karush-Kuhn-Tucker point for problem (1.1). We assume

that the operator
Vaal(@s, ) (x4)*
d(xy) 0

has a continuous inverse.

Note that AS6 implies AS3.
From the adaptation of Lemma 5.3, (i), in [2] to our framework, we get the following
results.

Lemma 4.5 Assume that AS1 and AS2 hold. Let {x}, k € K, be a convergent subse-
quence of iterates produced by Algorithm ALINF, whose limit point is x, with corresponding
Lagrange multiplier .. Assume that AS5 and AS6 hold at x.. Assume furthermore that
ur tends to zero as k increases. Then there are positive constants i < 1, K3, K4, K5, kg and
an integer k1 such that, if pi, < [, then

[k — 24| < Kawi + Kapurl| A — A, (4.15)
A (@h, Aoy i) — Al < Bswi + Kol Ak — Al (4.16)

and
lle(@r)|| < mswrpn + (1 + sepr) (| Ak — Axll, (4.17)

forallk > ki, ke K.



The proof of Lemma 4.5 is independent of the two relaxations intoduced in Algo-
rithm ALINF, and is detailed in the appendix.

We now restrict our attention to the case where the whole sequence of iterates converges
to z,, making Assumption AS2 unnecessary (see [3] for a motivation of this additional as-
sumption). We then show that, if the penalty parameter uj converges to zero, the Lagrange
multiplier estimate A, converges to its true value A, (as in Lemma 5.4 in [2]).

Lemma 4.6 Assume that AS1 holds. Assume that {xy}, the sequence of iterates generated
by Algorithm ALINF, converges to x4 at which AS6 holds, and with corresponding Lagrange
multiplier M. Then, if up tends to zero, the sequence A\ converges to As.

Proof. Recall that AS6 implies AS3 and therefore that our assumptions are sufficient
to apply Theorem 4.3.
The result is obvious if Step 3a is executed infinitely often because each time this step

is executed, \gy1 = A(xk, Ak, fk) + ek, with ey def Mer1 — MTr, Mg, pir) satisfying [|ex|| < wp.
This, together with inequality (4.1), guarantees that \; converges to \.. Suppose, therefore,
that Step 3a is not executed infinitely often. Then ||Ax — A.|| will remain fixed for all & > ko,
for some ko > 0, as Step 3b is executed for each remaining iteration. But (4.3) then implies
that ||c(zk)|| < Kispk for some constant k13 > 0 and for all & > ks > ko. As py tends to
zero and 0 < oy < 1, kizp < vl,uzn = 11y for all k sufficiently large for which Step 3b is
executed. But then inequality (3.3) must be satisfied for some k > k3, which is impossible,
since this would imply that Step 3a is again executed. Hence Step 3a must be executed
infinitely often. O

We now consider the behaviour of the penalty parameter p; and show that it is bounded
away from zero, avoiding to the Hessian of the augmented Lagrangian to become increasingly
ill-conditioned. The proof of this result follows the lines of Theorem 5.5 in [2].

Theorem 4.7 Assume AS1 holds and suppose that the sequence of iterates {x} of Algo-
rithm ALINF converges to x with corresponding Lagrange multiplier Ay, at which AS5 and
AS6 hold. Then there is a constant pimin € (0,1) such that py > pmin for all k.

Proof. Since in any case uy is a nonincreasing sequence, we suppose by contradiction
that the complete sequence puj tends to zero. Then Step 3b must be executed infinitely
often. We note that our assumptions are sufficient to apply Theorem 4.3. Furthermore, we
may apply Lemma 4.5 to the complete sequence of iterates.

First observe that

e <p <l (4.18)

for all k > k1, where i and kq are those of Lemma 4.5. Note that

wi < Uk

for all & > k;. This follows by definition if (3.8) is executed. Otherwise it is a consequence
of the fact that py is unchanged while wy is reduced, when (3.7) occurs. Let k4 be the
smallest integer k such that, for all & > ky4,

Loy T 4.19
Mk — 2_{_557 ( . )

10



and

=61 < min [L L} 4.20
He o = K14 2614 + K5 (4.20)
where k14 = 1+ K5 + k6. Note that (4.18), 0 < 8, < 1 and (4.20) imply that
1— 1 1
P < g, o < P < o (4.21)

for all k£ > max(k1,ky). Furthermore, let k5 be such that
M = Al <1 (4.22)

for all k > ks, which is possible because of Lemma 4.6. Now define k¢ = max(ky, k4, k5), let
I' be the set {k | (3.8) is executed at iteration k — 1 and k > k¢} and let ko be the smallest
element of I'. By the assumption that pj tends to zero, I" has an infinite number of elements.

By the definition of I', for iteration ko, wy, = ftk, and 1, = ,uzg Then inequality (4.17)
gives that,

||C(-Tko)|| S KpWhoHko + :uko(l + ’{6#k0)||>‘k0 - >‘*||
< K5WeoHke T 2/“60”)‘/?0 - )‘*” (from (4'21))
< (24 Kshtky ) kg (from (4.22)) (4.23)
< @+ R, (from (4.18))
< fnuZ{] = Y17k (from (4.19)).

As a consequence of this inequality, Step 3a will be executed with A, 11 = M@k, Akg» Hko) +
€k, Where ||eg, || < wg, by (3.6). Inequality (4.16) together with (4.22) then guarantee that

[Ako+1 = Aell < (K5 + D)wiy + K6 ptko [ Ay — Aell < K1asping- (4.24)

We shall now make use of an inductive proof. Assume that Step 3a is executed for iterations
ko +1, (0 <1i<t), and that

"y
[Akgtit1 — Al < R14Mk0+ﬁnz- (4.25)

Inequalities (4.23) and (4.24) show that this is true for ¢ = 0. We aim to show that the

same is true for ¢ = t + 1. Our assumption that Step 3a is executed gives that, for iteration

t+1)+ . .
ko +t 4+ 1, prottr1 = Hkgr Whott+l = MEQ, and Ngy4t41 = ,ufg( Jran, Then, inequality

(4.17) yields that

le(@rg+t+ )|l S KsWgtt41 ko +t+1
Fhkott+41(1 + K6 Lko+e41) [ Ao+e+1 — A
< RsWhkott+1Hkott+1 + 2ikg 41 [ Agte+1 — Asl] - (from (4.21))
146yt
< rappt + 2k g (from (4.25))
< /@5pgg+ﬁ"(t+1)+1 + 2/-614,uk0,uzg+ﬁ"t (since 0 < ay, By < 1))
< (20 + Ry, (from (4.21))
1
< 1uf§(t+ e = V1Mko+t+1 (from (4.20)).

11



Hence Step 3a will again be executed with

)\ko+t+2 = )‘(xkothJrh )\kothJrla Mko+t+1) + €ko+t+1s

where ||egy+t+1]] < wiott+1 by (3.6). Inequality (4.16) then implies that

[Akort+2 — Al < (K5 + Dwkge1 + Hﬁ#ko+t+1\|)\ko+t+1 Asll
< (ks + 1);@,m + /66’@14,11/«),“/,30 ot (from (4.25))
< (ks + 1)y 1+ﬁ"( oy %6H14Mkouko+ﬁnt
= (ks +1+ 56514/%0 B"),u,lﬁjﬁ"(tﬂ)
< (ks + 1+ re)uy 7Y (from (4.20))
< ok M1+ﬁn(t+1)’

which establishes (4.25) for ¢ = ¢ + 1. Thus Step 3a is executed for all iterations k > k.
But this implies that I' is finite, which contradicts the assumption that Step 3b is executed
infinitely often. Hence the theorem is proved. O

As in [2], we examine the rate of convergence of our algorithm. Since we now allow an
error on the first-order update of the Lagrange multiplier estimate in Algorithm ALINF,
we have to distinguish between the sequences \(zy, Ak, p) and .

Theorem 4.8 Under the assumptions of Theorem 4.7, the iterates xy and the Lagrange
multipliers N(xg, Ak, pg) and A of Algorithm ALINF are at least R-linearly convergent with

R-factor at most ,ug"in, where pmin 15 the smallest value of the penalty parameter generated
by the algorithm.

The proof is given in the appendix for completeness, and makes use of the fact that
Step 3a implies that ||c(xg)|| < vami is always satisfied for k sufficiently large. The rate of
convergence of the sequence Ay is a direct consequence of (3.6).

5 Approximation of optimization problems

5.1 Approximation Scheme

In this section we consider an approximation of an optimization problem posed in an infinite-
dimensional space. More precisely, we replace the original problem

minimize f(z) subjectto c¢(z)=0, =€ X,
by a sequence of problems
minimize f,(x) subjectto cp(z) =0, z€X,,
where the functions and mappings are defined as follows

fn:Xn_’Ra cn it Xp — Yy,

12



with sequences of Hilbert spaces X,, and Y,, for n € IN, over the reals. This occurs for
example by proper discretization of optimal control problems where n denotes the parameter
describing the discretization level.

We denote by @, : X, x Y, x IR — IR the augmented Lagrangian function for these
problems

1
O, (2, A, 1) = fru(z)+ < A cn(z) >y, —i—ﬂch(x)H%/n, x € Xy, NEY,. (5.1)

On the functions we first make the following extension of the original Assumption AS1.

AS1,: The functions f, f, and c, ¢, are twice continuously Fréchet-differentiable for all
n € IN.

We assume also that the spaces X,, and Y,, are nested
X1 C...CX,CX,1C...CX and YC...CY,CY,1C...CY.
For the inner products and norms in these spaces we choose
< >x, =<5 >xs <5 cvn=<a>yvs o lxe =0k v =1y

We further make the following assumption on the functions for the refinement of the dis-
cretization.

AS7: There exists n* € IN such that

a. for all x € X,,~, there exists a sequence of positive constants e, for which

lim e., =0 and |lc,(z) — c(2)|ly <ecpn for n>n*, and
n—oo

b. for all x € X+, A € Y,» and p > 0, there exists a sequence of positive constants
£, for which

lim e, =0 and ||V, Pp(z, A, 1) — Vo @(z, A\ )| x <eopn for n>n*
n—oo

The goal for considering the following algorithm is not only to adapt the penalty pa-
rameter and tolerance level for the solution of the unconstrained subproblems but also to
incorporate the discretization aspect. It is not of much value to solve a subproblem very
precisely at the early stage of an iteration. Therefore one would like to have a measure with
which one can decide on the refinement of the discretization when necessary. Step 4 in the
algorithm below includes such a decision.

13



Algorithm ALDISCR

Step O [Initialization]. Let {e.n}, v and {ean},.pv be sequences of positive con-
stants converging to zero. An initial discretization level ng, a Lagrange multiplier
estimate A\g € Y),, and a positive penalty parameter po < 1 are given. The positive
constants wy, <1, < 1,7 <1, a <1, oy < 1, and 8, < 1 are specified. Set wy = po,
N = ,ug", and k£ = 0.

Step 1 [Inner iteration]. Find z; € X, such that

[V @y, (2r; ks i) | x < wie/2 (5.2)
holds.
Step 2 [Test for convergence|. If wy, < wy, |lcn, (k) |ly < n¢/2 and e, < 14/2, stop.

Step 3 [Updates]. If
[leny (@i)lly < i, (5.3)

execute Step 3a. If
llen, (@p)lly > (5.4)

execute Step 3b.

Step 3a [Update Lagrange multiplier estimate]. Choose

1
Ait1 = Mg + —n, (Th) (5.5)
M
and set
Hk+1 = Mk,
Wgt1 = WgHEk41, (5.6)
Met1 = nkuill-

Step 3b [Reduce the penalty parameter]. Set

Aer1 = A,
Hik+1 = THg, (5 7)
Wk+1 = Hk+1,
Qn
NMe+1 = /’Ll{;+1 .

Step 4 [Refinement]. Choose nj; 1 > ny such that

Eenpgr < min{o‘nk-l-luuk-i—lwk-l—l}’

5.8
Wi (5.8)

6¢,Hk+1 S 2

Increment k by one and go to Step 1.
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We now make some comments on Algorithm ALDISCR.

e The quantity wy is chosen as a termination criterion in Step 2 of Algorithm ALDISCR
because it is also an upper bound on ||V, ®(zk, Ak, )| x, as proved in Lemma 5.1.

e Assumption AS7 and Step 2 of Algorithm ALDISCR imply that |[c(zg)|ly < 7.
Indeed, by the first part of Assumption AS7, we have that

leCze)lly = llen (@o)lly < lle(@p)lly = llen (@)l | < lle(@r) = eny (@)lly < e

which implies that
le(@p)lly < cemy + llen, (@p)|ly < 7s,

by the two last conditions in Step 2.

e The choice of the constant o < 1 in Step 0 specifies the parameters 1 and 7o for the
decision rule of Step 3 in Algorithm ALINF, as proved in Lemma 5.2.

The algorithm is well defined since the subspaces are nested and A\py1 € Y, 1 by
(5.5), while x341 € X, ., by Step 1. In addition we know that all iterates z;, lie in X.
This indicates that one would like to have a convergence result which is formulated in
the original space X. Therefore we interpret the xj as iterates of the infinite-dimensional
Algorithm ALINF. To prove this assertion we verify the different steps of the algorithm.

Lemma 5.1 Let Assumptions AS1, and AS7 hold. For each iterate xj of Algorithm ALD-
ISCR we have

Moreover, the sequence of Lagrange multipliers A of Algorithm ALDISCR satisfies

I Akr1 — M@, Ak, k) [ly < wie

Proof. We make the following estimate using (5.2), Assumption AS7 and (5.8)

IVa®(@r, Ak, )| x - < Ve Pay (28, Ay i) | x + I Ve @(2k, ks i) — VP, (Tk, Aoy i) || x

WEk WEk WEk
< Steom <5t 5 =Wk

To show the estimate on the Lagrange multiplier note that by (2.1), (5.5), Assumption AS7
and (5.8)

1 1
[Akr1 = MA@k My ) ly = — llen, (28) — e(@p)ly < — €eny < Wi
Lk [k

O
In the following lemma we show that if the decision rule of Algorithm ALDISCR is
applied, its iterates satisfy also the decision rule of Algorithm ALINEF.
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Lemma 5.2 Let Assumption AS7 hold and for a € (0,1) set y1 =1 —a and v =1+ a.
For any iterate xy, of Algorithm ALDISCR we have the implication

If |le(xzp)lly = ~2nk, then Step 3b of Algorithm ALINF is executed.
If |le(zp)lly < "mk, then Step 3a of Algorithm ALINF is executed.

Proof. By (5.8) we have
Ecny < M.

Let |lc(zk)|ly > v2mk. Then, by Assumption AS7

len (er)lly = lle(@r)lly = lle(zr) = eny (2)lly

> 2Nk — Eemny, > V2N — QMg = Mk -

By Algorithm ALDISCR, Step 3b is then executed which is identical with Step 3b of Algo-
rithm ALINF. On the other hand suppose that ||c(xk)|ly < y17 is true. Then Assumption
AS7 implies
len (ze)lly < lle(@r)lly + lle(er) = eny (2r)lly
< MMkt Eeny, < MMk ane = Mg -

By Algorithm ALDISCR, Step 3a is executed and the Lagrange multiplier Ay is updated
according to the rule (5.5). In the previous Lemma 5.1 it was shown that this multiplier also
satisfies the relation (3.6). Since the update formulas for pu,w and n are identical in both

algorithms, we conclude that Step 3a of Algorithm ALINF is executed if ||c(z)|ly < v1mk-
a

We can summarize these lemmas in the following theorem.

Theorem 5.3 Let AS1,, and AS7 hold. Then the sequence {x} generated by Algorithm
ALDISCR can be considered as a sequence generated by Algorithm ALINF. Furthermore, if
Ty 18 a limit point of this sequence for which AS2 and ASS3 hold, if KC is the set of indices of
an infinite subsequence of the xy, whose limit is x. and if we set A\, = \(x.), then conclusions
(i), (ii) and (iii) of Lemma 4.1 hold.

Theorem 4.8 of §4.2 about the rate of convergence applies here too.

Theorem 5.4 If Assumptions AS1,, AS7T and the assumptions of Theorem 4.7 hold, the
iterates x3, and the Lagrange multipliers N(zy, M\, i) and N of Algorithm ALDISCR are
at least R-linearly convergent with R-factor at most uﬁl”in, where pmin 1S the smallest value
of the penalty parameter generated by the algorithm.

Note finally that one can show that the penalty parameter is bounded away from zero
and that the Lagrange multipliers are bounded using the results in Theorems 4.7 and 4.8.
Therefore, the reduction in the discretization parameters ¢ in (5.8) is determined by the
quantity wg.
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5.2 Application to Optimal Control

In addition to the sequences of finite-dimensional Hilbert spaces X,, € X and Y,, C Y,
n € IN, we introduce restrictions and prolongations as linear bounded maps defined on the
subspaces X,, and Y,

TT)L(:X—>X7“ TZ:Y—>YN, pff:XnﬁX, pZ:Yn—>Y.
We have the following result.

Lemma 5.5 Let X be a Hilbert space and X, C X. If the prolongation pff X, — X is
given by the embedding operator p;X = 1X, then the dual operator (piX)* : X — X, as a
restriction operator is given by the orthogonal projection (piX)* = mX onto X,,.

This follows easily from the definition of the dual map. We thus define the restrictions and

prolongations as

X _ X Y _ Y X _ X Y _ Y
pn _Ln’ pn_Ln’ Tn _7Tn’ Tn_ﬂ-n'

We make the following assumption on the selection of the subspaces.

AS8: The Hilbert spaces X,, € X and Y, C Y, n € IN, are chosen such that the
orthogonal projections 7\ € £(X, X,,) and 7} € L(Y,Y,,) satisfy, for each x € X and
y € Y, respectively,

lim |7z —z||x =0  and lim |7y y —ylly = 0.
n—o0 n—0o0

The discretized functions and mappings are then defined as follows

AS9: TForallne N

fn:fOLfianR, Cn:Td'ZOCOLf:XnHYn.

We now show that Assumptions AS1, and AS7 are satisfied under the above setting.
Obviously the differentiability assumptions for f,, and ¢, in AS1,, directly follow from As-
sumptions AS8 and AS9.

Lemma 5.6 Let f and c satisfy Assumption AS1 and let AS8 and AS9 hold. Then f, and
¢n defined in Assumption AS9 satisfy the Assumption AS1,, for alln € IN.

With respect to AS7, we first show in the next statement the consistency of the ap-
proximations of ¢ in form of the pointwise convergence of the discretized constraints to the
original constraint.

Lemma 5.7 Let ¢ satisfy AS1, let Assumption AS8 hold and let c,, n € IN, satisfy AS9.
Then for any n € IN we have that for all x € X,

lim ||, (z) — c(z)|ly = 0.

n—0o0
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Proof. For fixed z € X,,, we have

llen (@) = c(@)lly = llmy e @) = c(@)lly = |7y cla) = e(@)lly,

which proves the lemma, by Assumption AS8. O
We now turn to the second part of AS7. The augmented Lagrangian function @,
X, xY, x IR — IR becomes, with the definition of f, and ¢, given in Assumption AS9,

1
Oz, M) = ful@)+ <A en(z) >y, +—M|rcn<x>rr%n
1
= fliXa)+ <IN (i) >y —{——Hﬂ' (i )|y,

= Uiz A+ 2MHTF c(in 2|3,

The gradient with respect to z € X, of the augmented Lagrangian function ®,, is computed
in the following Lemma.

Lemma 5.8 The gradient of ®,(x, A\, u) with respect to x € X,, is given by

1
Vi) = VLA ) A ) e )

n
1
= XV, N+ = X a) Y w1 x).
Proof. We have the following identities, where differentiation is understood with respect

to z € X,, and where A € Y,, and s € X,

Q! (z, A\, pu)s = <V$f(b T), 18 >x + <IN (X x)iks >y

+—<7T c(tXx), Y (LX) s >y,
i

= <XV f(Xz),s >x, + <75 (LX) XN s >x,
X I(X )*LYT('YC(LXx) 5 >x,,

which shows the representation of the gradient. O
Next we prove the convergence of the gradients of the augmented Lagrangian.

Lemma 5.9 Let f and c satisfy AS1, let Assumption AS8 hold and let f,, and c,, n € IN,
satisfy AS9. Then for any n € IN we have that for all x € X,,, all A €Y, and all p >0

Jim IVe®p(x, A, 1) — Via@(z, \, )] x = 0.
Proof. By Lemma 5.8 and the first equality in (2.2), we split

IVa®n(z, A 1) = Va@(@, A p)lx < (175 Vol (i 2,0 A) = Val(z, M) x
1
+ pHWfL(C'(fo)*LZWXC(bf%) = (@) e(@)l|x,
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and estimate each part separately. Let z € X,,, A € Y}, and p > 0 be fixed. By Assumption
AS8, we first have that

i (|7 V(i i A) = Vil(a, N x = lim [|my Vab(a, A) = Vib(z, M)||x = 0.
The following inequalities
lm e ey @) oy my el ) — (@) e(z)|lx = [lm)c (z) my e(z) — ' (z) e(@)llx

I ¢ () my e(x) — m (@) ()| x
+ [[md (z) e(z) — ¢ (2) ()] x

I e (@) [l e(z) — ()l
+ [[my e (z) e(x) — ¢ (2) ()| x,

IN

IN

together with Assumption AS8 and the fact that [|7) ||z(y.y,) < 1, imply that

lim |75 (X)X Y e(lX ) — & (x) e(z)]| x = 0.
n—oo
We can deduce the result from the two limits above. O
In conclusion, Lemmas 5.6, 5.7 and 5.9 guarantee that, under Assumptions AS8 and
AS9, the convergence results of Theorems 5.3 and 5.4 hold.

6 Conclusion

In this paper, we present a convergence theory for an infinite-dimensional setting of an aug-
mented Lagrangian method to solve an equality constrained optimization problem. This
problem is solved by a sequence of discretized problems where in the course of the iteration
the level of discretization is refined. The penalty parameter and the Lagrange multiplier
updates are based on a set-valued map. This and the fact that the subproblems are solved
inexactly allow us to interpret the iterates of the discretized problems as a sequence of iter-
ates in an infinite-dimensional setting. We obtain a convergence statement of the discretized
iterates in Hilbert space. The assumptions are explained for a discretization scheme with
nested subspaces. Numerical experiments are part of future work.
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Appendix

A  Proof of Lemma 4.1

As a consequence of AS1-AS3, we have that for k € K sufficiently large, ¢/(zp)" exists, is
bounded and converges to ¢/(z,)". Thus, we may write

(¢ () D) < 1 (A1)
for some constant x; > 0. The inner iteration termination criterion (3.2) gives that
IVa® (@, Ay )| = 1V f () + € (20)" M| < wr (A.2)

for all k € K, where \j, def Mg, Ak, k). By Assumptions AS1, AS2, AS3 and (2.3), A\(x)
is bounded for all  in a neighbourhood of z.. Thus we may deduce from (2.3), (A.1) and
(A.2) that

e = Aol = (1(¢ (@) ") Vaf (@) + Al
1 (z) ™) (Vaf (k) + ¢ (2)" M) | (A3)
(¢ () ™) lwk '
R1Wg.

IAIA I

Moreover, since ¢ (z) is Lipschitz-continuous in a neighborhood of z, ¢/ (x)* is also Lipschitz-
continuous and

[AMzk) = Al < mallag, — (A4)

for all k € K sufficiently large and for some constant ko > 0, which implies inequality (4.2).
We then have that A\(x) converges to A.. Combining (A.3) and (A.4) we obtain

1Ak = Aell < 1Ak = A@o) | + 1M zn) = Al < mawp + ol — 24, (A.5)

which gives the required inequality (4.1). Then, since by assumption wy, tends to zero as k
increases, (A.5) implies that \; converges to A, and therefore V,®(xx, Ak, px) converges to
V2 l(24, Ay). Furthermore, multiplying (2.1) by ug, we obtain

c(zx) = (A = M) + (A = Ap)). (A.6)

Taking norms of (A.6) and using (A.5), we derive (4.3).
Now suppose that
c(zy) =0. (A.7)

The convergence of V@ (z, Ak, pg) to Vil(x., Ax), (3.2) and the convergence of wy, to zero
give that
Vaef(zs) + ¢ () X = 0.

This last equation and (A.7) show that x, is a Karush-Kuhn-Tucker point and A, is the
corresponding Lagrange multiplier. Moreover (4.1) and (4.2) ensure the convergence of the
sequences {A(zg, Ak, pi)} and {A(zx)} to A, for k € K. Hence the lemma is proved. O
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B Proof of Theorem 4.3

Our assumptions are sufficient to reach the conclusions of part (i) of Lemma 4.1. We now
show that ¢(x,) = 0 and analyse two separate cases.

The first case is when uy is bounded away from zero. Hence Step 3a must be executed
every iteration for k sufficiently large, implying that ||c(zy)|| < y2nk is always satisfied for
k large enough. We then deduce from (3.9) that c(zj) converges to zero.

The second case is when py, converges to zero. Then Lemma 4.2 shows that z|| (A — )|
tends to zero. Using this limit and (3.9) in (4.3), we obtain that c¢(x) tends to zero, as
desired.

As a consequence, conclusions (ii) and (iii) of Lemma 4.1 hold. O

C Proof of Theorem 4.4

By definition of ®,

- 1
Ve ®(@p, Ay i) = Vol (zi, M) + EC'(%)*C'(M), (C.1)

where \j, def Ak, Ak, pr)- Let s be a nonzero vector such that
d(xy)s = 0. (C.2)
For any such vector, AS4 implies that
§T Voo ®(p, A pr)s > vl|s|?
for some v > 0, which in turn gives that
STVl (@i, A)s > vl|s))?,

because of (C.1) and (C.2). By continuity of V¢ as xj and A\x approach their limits (note
that the convergence of A\; to A, for k € K is guaranteed by Theorem 4.3), this ensures that

§TV 1ol (24, M)s > |5

for all nonzero s satisfying
d(xy)s =0,

which implies that z, is an isolated local solution of (1.1). O

D Proof of Lemma 4.5

We observe that the assumptions of the lemma guarantee that Theorem 4.3 can be used.
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Using (2.2) and Taylor’s expansion around x., we obtain that

Ve ®(@p, Ay k) = Vaf (zr) + ¢ (x1)" (M + e(zr) / 1)

(ks Ak) ) )

(@aes Ak) + Vazl(Ta, Ai) (e — T4) + 71(Xpy o, Ak) (D.1)
(Tas M) F Vaal (s, M) (w1, — 24) + ¢ (@) (Ap — As)
+T’1(.%'k,1'*,5\k) —i—?"z(.%’k,l'*,;\k,)\*),

V.l
Vil
V.l

where \j, def S\(l"k, ks k)

def

_ 1 _ _
Tl(xkax*a )‘k) = /0 [vzm:f(l'* + O'(CL‘k - -T*), Ak) - vmmf(l‘*a )‘k)](xk - $*) do

and B ot -
1o (Thy Ty Moy Ax) = (7 (@) (T — 24)) (A — As).

The boundedness and Lipschitz continuity of f” and ¢” in a neighbourhood of z,, together
with the convergence of A\; to A, then imply that

71 (g, 2, M) | < B7llzn — 2%, (D.2)

and B B
[72(@ ks T, Aty M) || < Bgllzr — 2| | Ae — Al (D.3)

for some positive constants k7 and kg. Moreover, using Taylor’s expansion again, along
with the fact that Theorem 4.3 ensures the equality c(x.) = 0, we obtain that

c(zr) = ' (24)(Tp — ) + r3(TRs T4, (D.4)

where
173(zh, ) || < Rollan — s (D.5)

for some positive constant k9. Combining (D.1) and (D.4), we obtain

Vel (e, A) ¢ (20)* Tp— Ty | _ V@@, Ak, i) — Val(za, M) | [ 11+ 72
d(z4) 0 A — s c(xy) r3 ’
(D.6)

where we have suppressed the arguments of the residuals r1, ro and r3 for brevity. Note
that Theorem 4.3 ensures that V ¢(z., A.) = 0, such that (D.6) becomes

V:m:g(x*, >\*) C,(:E*)* T — Tx o V:B(I)(l'k, )‘k:uuk;) _ ra
( () 0 ) < A — A ) - ( o(zk) ) ( ry >, (D.7)

where 4 def r1 + ro. Roughly speaking, we now proceed by showing that the right-hand
side of this relation is of the order of wi + || Ax — A«||. We will then ensure that the vector
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on the left-hand side is of the same size, which is essentially the result we aim to prove. We

first deduce from (D.2), (D.3), (D.5) and (4.1) that

()

where k19 = K7 + Kakg + Ko, and k11 = K1Kkg. We now bound ¢(xy). Using (4.3), we have
that

< wollor — 2l + sriwgllar — @), (D.8)

le(@i)ll < mwrp + prl A = Al + maprellzr — 2], (D.9)
for all k sufficiently large. Hence, by (3.2) and (D.9), we obtain that

By Assumption AS6, the operator on the left-hand side of (D.7) is invertible. Let M be
the norm of its inverse. Multiplying both sides of the equation by this inverse and taking
norms, we obtain from (D.8) and (D.10) that

’ < wi + KW+ pel| Ak — Al + meprllrr — 24l (D.10)

— X
( Tk * ) H < M[/ﬂonk — 1'*”2 + ﬂllwkﬂxk — .%'*” + WEk + R1WE ML

e — (D.11)
el Ae = Al + moprllzr — a]]-
Suppose now that k is sufficiently large to ensure that
1
< D.12
Wk = 4M/€11 ( )
and let 1
_ def .
= . D.13
2 min o, | (D.13)
Recall that up and hence i < 1. Then, if ug < fi, the relations (D.11)—(D.13) give
1
ok = 2ol < Sllak — @l + Mlkrollzr — 2l + rrwi + el s = Al (D.14)
where 19 = 1 4 k1. As z; — x4, and hence ||z, — 2.|| converge to zero, we have that
1
_ < D.15
o = o] < g7 (D.15)
for k large enough. Hence inequalities (D.14) and (D.15) yield that
[k — 2. || < AM (K12wk + pel[[ Ak — Acl), (D.16)

which is (4.15) where k3 © Y Mryy and ks & 4M. Now, using (4.1) and (4.15), we have
that B
[Ak = Al < Fawg + k2(k3wr + Kapr[ Ak — Ad]),

which is (4.16) where k5 def K1 + koks and kg def koky. Finally, by (2.1),
le(@i)ll = el = Ml < (M = Al + 1A = Adl)), (D.17)
and (4.17) follows from (D.17) and (4.16). O
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E Proof of Theorem 4.8

The proof parallels that of Lemma 4.5. First, Theorem 4.7 shows that the penalty parameter
i stays bounded away from zero, and thus remains fixed at some value gy > 0, for
k > kmax. For all subsequent iterations,

Wkt1 = Pminwk and Mg = uﬁnnk (E.1)

hold. Moreover, we have that ||c(xg)|| < vang for all k& > kpyax sufficiently large. Hence, the
bound on the right-hand side of (D.10) may be replaced by wy + v2m, and thus instead of
(D.14)

lz, =l < Mlkrollzr — @.l* + puiwrllzr — 2ol + wp + yem]. (E.2)

Therefore, if k is sufficiently large that

< E.3
W = 2M k11 ( )
and 1
< , E.4
o =2l < pr— (B4)
inequalities (E.2)—(E.4) can be rearranged to yield
[ = 2| < 4M (wy, + v2118),
that is
|2k — 2| < K1swk + K16Mk (E.5)

where k15 = 4M and ki = 4M~y,. Since , < 1 and pimin < 1, (E.1) and (E.5) show that
xy, converges to x, at least R-linearly, with R-factor pi"in. Inequalities (4.1) and (E.5) then
guarantee the same property for A(zy, Ak, 1z ), which in turn guarantees the same property
for Ag, because of (3.6). O
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