
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

A class of augmented Lagrangian algorithms for infinite-dimensional optimization with
equality constraints
Sachs, E.; Sartenaer, Annick

Publication date:
2005

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Sachs, E & Sartenaer, A 2005, A class of augmented Lagrangian algorithms for infinite-dimensional optimization
with equality constraints. FUNDP, Faculté des Sciences. Département de Mathématique., Namur.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

https://researchportal.unamur.be/en/publications/a-class-of-augmented-lagrangian-algorithms-for-infinitedimensional-optimization-with-equality-constraints(1a084505-0303-437a-84ef-8b8d3abe50bc).html


A class of augmented Lagrangian algorithms for

infinite-dimensional optimization with equality constraints

E.W. Sachs∗ Annick Sartenaer†

July 13, 2005

Abstract

We consider a class of augmented Lagrangian algorithms for the solution of opti-
mization problems posed in an infinite-dimensional setting. This class extends the aug-
mented Lagrangian algorithm developed in [2] (when considering equality constraints
only) which is motivated by solving a sequence of subproblems in which the augmented
Lagrangian is approximately minimized – i.e., each subproblem is terminated as soon
as a stopping condition is satisfied. Global and local convergence results are outlined.
A study of the behavior of the extended class of algorithms is further presented when
the sequence of approximately solved infinite-dimensional subproblems is replaced by a
sequence of finite-dimensional subproblems obtained by a more and more refined dis-
cretization of their infinite-dimensional counterpart.

Key words: Nonlinear optimization, equality constraints, infinite-dimensional optimization,
augmented Lagrangian methods, discrete approximations

1 Introduction

The problem we consider in this paper is that of calculating a local minimizer of a smooth
function subject to general equality constraints. That is, we wish to solve the problem

minimize f(x) subject to c(x) = 0, x ∈ X, (1.1)

where f and c are maps defined as follows

f : X → IR, c : X → Y

with Hilbert spaces X and Y over the reals. A classical technique for solving problem (1.1)
is to minimize a suitable sequence of augmented Lagrangian functions. These functions are
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defined by Φ : X × Y × IR → IR

Φ(x, λ, µ) = f(x)+ < λ, c(x) >Y +
1

2µ
‖c(x)‖2

Y , (1.2)

where the vector λ is known as a Lagrange multiplier estimate and µ is known as the penalty
parameter (see, for instance, Bertsekas [1]). < ·, · >Z denotes the inner product in some

Hilbert space Z, and let ‖ ·‖Z =< ·, · >
1/2
Z ( or simply ‖ ·‖ when it is clear from the context)

be the corresponding norm.
In this paper, we base the convergence results on [2] applied to the Hilbert space case.

In order to apply this to a sequence of discretized problems, we introduce a new set-valued
update rule for Lagrange multipliers and an algorithm based refinement rule for the dis-
cretization. In contrast to [2] we omit linear inequality constraints and use real valued
penalty parameters.

Other papers that deal with augmented Lagrangian methods in Hilbert space were
written by Ito and Kunisch (see [4] and [5]), where local and global convergence results
were given, however for fixed penalty parameters. Volkwein [7] presents in his dissertation
a Kantorovich theory which allows to derive mesh independence results for augmented
Lagrangian methods. In a paper by Sachs and Volkwein [6] these results were extended to
more general update procedures for the Lagrange multiplier.

When solving an infinite-dimensional optimization problem one often uses a sequence of
finite-dimensional discretized problems. Rather than solving these accurately at each level
of discretization, we want to start with a coarse level and increase this level as the iteration
progresses. Then the question arises how this is coupled with the penalty parameter and
the Lagrange multiplier update. We interpret each iterate as an iteration in an algorithm in
infinite dimensions. This can be done because each subproblem in the infinite-dimensional
counterpart needs not to be solved exactly allowing the discretization error being interpreted
as inexactness. This basic principle required us to introduce also a new update rule for
penalty parameter and Lagrange multiplier. The level of refinement is determined in the
algorithm based on the progress towards stationarity.

The problem and the notation are introduced in §2. Section 3 presents the proposed
algorithm including set-valued update rules and inexact solves of the minimization of the
augmented Lagrangian. The global and local convergence analysis in Hilbert space is devel-
oped in §4. In §5.1, we consider a sequence of discretized problems and define an algorithm
where at each step the discretization is refined if necessary. The resulting sequence of it-
erates is then interpreted as an iteration in an infinite-dimensional setting so that we can
apply the convergence theorems from §4. In §5.2, we use the framework of restrictions and
projections to define approximating functions and check the previously stated assumptions
with these discretized optimization problems.

2 The problem and notation

We consider the problem stated in (1.1). On the functions we make the following assump-
tions.
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AS1: The functions f and c are twice continuously Fréchet-differentiable.

We now introduce the notation that will be used throughout the paper. For any function
F let ∇xF (x) denote the gradient of F (x) and F ′(x), F ′′(x) denote the operator defined
by the first and second derivative of F , respectively. The Lagrangian function is given by
Φ(x, λ, 0) or

`(x, λ) = f(x)+ < λ, c(x) >Y .

If we define the first-order Lagrange multiplier estimate as

λ̄(x, λ, µ) = λ + c(x)/µ, (2.1)

we shall use the identity

∇xΦ(x, λ, µ) = ∇xf(x) + c′(x)∗λ + 1
µc′(x)∗c(x)

= ∇xf(x) + c′(x)∗λ̄(x, λ, µ)
= ∇x`(x, λ̄(x, λ, µ)).

(2.2)

If the map
c′(x) : X → Y is surjective,

then the map c′(x)c′(x)∗ : Y → Y is surjective and injective and therefore has a continuous
inverse. Hence its generalized right inverse exists and we define the least-squares Lagrange
multiplier estimate

λ(x)
def
= −(c′(x)+)∗∇xf(x) (2.3)

where the generalized right inverse is given by

c′(x)+
def
= c′(x)∗(c′(x)c′(x)∗)−1.

We now describe more precisely the algorithm that we propose to use.

3 Description of the algorithm

As in [2], the algorithmic model we propose to solve problem (1.1) proceeds at iteration k
by computing an iterate xk that approximately solves the subproblem

min
x∈X

Φ(x, λk, µk), (3.1)

where the values of the Lagrange multiplier estimate λk and the penalty parameter µk are
fixed for the subproblem. Subsequently we update the Lagrange multiplier or decrease the
penalty parameter, depending on how much the constraint violation has been reduced. The
tests on the size of the constraint violation are designed to allow the multiplier updates to
take over in the neighbourhood of a stationary point.

The approximate minimization for problem (3.1) is performed in an inner iteration
which is stopped as soon as its current iterate is sufficiently critical, in the sense that

‖∇xΦ(xk, λk, µk)‖ ≤ ωk,
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where ωk is a suitable tolerance at iteration k decreasing to zero with k → ∞.
Algorithm ALINF below follows closely the algorithmic model described in [2], but

introduces two relaxations, one in the tests on the size of the constraint, and another in the
update of the Lagrange multiplier estimate. These two relaxations will allow the solution of
problem (1.1) to be computed by considering a sequence of finite-dimensional subproblems,
obtained by a more and more refined discretization of their infinite-dimensional counterpart.
Indeed, we will first show in §4 that the proposed relaxations do not spoil the convergence
results derived for the algorithmic model of [2]. We will then interpret, thanks to the
relaxations, the iterates generated by the sequence of finite-dimensional subproblems as an
iteration in the infinite-dimensional setting given by our algorithmic model (see §5.1). As a
consequence of this, the convergence theory developed in §4 will then apply to the sequence
of solutions computed from the discretized subproblems.

To motivate this paper in more detail, consider the algorithm of [2]: The decision rule
in Step 3 of that algorithm which is used to decide whether either (case a) the Lagrange
multiplier is updated or (case b) the penalty parameter is reduced has the following form:

if ‖c(xk)‖ < ηk goto case a,
if ‖c(xk)‖ ≥ ηk goto case b,

where ηk is decreasing to zero. If one analyzes a sequence of approximating problems
where the constraint c is approximated by cn, n ∈ IN , say, then it is conceivable that for a
fixed iterate xk the sequence of function values cn(xk) converges to c(xk) under appropriate
assumptions. However, it could happen that the values ‖cn(xk)‖ oscillate around ηk and
the decision for case a or case b can alternate as n tends to infinity. Note that this could
happen if ‖c(xk)‖ = ηk. This could lead to different sequences of iterates even when cn

approaches c. Therefore, this leads us to revise the decision rule in Step 3 of the algorithm
in such a way that we introduce a fuzzy area for the decision: For 0 < γ1 < 1 < γ2 we
require that

if ‖c(xk)‖ ≤ γ1ηk goto case a,
if ‖c(xk)‖ ∈ (γ1ηk, γ2ηk) goto case a or b,
if ‖c(xk)‖ ≥ γ2ηk goto case b,

is executed.
The second change in the algorithm is an appoximation of the Lagrange multiplier

update. The requirement is that it has to be close to the first order multiplier update up
to an error ωk:

‖λk+1 − λ̄(xk, λk, µk)‖ ≤ ωk.

We are now ready to define our algorithmic model in more detail.

Algorithm ALINF

Step 0 [Initialization]. An initial Lagrange multiplier estimate λ0 ∈ Y and a positive
penalty parameter µ0 < 1 are given. The positive constants ω∗ < 1, η∗ < 1, γ1 < 1,
γ2 > 1, τ < 1, αη < 1, and βη < 1 are specified. Set ω0 = µ0, η0 = µ

αη

0 , and k = 0.
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Step 1 [Inner iteration]. Find xk ∈ X that approximately solves (3.1), i.e., such that

‖∇xΦ(xk, λk, µk)‖ ≤ ωk (3.2)

holds.

Step 2 [Test for convergence]. If ‖∇xΦ(xk, λk, µk)‖ ≤ ω∗ and ‖c(xk)‖ ≤ η∗, stop.

Step 3 [Updates]. If
‖c(xk)‖ ≤ γ1ηk, (3.3)

execute Step 3a. If
‖c(xk)‖ ≥ γ2ηk, (3.4)

execute Step 3b. Otherwise if

γ1ηk < ‖c(xk)‖ < γ2ηk, (3.5)

execute Step 3a or Step 3b. Increment k by one and go to Step 1.

Step 3a [Update Lagrange multiplier estimate]. Choose λk+1 that satisfies

‖λk+1 − λ̄(xk, λk, µk)‖ ≤ ωk (3.6)

and set
µk+1 = µk,
ωk+1 = ωkµk+1,

ηk+1 = ηkµ
βη

k+1.

(3.7)

Step 3b [Reduce the penalty parameter]. Set

λk+1 = λk,
µk+1 = τµk,
ωk+1 = µk+1,
ηk+1 = µ

αη

k+1.

(3.8)

Note that, as in [2], Algorithm ALINF is coherent, in that

lim
k→∞

ωk = lim
k→∞

ηk = 0. (3.9)

We will see in §5 how this algorithm can be used to prove convergence for a method
which is adaptively changing the discretization levels as the iteration progresses.

4 Convergence analysis for Algorithm ALINF

The convergence theory is based on that in [2] and [3]. In contrast to the problem formula-
tion in these papers, we do not include bound constraints [3] or linear inequality constraints
[2]. However, we formulate the problem in a infinite-dimensional setting. On the other
hand, the algorithm considered in this paper includes a more general decision rule for the
updates of the Lagrange multiplier, the penalty parameter and the tolerances, as well as
an inexact updating rule for the Lagrange multiplier. We moved some of the proofs of the
convergence statements into the appendix.
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4.1 Global Convergence analysis

We will show that Algorithm ALINF is globally convergent under the following assumptions.

AS2: The iterates {xk} lie within a compact set Ω.

AS3: The operator c′(x∗) is surjective at any limit point, x∗, of the sequence {xk}.

Assumption AS2 implies that there exists at least a convergent subsequence of iterates,
while Assumption AS3 guarantees that the Fréchet-derivative of the constraint is surjective
in an neighborhood of x∗, and we suppose w.l.o.g. that c′(xk) is surjective for the sequence
of iterates.

For the purpose of our convergence analysis, we assume that the convergence tolerances
ω∗ and η∗ are both zero. We now state the analog of Lemma 4.4 in [2].

Lemma 4.1 Suppose that AS1 holds. Let {xk}, k ∈ K, be a sequence satisfying AS2 which
converges to the point x∗ for which AS3 holds and let λ∗ = λ(x∗), where λ satisfies (2.3).
Assume that {λk}, k ∈ K, is any sequence of vectors and that {µk}, k ∈ K, form a non-
increasing sequence of scalars. Suppose further that (3.2) holds where the ωk are positive
scalar parameters which converge to zero as k ∈ K increases. Then

(i) There are positive constants κ1 and κ2 such that

‖λ̄(xk, λk, µk) − λ∗‖ ≤ κ1ωk + κ2‖xk − x∗‖, (4.1)

‖λ(xk) − λ∗‖ ≤ κ2‖xk − x∗‖, (4.2)

and
‖c(xk)‖ ≤ κ1ωkµk + µk‖(λk − λ∗)‖ + κ2µk‖xk − x∗‖, (4.3)

for all k ∈ K sufficiently large.

Suppose, in addition, that c(x∗) = 0. Then

(ii) x∗ is a Karush-Kuhn-Tucker point (first-order stationary point) for the problem (1.1),
λ∗ is the corresponding Lagrange multiplier, and the sequences {λ̄(xk, λk, µk)} and
{λ(xk)} converge to λ∗ for k ∈ K;

(iii) The gradients ∇xΦ(xk, λk, µk) converge to ∇x`(x∗, λ∗) for k ∈ K.

The detailed proof of Lemma 4.1 is given in the appendix, and does not need to take
the two relaxations introduced in Algorithm ALINF into consideration. This proof can be
easily derived from the proof of Lemma 4.4 in [2], using two steps. The first step consists
in simplifying the proof of Lemma 4.4 in [2] by considering only one penalty parameter µk

and by assuming Z∗ = I (where I is the identity operator) and A∗ equals zero, since we do
not consider linear inequality constraints in our framework. The second step takes account
of the infinite-dimensional setting in which problem (1.1) is posed, and replaces J T

k in [2] by
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c′(xk)
∗. Note that inequality (4.2), which is the equivalent of inequality (4.14) in [2], holds

because of the Lipschitz continuity of c′(x) in a neighborhood of x∗, and hence of c′(x)+.
We now require the following lemma in the proof of the global convergence, which shows

that the Lagrange multiplier estimate cannot behave too badly. Again this lemma is adapted
from the global convergence theory in [2] (see Lemma 4.5), but since the two relaxations
intoduced in Algorithm ALINF interfere explicitly, we detail the proof.

Lemma 4.2 Suppose that µk converges to zero as k increases when Algorithm ALINF is
executed. Then the product µk‖λk‖ converges to zero.

Proof. As µk converges to zero, Step 3b must be executed infinitely often. Let
K = {k0, k1, k2, ....} be the set of indices of the iterations in which Step 3b is executed and
for which

µk ≤

(

1

2

)1/βη

≤
1

2
. (4.4)

We consider how the Lagrange multiplier estimate change between two successive iterations
indexed in the set K. At iteration ki + j, for ki < ki + j ≤ ki+1, we have, since λki+1 = λki

and by (2.1)

λki+j = λki+1 +
∑j−1

l=1 [λki+l+1 − λki+l]

= λki
+
∑j−1

l=1

[

λki+l+1 − λ̄(xki+l, λki+l, µki+l) + c(xki+l)/µki+l)
]

= λki
+
∑j−1

l=1 [c(xki+l)/µki+l + eki+l] ,

(4.5)

where we use the notation ek
def
= λk+1 − λ̄(xk, λk, µk) and where the summation is null if

j = 1. We also have
µki+1

= µki+j = µki+1 = τ µki
. (4.6)

Now suppose that j > 1. Then for the set of iterations ki + l, 1 ≤ l < j, either (3.3) or
(3.5) must hold and hence the inequality ‖c(xki+l)‖ ≤ γ2ηki+l must hold. From this last
inequality, (4.6) and the recursive definition of ηk, we must also have

‖c(xki+l)‖ ≤ γ2ηki+l = γ2ηki+1µ
βη(l−1)
ki+1 = γ2µ

βη(l−1)+αη

ki+1
. (4.7)

On the other hand, from (3.6), (4.6) and the recursive definition of ωk, we have

‖eki+l‖ ≤ ωki+l = ωki+1µ
l−1
ki+1 = µl

ki+1
. (4.8)

Combining equations (4.4) to (4.8), we obtain the bound

‖λki+j‖ ≤ ‖λki
‖ +

∑j−1
l=1 [‖c(xki+l)‖/µki+l + ‖eki+l‖]

≤ ‖λki
‖ + γ2µ

αη−1
ki+1

∑j−1
l=1 µ

βη(l−1)
ki+1

+
∑j−1

l=1 µl
ki+1

≤ ‖λki
‖ + γ2µ

αη−1
ki+1

/(1 − µ
βη

ki+1
) + µki+1

/(1 − µki+1
)

≤ ‖λki
‖ + 2γ2µ

αη−1
ki+1

+ 2µki+1
.
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Thus we obtain that

µki+j‖λki+j‖ ≤ τµki
‖λki

‖ + 2γ2µ
αη

ki+1
+ 2µ2

ki+1

≤ τµki
‖λki

‖ + 2(γ2 + 1)µ
αη

ki+1
,

(4.9)

where we used (4.6), 0 < αη < 1 and µki+1
< 1 to derive the last inequality. Equation (4.9)

is also satisfied when j = 1 as (3.8) and (4.6) give µki+1‖λki+1‖ = τµki
‖λki

‖. Hence, from
(4.9),

µki+1
‖λki+1

‖ ≤ τµki
‖λki

‖ + 2(γ2 + 1)µ
αη

ki+1
. (4.10)

Equation (4.10) then gives that µki
‖λki

‖ converges to zero as k increases. For, if we define

δi
def
= µki

‖λki
‖ and ρi

def
= 2(γ2 + 1)µ

αη

ki
, (4.11)

equations (4.6), (4.10) and (4.11) give that

δi+1 ≤ τδi + ταηρi and ρi+1 = ταηρi (4.12)

and hence that

0 ≤ δi ≤ τ iδ0 + (ταη )i
i−1
∑

l=0

(τ1−αη )lρ0. (4.13)

Since 0 < τ < 1 and 0 < αη < 1, the sum in (4.13) can be bounded to give

0 ≤ δi ≤ τ iδ0 + (ταη)iρ0/(1 − τ1−αη). (4.14)

But both δ0 and ρ0 are finite. Thus, as i increases, δi converges to zero. Moreover equation
(4.11) implies that ρi converges to zero. Therefore, as the right-hand-side of (4.9) con-
verges to zero, the whole sequence µk‖λk‖ converges to zero and the truth of the lemma is
established. 2

The next theorem gives the desired global convergence property of Algorithm ALINF,
analogously to Theorem 4.6 in [2].

Theorem 4.3 Assume that AS1 holds. Let x∗ be any limit point of the sequence {xk}
generated by Algorithm ALINF of §3 for which AS2 and AS3 hold and let K be the set of
indices of an infinite subsequence of the xk whose limit is x∗. Finally, let λ∗ = λ(x∗). Then
conclusions (i), (ii) and (iii) of Lemma 4.1 hold.

Again the proof of Theorem 4.3 is detailed in the appendix. It can be easily derived from
the proof of Theorem 4.6 in [2], where, in the case where µk is supposed to be bounded
away from zero, we can use the fact that Step 3a implies that ‖c(xk)‖ ≤ γ2ηk is always
satisfied for k large enough, such that c(xk) converges to zero, by (3.9).

We end this section by briefly analysing second-order conditions. By imposing the
following additional assumption, we can guarantee that Algorithm ALINF converges to an
isolated local solution.
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AS4: Suppose that xk, λk and µk are generated by Algorithm ALINF of §3 and that the
sequence {xk} converges to x∗ for k ∈ K. Then, we assume that ∇xxΦ(xk, λk, µk) is
uniformly positive definite (that is, its smallest eigenvalue is uniformly bounded away
from zero) for all k ∈ K sufficiently large.

The following theorem is inspired from Theorem 6.1 in [2].

Theorem 4.4 Assume that AS1 holds. Let x∗ be any limit point of the sequence {xk}
generated by Algorithm ALINF of §3 for which AS2 and AS3 hold and let K be the set of
indices of an infinite subsequence of the xk whose limit is x∗. Under Assumption AS4, the
iterates xk, k ∈ K, converge to an isolated local solution of (1.1).

The proof is given in the appendix.

4.2 Asymptotic convergence analysis

We now analyse the asymptotic convergence of Algorithm ALINF and show first that the
penalty parameter is bounded away from zero. We require some additional assumptions.

AS5: The second Fréchet–derivatives of the functions f(x) and c(x) are Lipschitz contin-
uous at any limit point x∗ of the sequence of iterates {xk}.

AS6: Suppose that (x∗, λ∗) is a Karush-Kuhn-Tucker point for problem (1.1). We assume
that the operator

(

∇xx`(x∗, λ∗) c′(x∗)
∗

c′(x∗) 0

)

has a continuous inverse.

Note that AS6 implies AS3.
From the adaptation of Lemma 5.3, (i), in [2] to our framework, we get the following

results.

Lemma 4.5 Assume that AS1 and AS2 hold. Let {xk}, k ∈ K, be a convergent subse-
quence of iterates produced by Algorithm ALINF, whose limit point is x∗ with corresponding
Lagrange multiplier λ∗. Assume that AS5 and AS6 hold at x∗. Assume furthermore that
µk tends to zero as k increases. Then there are positive constants µ̄ < 1, κ3, κ4, κ5, κ6 and
an integer k1 such that, if µk1

≤ µ̄, then

‖xk − x∗‖ ≤ κ3ωk + κ4µk‖λk − λ∗‖, (4.15)

‖λ̄(xk, λk, µk) − λ∗‖ ≤ κ5ωk + κ6µk‖λk − λ∗‖, (4.16)

and
‖c(xk)‖ ≤ κ5ωkµk + µk(1 + κ6µk)‖λk − λ∗‖, (4.17)

for all k ≥ k1, k ∈ K.

9



The proof of Lemma 4.5 is independent of the two relaxations intoduced in Algo-
rithm ALINF, and is detailed in the appendix.

We now restrict our attention to the case where the whole sequence of iterates converges
to x∗, making Assumption AS2 unnecessary (see [3] for a motivation of this additional as-
sumption). We then show that, if the penalty parameter µk converges to zero, the Lagrange
multiplier estimate λk converges to its true value λ∗ (as in Lemma 5.4 in [2]).

Lemma 4.6 Assume that AS1 holds. Assume that {xk}, the sequence of iterates generated
by Algorithm ALINF, converges to x∗ at which AS6 holds, and with corresponding Lagrange
multiplier λ∗. Then, if µk tends to zero, the sequence λk converges to λ∗.

Proof. Recall that AS6 implies AS3 and therefore that our assumptions are sufficient
to apply Theorem 4.3.

The result is obvious if Step 3a is executed infinitely often because each time this step

is executed, λk+1 = λ̄(xk, λk, µk) + ek, with ek
def
= λk+1 − λ̄(xk, λk, µk) satisfying ‖ek‖ ≤ ωk.

This, together with inequality (4.1), guarantees that λk converges to λ∗. Suppose, therefore,
that Step 3a is not executed infinitely often. Then ‖λk−λ∗‖ will remain fixed for all k ≥ k2,
for some k2 > 0, as Step 3b is executed for each remaining iteration. But (4.3) then implies
that ‖c(xk)‖ ≤ κ13µk for some constant κ13 > 0 and for all k ≥ k3 ≥ k2. As µk tends to
zero and 0 < αη < 1, κ13µk ≤ γ1µ

αη

k = γ1ηk for all k sufficiently large for which Step 3b is
executed. But then inequality (3.3) must be satisfied for some k ≥ k3, which is impossible,
since this would imply that Step 3a is again executed. Hence Step 3a must be executed
infinitely often. 2

We now consider the behaviour of the penalty parameter µk and show that it is bounded
away from zero, avoiding to the Hessian of the augmented Lagrangian to become increasingly
ill-conditioned. The proof of this result follows the lines of Theorem 5.5 in [2].

Theorem 4.7 Assume AS1 holds and suppose that the sequence of iterates {xk} of Algo-
rithm ALINF converges to x∗ with corresponding Lagrange multiplier λ∗, at which AS5 and
AS6 hold. Then there is a constant µmin ∈ (0, 1) such that µk ≥ µmin for all k.

Proof. Since in any case µk is a nonincreasing sequence, we suppose by contradiction
that the complete sequence µk tends to zero. Then Step 3b must be executed infinitely
often. We note that our assumptions are sufficient to apply Theorem 4.3. Furthermore, we
may apply Lemma 4.5 to the complete sequence of iterates.

First observe that
µk ≤ µ̄ < 1 (4.18)

for all k ≥ k1, where µ̄ and k1 are those of Lemma 4.5. Note that

ωk ≤ µk

for all k ≥ k1. This follows by definition if (3.8) is executed. Otherwise it is a consequence
of the fact that µk is unchanged while ωk is reduced, when (3.7) occurs. Let k4 be the
smallest integer k such that, for all k ≥ k4,

µ
1−αη

k ≤
γ1

2 + κ5
, (4.19)
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and

µ
1−βη

k ≤ min

[

1

κ14
,

γ1

2κ14 + κ5

]

, (4.20)

where κ14 = 1 + κ5 + κ6. Note that (4.18), 0 < βη < 1 and (4.20) imply that

µk ≤ µ
1−βη

k ≤
1

κ14
≤

1

κ6
(4.21)

for all k ≥ max(k1, k4). Furthermore, let k5 be such that

‖λk − λ∗‖ ≤ 1 (4.22)

for all k ≥ k5, which is possible because of Lemma 4.6. Now define k6 = max(k1, k4, k5), let
Γ be the set {k | (3.8) is executed at iteration k − 1 and k ≥ k6} and let k0 be the smallest
element of Γ. By the assumption that µk tends to zero, Γ has an infinite number of elements.

By the definition of Γ, for iteration k0, ωk0
= µk0

and ηk0
= µ

αη

k0
. Then inequality (4.17)

gives that,

‖c(xk0
)‖ ≤ κ5ωk0

µk0
+ µk0

(1 + κ6µk0
)‖λk0

− λ∗‖
≤ κ5ωk0

µk0
+ 2µk0

‖λk0
− λ∗‖ (from (4.21))

≤ (2 + κ5µk0
)µk0

(from (4.22))
≤ (2 + κ5)µk0

(from (4.18))
≤ γ1µ

αη

k0
= γ1ηk0

(from (4.19)).

(4.23)

As a consequence of this inequality, Step 3a will be executed with λk0+1 = λ̄(xk0
, λk0

, µk0
)+

ek0
, where ‖ek0

‖ ≤ ωk0
by (3.6). Inequality (4.16) together with (4.22) then guarantee that

‖λk0+1 − λ∗‖ ≤ (κ5 + 1)ωk0
+ κ6µk0

‖λk0
− λ∗‖ ≤ κ14µk0

. (4.24)

We shall now make use of an inductive proof. Assume that Step 3a is executed for iterations
k0 + i, (0 ≤ i ≤ t), and that

‖λk0+i+1 − λ∗‖ ≤ κ14µ
1+βηi
k0

. (4.25)

Inequalities (4.23) and (4.24) show that this is true for t = 0. We aim to show that the
same is true for i = t+ 1. Our assumption that Step 3a is executed gives that, for iteration

k0 + t + 1, µk0+t+1 = µk0
, ωk0+t+1 = µt+2

k0
, and ηk0+t+1 = µ

βη(t+1)+αη

k0
. Then, inequality

(4.17) yields that

‖c(xk0+t+1)‖ ≤ κ5ωk0+t+1µk0+t+1

+µk0+t+1(1 + κ6µk0+t+1)‖λk0+t+1 − λ∗‖
≤ κ5ωk0+t+1µk0+t+1 + 2µk0+t+1‖λk0+t+1 − λ∗‖ (from (4.21))

≤ κ5µ
t+3
k0

+ 2κ14µk0
µ

1+βηt
k0

(from (4.25))

≤ κ5µ
αη+βη(t+1)+1
k0

+ 2κ14µk0
µ

αη+βηt
k0

(since 0 < αη, βη < 1 )

≤ (2κ14 + κ5)µ
1−βη

k0
µ

βη(t+1)+αη

k0
(from (4.21))

≤ γ1µ
βη(t+1)+αη

k0
= γ1ηk0+t+1 (from (4.20)).
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Hence Step 3a will again be executed with

λk0+t+2 = λ̄(xk0+t+1, λk0+t+1, µk0+t+1) + ek0+t+1,

where ‖ek0+t+1‖ ≤ ωk0+t+1 by (3.6). Inequality (4.16) then implies that

‖λk0+t+2 − λ∗‖ ≤ (κ5 + 1)ωk0+t+1 + κ6µk0+t+1‖λk0+t+1 − λ∗‖

≤ (κ5 + 1)µt+2
k0

+ κ6κ14µk0
µ

1+βηt
k0

(from (4.25))

≤ (κ5 + 1)µ
1+βη(t+1)
k0

+ κ6κ14µk0
µ

1+βηt
k0

= (κ5 + 1 + κ6κ14µ
1−βη

k0
)µ

1+βη(t+1)
k0

≤ (κ5 + 1 + κ6)µ
1+βη(t+1)
k0

(from (4.20))

≤ κ14µ
1+βη(t+1)
k0

,

which establishes (4.25) for i = t + 1. Thus Step 3a is executed for all iterations k ≥ k0.
But this implies that Γ is finite, which contradicts the assumption that Step 3b is executed
infinitely often. Hence the theorem is proved. 2

As in [2], we examine the rate of convergence of our algorithm. Since we now allow an
error on the first-order update of the Lagrange multiplier estimate in Algorithm ALINF,
we have to distinguish between the sequences λ̄(xk, λk, µk) and λk.

Theorem 4.8 Under the assumptions of Theorem 4.7, the iterates xk and the Lagrange
multipliers λ̄(xk, λk, µk) and λk of Algorithm ALINF are at least R-linearly convergent with

R-factor at most µ
βη

min, where µmin is the smallest value of the penalty parameter generated
by the algorithm.

The proof is given in the appendix for completeness, and makes use of the fact that
Step 3a implies that ‖c(xk)‖ ≤ γ2ηk is always satisfied for k sufficiently large. The rate of
convergence of the sequence λk is a direct consequence of (3.6).

5 Approximation of optimization problems

5.1 Approximation Scheme

In this section we consider an approximation of an optimization problem posed in an infinite-
dimensional space. More precisely, we replace the original problem

minimize f(x) subject to c(x) = 0, x ∈ X,

by a sequence of problems

minimize fn(x) subject to cn(x) = 0, x ∈ Xn,

where the functions and mappings are defined as follows

fn : Xn → IR, cn : Xn → Yn,

12



with sequences of Hilbert spaces Xn and Yn, for n ∈ IN , over the reals. This occurs for
example by proper discretization of optimal control problems where n denotes the parameter
describing the discretization level.

We denote by Φn : Xn × Yn × IR → IR the augmented Lagrangian function for these
problems

Φn(x, λ, µ) = fn(x)+ < λ, cn(x) >Yn +
1

2µ
‖cn(x)‖2

Yn
, x ∈ Xn, λ ∈ Yn. (5.1)

On the functions we first make the following extension of the original Assumption AS1.

AS1n: The functions f, fn and c, cn are twice continuously Fréchet-differentiable for all
n ∈ IN .

We assume also that the spaces Xn and Yn are nested

X1 ⊆ . . . ⊆ Xn ⊆ Xn+1 ⊆ . . . ⊆ X and Y1 ⊆ . . . ⊆ Yn ⊆ Yn+1 ⊆ . . . ⊆ Y.

For the inner products and norms in these spaces we choose

< ·, · >Xn=< ·, · >X , < ·, · >Yn=< ·, · >Y , ‖ · ‖Xn = ‖ · ‖X , ‖ · ‖Yn = ‖ · ‖Y .

We further make the following assumption on the functions for the refinement of the dis-
cretization.

AS7: There exists n? ∈ IN such that

a. for all x ∈ Xn? , there exists a sequence of positive constants εc,n for which

lim
n→∞

εc,n = 0 and ‖cn(x) − c(x)‖Y ≤ εc,n for n ≥ n?, and

b. for all x ∈ Xn? , λ ∈ Yn? and µ > 0, there exists a sequence of positive constants
εΦ,n for which

lim
n→∞

εΦ,n = 0 and ‖∇xΦn(x, λ, µ) −∇xΦ(x, λ, µ)‖X ≤ εΦ,n for n ≥ n?.

The goal for considering the following algorithm is not only to adapt the penalty pa-
rameter and tolerance level for the solution of the unconstrained subproblems but also to
incorporate the discretization aspect. It is not of much value to solve a subproblem very
precisely at the early stage of an iteration. Therefore one would like to have a measure with
which one can decide on the refinement of the discretization when necessary. Step 4 in the
algorithm below includes such a decision.

13



Algorithm ALDISCR

Step 0 [Initialization]. Let {εc,n}n∈IN and {εΦ,n}n∈IN be sequences of positive con-
stants converging to zero. An initial discretization level n0, a Lagrange multiplier
estimate λ0 ∈ Yn0

and a positive penalty parameter µ0 < 1 are given. The positive
constants ω∗ < 1, η∗ < 1, τ < 1, α < 1, αη < 1, and βη < 1 are specified. Set ω0 = µ0,
η0 = µ

αη

0 , and k = 0.

Step 1 [Inner iteration]. Find xk ∈ Xnk
such that

‖∇xΦnk
(xk, λk, µk)‖X ≤ ωk/2 (5.2)

holds.

Step 2 [Test for convergence]. If ωk ≤ ω∗, ‖cnk
(xk)‖Y ≤ η∗/2 and εc,nk

≤ η∗/2, stop.

Step 3 [Updates]. If
‖cnk

(xk)‖Y ≤ ηk, (5.3)

execute Step 3a. If
‖cnk

(xk)‖Y > ηk, (5.4)

execute Step 3b.

Step 3a [Update Lagrange multiplier estimate]. Choose

λk+1 = λk +
1

µk
cnk

(xk) (5.5)

and set
µk+1 = µk,
ωk+1 = ωkµk+1,

ηk+1 = ηkµ
βη

k+1.

(5.6)

Step 3b [Reduce the penalty parameter]. Set

λk+1 = λk,
µk+1 = τµk,
ωk+1 = µk+1,
ηk+1 = µ

αη

k+1.

(5.7)

Step 4 [Refinement]. Choose nk+1 ≥ nk such that

εc,nk+1
< min{αηk+1, µk+1ωk+1},

εΦ,nk+1
≤

ωk+1

2
.

(5.8)

Increment k by one and go to Step 1.
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We now make some comments on Algorithm ALDISCR.

• The quantity ωk is chosen as a termination criterion in Step 2 of Algorithm ALDISCR
because it is also an upper bound on ‖∇xΦ(xk, λk, µk)‖X , as proved in Lemma 5.1.

• Assumption AS7 and Step 2 of Algorithm ALDISCR imply that ‖c(xk)‖Y ≤ η∗.
Indeed, by the first part of Assumption AS7, we have that

‖c(xk)‖Y − ‖cnk
(xk)‖Y ≤ |‖c(xk)‖Y − ‖cnk

(xk)‖Y | ≤ ‖c(xk) − cnk
(xk)‖Y ≤ εc,nk

,

which implies that
‖c(xk)‖Y ≤ εc,nk

+ ‖cnk
(xk)‖Y ≤ η∗,

by the two last conditions in Step 2.

• The choice of the constant α < 1 in Step 0 specifies the parameters γ1 and γ2 for the
decision rule of Step 3 in Algorithm ALINF, as proved in Lemma 5.2.

The algorithm is well defined since the subspaces are nested and λk+1 ∈ Ynk+1
by

(5.5), while xk+1 ∈ Xnk+1
by Step 1. In addition we know that all iterates xk lie in X.

This indicates that one would like to have a convergence result which is formulated in
the original space X. Therefore we interpret the xk as iterates of the infinite-dimensional
Algorithm ALINF. To prove this assertion we verify the different steps of the algorithm.

Lemma 5.1 Let Assumptions AS1n and AS7 hold. For each iterate xk of Algorithm ALD-
ISCR we have

‖∇xΦ(xk, λk, µk)‖X ≤ ωk .

Moreover, the sequence of Lagrange multipliers λk of Algorithm ALDISCR satisfies

‖λk+1 − λ̄(xk, λk, µk)‖Y ≤ ωk.

Proof. We make the following estimate using (5.2), Assumption AS7 and (5.8)

‖∇xΦ(xk, λk, µk)‖X ≤ ‖∇xΦnk
(xk, λk, µk)‖X + ‖∇xΦ(xk, λk, µk) −∇xΦnk

(xk, λk, µk)‖X

≤
ωk

2
+ εΦ,nk

≤
ωk

2
+

ωk

2
= ωk.

To show the estimate on the Lagrange multiplier note that by (2.1), (5.5), Assumption AS7
and (5.8)

‖λk+1 − λ̄(xk, λk, µk)‖Y =
1

µk
‖cnk

(xk) − c(xk)‖Y ≤
1

µk
εc,nk

≤ ωk.

2

In the following lemma we show that if the decision rule of Algorithm ALDISCR is
applied, its iterates satisfy also the decision rule of Algorithm ALINF.
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Lemma 5.2 Let Assumption AS7 hold and for α ∈ (0, 1) set γ1 = 1 − α and γ2 = 1 + α.
For any iterate xk of Algorithm ALDISCR we have the implication

If ‖c(xk)‖Y ≥ γ2ηk, then Step 3b of Algorithm ALINF is executed.

If ‖c(xk)‖Y ≤ γ1ηk, then Step 3a of Algorithm ALINF is executed.

Proof. By (5.8) we have
εc,nk

< αηk.

Let ‖c(xk)‖Y ≥ γ2ηk. Then, by Assumption AS7

‖cnk
(xk)‖Y ≥ ‖c(xk)‖Y − ‖c(xk) − cnk

(xk)‖Y

≥ γ2ηk − εc,nk
> γ2ηk − αηk = ηk .

By Algorithm ALDISCR, Step 3b is then executed which is identical with Step 3b of Algo-
rithm ALINF. On the other hand suppose that ‖c(xk)‖Y ≤ γ1ηk is true. Then Assumption
AS7 implies

‖cnk
(xk)‖Y ≤ ‖c(xk)‖Y + ‖c(xk) − cnk

(xk)‖Y

≤ γ1ηk + εc,nk
< γ1ηk + αηk = ηk .

By Algorithm ALDISCR, Step 3a is executed and the Lagrange multiplier λk is updated
according to the rule (5.5). In the previous Lemma 5.1 it was shown that this multiplier also
satisfies the relation (3.6). Since the update formulas for µ, ω and η are identical in both
algorithms, we conclude that Step 3a of Algorithm ALINF is executed if ‖c(xk)‖Y ≤ γ1ηk.
2

We can summarize these lemmas in the following theorem.

Theorem 5.3 Let AS1n and AS7 hold. Then the sequence {xk} generated by Algorithm
ALDISCR can be considered as a sequence generated by Algorithm ALINF. Furthermore, if
x∗ is a limit point of this sequence for which AS2 and AS3 hold, if K is the set of indices of
an infinite subsequence of the xk whose limit is x∗ and if we set λ∗ = λ(x∗), then conclusions
(i), (ii) and (iii) of Lemma 4.1 hold.

Theorem 4.8 of §4.2 about the rate of convergence applies here too.

Theorem 5.4 If Assumptions AS1n, AS7 and the assumptions of Theorem 4.7 hold, the
iterates xk and the Lagrange multipliers λ̄(xk, λk, µk) and λk of Algorithm ALDISCR are

at least R-linearly convergent with R-factor at most µ
βη

min, where µmin is the smallest value
of the penalty parameter generated by the algorithm.

Note finally that one can show that the penalty parameter is bounded away from zero
and that the Lagrange multipliers are bounded using the results in Theorems 4.7 and 4.8.
Therefore, the reduction in the discretization parameters ε in (5.8) is determined by the
quantity ωk.
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5.2 Application to Optimal Control

In addition to the sequences of finite-dimensional Hilbert spaces Xn ⊆ X and Yn ⊆ Y ,
n ∈ IN , we introduce restrictions and prolongations as linear bounded maps defined on the
subspaces Xn and Yn

rX
n : X → Xn, rY

n : Y → Yn, pX
n : Xn → X, pY

n : Yn → Y.

We have the following result.

Lemma 5.5 Let X be a Hilbert space and Xn ⊆ X. If the prolongation pX
n : Xn → X is

given by the embedding operator pX
n = ιXn , then the dual operator (pX

n )∗ : X → Xn as a
restriction operator is given by the orthogonal projection (pX

n )∗ = πX
n onto Xn.

This follows easily from the definition of the dual map. We thus define the restrictions and
prolongations as

pX
n = ιXn , pY

n = ιYn , rX
n = πX

n , rY
n = πY

n .

We make the following assumption on the selection of the subspaces.

AS8: The Hilbert spaces Xn ⊆ X and Yn ⊆ Y , n ∈ IN , are chosen such that the
orthogonal projections πX

n ∈ L(X,Xn) and πY
n ∈ L(Y, Yn) satisfy, for each x ∈ X and

y ∈ Y , respectively,

lim
n→∞

‖πX
n x − x‖X = 0 and lim

n→∞
‖πY

n y − y‖Y = 0.

The discretized functions and mappings are then defined as follows

AS9: For all n ∈ IN

fn = f ◦ ιXn : Xn → IR, cn = πY
n ◦ c ◦ ιXn : Xn → Yn.

We now show that Assumptions AS1n and AS7 are satisfied under the above setting.
Obviously the differentiability assumptions for fn and cn in AS1n directly follow from As-
sumptions AS8 and AS9.

Lemma 5.6 Let f and c satisfy Assumption AS1 and let AS8 and AS9 hold. Then fn and
cn defined in Assumption AS9 satisfy the Assumption AS1n, for all n ∈ IN .

With respect to AS7, we first show in the next statement the consistency of the ap-
proximations of c in form of the pointwise convergence of the discretized constraints to the
original constraint.

Lemma 5.7 Let c satisfy AS1, let Assumption AS8 hold and let cn, n ∈ IN , satisfy AS9.
Then for any n ∈ IN we have that for all x ∈ Xn

lim
n→∞

‖cn(x) − c(x)‖Y = 0.
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Proof. For fixed x ∈ Xn, we have

‖cn(x) − c(x)‖Y = ‖πY
n c(ιXn x) − c(x)‖Y = ‖πY

n c(x) − c(x)‖Y ,

which proves the lemma, by Assumption AS8. 2

We now turn to the second part of AS7. The augmented Lagrangian function Φn :
Xn × Yn × IR → IR becomes, with the definition of fn and cn given in Assumption AS9,

Φn(x, λ, µ) = fn(x)+ < λ, cn(x) >Yn +
1

2µ
‖cn(x)‖2

Yn

= f(ιXn x)+ < ιYn λ, c(ιXn x) >Y +
1

2µ
‖πY

n c(ιXn x)‖2
Yn

= `(ιXn x, ιYn λ) +
1

2µ
‖πY

n c(ιXn x)‖2
Yn

.

The gradient with respect to x ∈ Xn of the augmented Lagrangian function Φn is computed
in the following Lemma.

Lemma 5.8 The gradient of Φn(x, λ, µ) with respect to x ∈ Xn is given by

∇xΦn(x, λ, µ) = πX
n ∇xf(ιXn x) + πX

n c′(ιXn x)∗ιYn λ +
1

µ
πX

n c′(ιXn x)∗ιYn πY
n c(ιXn x)

= πX
n ∇x`(ιXn x, ιYn λ) +

1

µ
πX

n c′(ιXn x)∗ιYn πY
n c(ιXn x).

Proof. We have the following identities, where differentiation is understood with respect
to x ∈ Xn and where λ ∈ Yn and s ∈ Xn

Φ′
n(x, λ, µ)s = < ∇xf(ιXn x), ιXn s >X + < ιYn λ, c′(ιXn x)ιXn s >Y

+
1

µ
< πY

n c(ιXn x), πY
n c′(ιXn x)ιXn s >Yn

= < πX
n ∇xf(ιXn x), s >Xn + < πX

n c′(ιXn x)∗ιYn λ, s >Xn

+
1

µ
< πX

n c′(ιXn x)∗ιYn πY
n c(ιXn x), s >Xn ,

which shows the representation of the gradient. 2

Next we prove the convergence of the gradients of the augmented Lagrangian.

Lemma 5.9 Let f and c satisfy AS1, let Assumption AS8 hold and let fn and cn, n ∈ IN ,
satisfy AS9. Then for any n ∈ IN we have that for all x ∈ Xn, all λ ∈ Yn and all µ > 0

lim
n→∞

‖∇xΦn(x, λ, µ) −∇xΦ(x, λ, µ)‖X = 0.

Proof. By Lemma 5.8 and the first equality in (2.2), we split

‖∇xΦn(x, λ, µ) −∇xΦ(x, λ, µ)‖X ≤ ‖πX
n ∇x`(ιXn x, ιYn λ) −∇x`(x, λ)‖X

+
1

µ
‖πX

n c′(ιXn x)∗ιYn πY
n c(ιXn x) − c′(x)∗c(x)‖X ,
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and estimate each part separately. Let x ∈ Xn, λ ∈ Yn and µ > 0 be fixed. By Assumption
AS8, we first have that

lim
n→∞

‖πX
n ∇x`(ιXn x, ιYn λ) −∇x`(x, λ)‖X = lim

n→∞
‖πX

n ∇x`(x, λ) −∇x`(x, λ)‖X = 0.

The following inequalities

‖πX
n c′(ιXn x)∗ιYn πY

n c(ιXn x) − c′(x)∗c(x)‖X = ‖πX
n c′(x)∗πY

n c(x) − c′(x)∗c(x)‖X

≤ ‖πX
n c′(x)∗πY

n c(x) − πX
n c′(x)∗c(x)‖X

+ ‖πX
n c′(x)∗c(x) − c′(x)∗c(x)‖X

≤ ‖πX
n ‖‖c′(x)∗‖‖πY

n c(x) − c(x)‖Y

+ ‖πX
n c′(x)∗c(x) − c′(x)∗c(x)‖X ,

together with Assumption AS8 and the fact that ‖πY
n ‖L(Y,Yn) ≤ 1, imply that

lim
n→∞

‖πX
n c′(ιXn x)∗ιYn πY

n c(ιXn x) − c′(x)∗c(x)‖X = 0.

We can deduce the result from the two limits above. 2

In conclusion, Lemmas 5.6, 5.7 and 5.9 guarantee that, under Assumptions AS8 and
AS9, the convergence results of Theorems 5.3 and 5.4 hold.

6 Conclusion

In this paper, we present a convergence theory for an infinite-dimensional setting of an aug-
mented Lagrangian method to solve an equality constrained optimization problem. This
problem is solved by a sequence of discretized problems where in the course of the iteration
the level of discretization is refined. The penalty parameter and the Lagrange multiplier
updates are based on a set-valued map. This and the fact that the subproblems are solved
inexactly allow us to interpret the iterates of the discretized problems as a sequence of iter-
ates in an infinite-dimensional setting. We obtain a convergence statement of the discretized
iterates in Hilbert space. The assumptions are explained for a discretization scheme with
nested subspaces. Numerical experiments are part of future work.
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Appendix

A Proof of Lemma 4.1

As a consequence of AS1–AS3, we have that for k ∈ K sufficiently large, c′(xk)
+ exists, is

bounded and converges to c′(x∗)
+. Thus, we may write

‖(c′(xk)
+)∗‖ ≤ κ1 (A.1)

for some constant κ1 > 0. The inner iteration termination criterion (3.2) gives that

‖∇xΦ(xk, λk, µk)‖ = ‖∇xf(xk) + c′(xk)
∗λ̄k‖ ≤ ωk (A.2)

for all k ∈ K, where λ̄k
def
= λ̄(xk, λk, µk). By Assumptions AS1, AS2, AS3 and (2.3), λ(x)

is bounded for all x in a neighbourhood of x∗. Thus we may deduce from (2.3), (A.1) and
(A.2) that

‖λ̄k − λ(xk)‖ = ‖(c′(xk)
+)∗∇xf(xk) + λ̄k‖

= ‖(c′(xk)
+)∗(∇xf(xk) + c′(xk)

∗λ̄k)‖
≤ ‖(c′(xk)

+)∗‖ωk

≤ κ1ωk.

(A.3)

Moreover, since c′(x) is Lipschitz-continuous in a neighborhood of x∗, c′(x)+ is also Lipschitz-
continuous and

‖λ(xk) − λ∗‖ ≤ κ2‖xk − x∗‖ (A.4)

for all k ∈ K sufficiently large and for some constant κ2 > 0, which implies inequality (4.2).
We then have that λ(xk) converges to λ∗. Combining (A.3) and (A.4) we obtain

‖λ̄k − λ∗‖ ≤ ‖λ̄k − λ(xk)‖ + ‖λ(xk) − λ∗‖ ≤ κ1ωk + κ2‖xk − x∗‖, (A.5)

which gives the required inequality (4.1). Then, since by assumption ωk tends to zero as k
increases, (A.5) implies that λ̄k converges to λ∗ and therefore ∇xΦ(xk, λk, µk) converges to
∇x`(x∗, λ∗). Furthermore, multiplying (2.1) by µk, we obtain

c(xk) = µk((λ̄k − λ∗) + (λ∗ − λk)). (A.6)

Taking norms of (A.6) and using (A.5), we derive (4.3).
Now suppose that

c(x∗) = 0. (A.7)

The convergence of ∇xΦ(xk, λk, µk) to ∇x`(x∗, λ∗), (3.2) and the convergence of ωk to zero
give that

∇xf(x∗) + c′(x∗)
∗λ∗ = 0.

This last equation and (A.7) show that x∗ is a Karush-Kuhn-Tucker point and λ∗ is the
corresponding Lagrange multiplier. Moreover (4.1) and (4.2) ensure the convergence of the
sequences {λ̄(xk, λk, µk)} and {λ(xk)} to λ∗ for k ∈ K. Hence the lemma is proved. 2
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B Proof of Theorem 4.3

Our assumptions are sufficient to reach the conclusions of part (i) of Lemma 4.1. We now
show that c(x∗) = 0 and analyse two separate cases.

The first case is when µk is bounded away from zero. Hence Step 3a must be executed
every iteration for k sufficiently large, implying that ‖c(xk)‖ ≤ γ2ηk is always satisfied for
k large enough. We then deduce from (3.9) that c(xk) converges to zero.

The second case is when µk converges to zero. Then Lemma 4.2 shows that µk‖(λk−λ∗)‖
tends to zero. Using this limit and (3.9) in (4.3), we obtain that c(xk) tends to zero, as
desired.

As a consequence, conclusions (ii) and (iii) of Lemma 4.1 hold. 2

C Proof of Theorem 4.4

By definition of Φ,

∇xxΦ(xk, λk, µk) = ∇xx`(xk, λ̄k) +
1

µk
c′(xk)

∗c′(xk), (C.1)

where λ̄k
def
= λ̄(xk, λk, µk). Let s be a nonzero vector such that

c′(xk)s = 0. (C.2)

For any such vector, AS4 implies that

sT∇xxΦ(xk, λk, µk)s ≥ ν‖s‖2

for some ν > 0, which in turn gives that

sT∇xx`(xk, λ̄k)s ≥ ν‖s‖2,

because of (C.1) and (C.2). By continuity of ∇xx` as xk and λ̄k approach their limits (note
that the convergence of λ̄k to λ∗ for k ∈ K is guaranteed by Theorem 4.3), this ensures that

sT∇xx`(x∗, λ∗)s ≥ ν‖s‖2

for all nonzero s satisfying
c′(x∗)s = 0,

which implies that x∗ is an isolated local solution of (1.1). 2

D Proof of Lemma 4.5

We observe that the assumptions of the lemma guarantee that Theorem 4.3 can be used.
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Using (2.2) and Taylor’s expansion around x∗, we obtain that

∇xΦ(xk, λk, µk) = ∇xf(xk) + c′(xk)
∗(λk + c(xk)/µk)

= ∇x`(xk, λ̄k)
= ∇x`(x∗, λ̄k) + ∇xx`(x∗, λ̄k)(xk − x∗) + r1(xk, x∗, λ̄k)
= ∇x`(x∗, λ∗) + ∇xx`(x∗, λ∗)(xk − x∗) + c′(x∗)(λ̄k − λ∗)

+r1(xk, x∗, λ̄k) + r2(xk, x∗, λ̄k, λ∗),

(D.1)

where λ̄k
def
= λ̄(xk, λk, µk),

r1(xk, x∗, λ̄k)
def
=

∫ 1

0
[∇xx`(x∗ + σ(xk − x∗), λ̄k) −∇xx`(x∗, λ̄k)](xk − x∗) dσ

and
r2(xk, x∗, λ̄k, λ∗)

def
= (c′′(x∗)(xk − x∗))

∗(λ̄k − λ∗).

The boundedness and Lipschitz continuity of f ′′ and c′′ in a neighbourhood of x∗, together
with the convergence of λ̄k to λ∗ then imply that

‖r1(xk, x∗, λ̄k)‖ ≤ κ7‖xk − x∗‖
2, (D.2)

and
‖r2(xk, x∗, λ̄k, λ∗)‖ ≤ κ8‖xk − x∗‖ ‖λ̄k − λ∗‖ (D.3)

for some positive constants κ7 and κ8. Moreover, using Taylor’s expansion again, along
with the fact that Theorem 4.3 ensures the equality c(x∗) = 0, we obtain that

c(xk) = c′(x∗)(xk − x∗) + r3(xk, x∗), (D.4)

where
‖r3(xk, x∗)‖ ≤ κ9‖xk − x∗‖

2 (D.5)

for some positive constant κ9. Combining (D.1) and (D.4), we obtain

(

∇xx`(x∗, λ∗) c′(x∗)
∗

c′(x∗) 0

)(

xk − x∗

λ̄k − λ∗

)

=

(

∇xΦ(xk, λk, µk) −∇x`(x∗, λ∗)
c(xk)

)

−

(

r1 + r2

r3

)

,

(D.6)
where we have suppressed the arguments of the residuals r1, r2 and r3 for brevity. Note
that Theorem 4.3 ensures that ∇x`(x∗, λ∗) = 0, such that (D.6) becomes

(

∇xx`(x∗, λ∗) c′(x∗)
∗

c′(x∗) 0

)(

xk − x∗

λ̄k − λ∗

)

=

(

∇xΦ(xk, λk, µk)
c(xk)

)

−

(

r4

r3

)

, (D.7)

where r4
def
= r1 + r2. Roughly speaking, we now proceed by showing that the right-hand

side of this relation is of the order of ωk +µk‖λk −λ∗‖. We will then ensure that the vector
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on the left-hand side is of the same size, which is essentially the result we aim to prove. We
first deduce from (D.2), (D.3), (D.5) and (4.1) that

∥

∥

∥

∥

∥

(

r4

r3

)
∥

∥

∥

∥

∥

≤ κ10‖xk − x∗‖
2 + κ11ωk‖xk − x∗‖, (D.8)

where κ10 = κ7 + κ2κ8 + κ9, and κ11 = κ1κ8. We now bound c(xk). Using (4.3), we have
that

‖c(xk)‖ ≤ κ1ωkµk + µk‖λk − λ∗‖ + κ2µk‖xk − x∗‖, (D.9)

for all k sufficiently large. Hence, by (3.2) and (D.9), we obtain that
∥

∥

∥

∥

∥

(

∇xΦ(xk, λk, µk)
c(xk)

)∥

∥

∥

∥

∥

≤ ωk + κ1ωkµk + µk‖λk − λ∗‖ + κ2µk‖xk − x∗‖. (D.10)

By Assumption AS6, the operator on the left-hand side of (D.7) is invertible. Let M be
the norm of its inverse. Multiplying both sides of the equation by this inverse and taking
norms, we obtain from (D.8) and (D.10) that

∥

∥

∥

∥

∥

(

xk − x∗

λ̄k − λ∗

)∥

∥

∥

∥

∥

≤ M [κ10‖xk − x∗‖
2 + κ11ωk‖xk − x∗‖ + ωk + κ1ωkµk

+µk‖λk − λ∗‖ + κ2µk‖xk − x∗‖].

(D.11)

Suppose now that k is sufficiently large to ensure that

ωk ≤
1

4Mκ11
(D.12)

and let

µ̄
def
= min

[

µ0,
1

4Mκ2

]

. (D.13)

Recall that µ0 and hence µ̄ < 1. Then, if µk ≤ µ̄, the relations (D.11)–(D.13) give

‖xk − x∗‖ ≤
1

2
‖xk − x∗‖ + M [κ10‖xk − x∗‖

2 + κ12ωk + µk‖λk − λ∗‖], (D.14)

where κ12 = 1 + κ1. As xk − x∗, and hence ‖xk − x∗‖ converge to zero, we have that

‖xk − x∗‖ ≤
1

4Mκ10
(D.15)

for k large enough. Hence inequalities (D.14) and (D.15) yield that

‖xk − x∗‖ ≤ 4M(κ12ωk + µk‖λk − λ∗‖), (D.16)

which is (4.15) where κ3
def
= 4Mκ12 and κ4

def
= 4M . Now, using (4.1) and (4.15), we have

that
‖λ̄k − λ∗‖ ≤ κ1ωk + κ2(κ3ωk + κ4µk‖λk − λ∗‖),

which is (4.16) where κ5
def
= κ1 + κ2κ3 and κ6

def
= κ2κ4. Finally, by (2.1),

‖c(xk)‖ = µk‖λ̄k − λk‖ ≤ µk(‖λ̄k − λ∗‖ + ‖λk − λ∗‖), (D.17)

and (4.17) follows from (D.17) and (4.16). 2
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E Proof of Theorem 4.8

The proof parallels that of Lemma 4.5. First, Theorem 4.7 shows that the penalty parameter
µk stays bounded away from zero, and thus remains fixed at some value µmin > 0, for
k ≥ kmax. For all subsequent iterations,

ωk+1 = µminωk and ηk+1 = µ
βη

minηk (E.1)

hold. Moreover, we have that ‖c(xk)‖ ≤ γ2ηk for all k ≥ kmax sufficiently large. Hence, the
bound on the right-hand side of (D.10) may be replaced by ωk + γ2ηk, and thus instead of
(D.14)

‖xk − x∗‖ ≤ M [κ10‖xk − x∗‖
2 + κ11ωk‖xk − x∗‖ + ωk + γ2ηk]. (E.2)

Therefore, if k is sufficiently large that

ωk ≤
1

2Mκ11
(E.3)

and

‖xk − x∗‖ ≤
1

4Mκ10
, (E.4)

inequalities (E.2)–(E.4) can be rearranged to yield

‖xk − x∗‖ ≤ 4M(ωk + γ2ηk),

that is
‖xk − x∗‖ ≤ κ15ωk + κ16ηk (E.5)

where κ15 = 4M and κ16 = 4Mγ2. Since βη < 1 and µmin < 1, (E.1) and (E.5) show that

xk converges to x∗ at least R-linearly, with R-factor µ
βη

min. Inequalities (4.1) and (E.5) then
guarantee the same property for λ̄(xk, λk, µk), which in turn guarantees the same property
for λk, because of (3.6). 2
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