
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Optimizing partially separable functions without derivatives

Colson, B.; Toint, Philippe

Published in:
Optimization Methods and Software

DOI:
10.1080/10556780500140227

Publication date:
2005

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Colson, B & Toint, P 2005, 'Optimizing partially separable functions without derivatives' Optimization Methods
and Software, vol. 20, no. 4-5, pp. 493-508. https://doi.org/10.1080/10556780500140227

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

https://doi.org/10.1080/10556780500140227
https://researchportal.unamur.be/en/publications/optimizing-partially-separable-functions-without-derivatives(390805fb-b93c-4e14-9905-559d4e9360d7).html

OPTIMIZING PARTIALLY SEPARABLE FUNCTIONS
WITHOUT DERIVATIVES

by B. Colson
�

and Ph. L. Toint
�

Report 2003/20 6th November 2003

�

Department of Mathematics,
University of Namur,

61, rue de Bruxelles, B-5000 Namur, Belgium,
Email: benoit.colson@fundp.ac.be, philippe.toint@fundp.ac.be

Optimizing Partially Separable Functions
without Derivatives

Benoı̂t COLSON
� and Philippe L. TOINT

�

October 2003

Abstract. We present an algorithm for solving nonlinear programming problems in-
volving a partially separable objective function whose derivatives are assumed to be
unavailable. At each iteration we construct a quadratic interpolation model of the ob-
jective function around the current iterate and minimize this model to obtain a trial
step. The whole process is embedded within a trust-region framework. We further
propose to use ideas of Curtis, Powell and Reid to minimize the number of calls to
the objective function in the part of the derivative-free algorithm that improves the ge-
ometry of the interpolation set. Numerical experiments tend to confirm the promising
behaviour of the algorithm.
Keywords: partially separable functions, derivative-free optimization, multivariate in-
terpolation, trust-region algorithms.

1 Introduction

Derivative-Free Optimization (DFO) is concerned with the design and the analysis of al-
gorithms for solving mathematical programs involving functions whose derivatives are not
available. This may be due to the fact that the evaluation of these derivatives is very difficult,
unreliable or time-consuming, or their computation requires the solution of another prob-
lem, or even because the objective and/or constraint functions themselves are complex. The
latter situation may occur when the computation of the accurate value of such a function at
a given point requires calls to extremely expensive codes and solvers or because the related
source codes may be unavailable or unmodifiable in which case they must be considered
as black boxes. Also, such complex functions may be the output of a simulation or some
physical, chemical or econometrical measurements or experiments, for instance.

DFO algorithms are designed in such a way that the number of function evaluations they
require is minimized, which by the way makes this number the usual criterion for the as-
sessment and comparison of algorithms. Existing methods may be regrouped in four broad
categories. Direct search and pattern search methods (see e.g. Torczon [30], Lewis, Torc-
zon and Trosset [18] and Audet and Dennis [1]) may be viewed as sampling methods in the
sense that they are based on an exploration of the space region under consideration; they

�
Department of Mathematics, FUNDP (The University of Namur), Rempart de la Vierge, 8, B-5000 Namur,

Belgium. E-mail address: benoit.colson@fundp.ac.be�
Department of Mathematics, FUNDP (The University of Namur), Rempart de la Vierge, 8, B-5000 Namur,

Belgium. E-mail address: philippe.toint@fundp.ac.be

1

perform a search by means of exploratory moves considering the behaviour of the objective
function at a ”pattern” of points that is independent of this function. A second class of meth-
ods was introduced by Powell [20], who described a line search method which proceeds in
stages, each of them consisting of a sequence of � ��� one-dimensional searches, the latter
being governed by the minimization of a quadratic interpolant computed for each direc-
tion. Lucidi and Sciandrone [19] reported some numerical experiments obtained with the
algorithm of Grippo, Lampariello and Lucidi [17], who introduced a line search procedure
where the usual conditions involving the gradient of the objective function are replaced by
requirements on the values of � at points of the form ���	��
 , which in turn allowed to design
another algorithm for minimizing � using the set of orthonormal coordinate vectors as direc-
tions at each step. Powell [21, 22] also introduced another approach where finite-difference
techniques are coupled with quasi-Newton algorithms, which constitute the third class of
algorithms for DFO problems. The fourth and last class contains trust-region methods (see
e.g. Powell [25] and Conn, Scheinberg and Toint [8]), in which all available function values
are used to build a polynomial model interpolating the objective function at all those points
at which its value is known. The model is then minimized within a trust region and a new
point is obtained. The latter point is evaluated and while this enlarges the interpolation set
this also allows to check whether the objective function is improved. The whole process is
then repeated until convergence occurs.

Several recent contributions considered unconstrained DFO problems where the objec-
tive function is known to have some structure despite the fact that its derivatives are not
available (see e.g. Colson and Toint [3, 4] and Powell [24]). The reason for studying al-
gorithms adapted to these particular problems is that a suitable exploitation of the problem
structure is expected to result in important savings in terms of computational effort. The
research work we describe in this paper is in line with [3, 4] in which we considered al-
gorithms for solving unconstrained problems exploiting the banded and sparse structure of
the objective function respectively. In this article we introduce another trust-region algo-
rithm for solving unconstrained problems where this time the objective function is partially
separable, that is it may be expressed as

�	�� ���������
�� �
� �

�
�
������� (1)

where ��� IR �! IR and each individual function �
�
����� is a function depending on some of

the components �#" , $&%('
�

for some index sets '
��)�* � �,+,+,+-�.�0/ (10� � �,+,+,+-�32). We assume

that the cardinality of these 2 subsets is given by 4 '
�
45�6�

�
and that the �

�
-dimensional

subspace of IR � is denoted by 7
�

(10� � �,+,+,+-�32).
The concept of partial separability was introduced by Griewank and Toint [14, 16] and

it was also studied by Conn, Gould and Toint [6] in the framework of the development of the
LANCELOT package. Many optimization problems involve partially separable functions
(see e.g. the test problems collected by Toint [29]) and Griewank and Toint [15] show that
every twice continuously differentiable function with a sparse Hessian is partially separable.
It is remarkable that, although this is only an existence result and does not specify the
particular decomposition (1), we are not aware of any practical problem having a sparse
Hessian and whose partially separable decomposition is not explicitly known. In the context
of problems where derivatives are unavailable, the partially separable structure often arises

2

from the observation that the objective has a block structure involving different subsets of
variables, even if each block is a black box in itself.

The next section provides some background material consisting of multivariate inter-
polation tools before describing the above mentioned algorithm of Conn, Scheinberg and
Toint [8]. The reason for presenting it is that it served as a basis for the development of
our algorithm for partially separable functions, which is described in Section 3. Section 4
details the numerical experience gained so far and it is followed by a short conclusion and
several ideas for improving our algorithm further.

2 Trust regions and multivariate interpolation models

The new algorithm discussed in the present paper is a variation of that proposed by Conn,
Scheinberg and Toint [8, 9] and is of trust-region type. At iteration � , this algorithm first
constructs a quadratic model

��� ��� � ��� � � ����� � � ���	� � � ��
�� �
� �� ��� � ��
 � (2)

for some � � % IR � and some symmetric � -by- � matrix � � , which is intended to be valid in
a neighbourhood of the current iterate � � % IR � (the trust region) defined by

� � �
*
� � ��� � � % IR � and � � ����� � / � (3)

for some trust-region radius � � .
In our approach, the model (2) is chosen to interpolate the value of a function � at a set� � �
*
�
�
/ of points containing � � , yielding

��� �
�
��� ��� � �

�
� for all �

�
% � + (4)

We refer the interested reader to de Boor and Ron [12], Sauer [27], Sauer and Xu [28],
Conn, Gould ans Toint [7] and Conn, Scheinberg and Vicente [10] for details of how the

� � � � �
� � ��� ��� ��� �

� ��� ��� � ��� � � ��� � (5)

entries of � � and � � can be computed given the set
�

(of fixed cardinality �) and the col-
lection of associated function values � �

*
��� �

�
�3/���� �! . It is however important to point

out that the knowledge of � and � is not sufficient to guarantee the existence and unique-
ness of suitable � � and � � , but that a further geometric condition (known as poisedness)
is also required. This condition ensures that the points of � do not collapse in a lower di-
mensional space or do not lie on a quadratic curve (which would then span an infinite set
of interpolating quadratic polynomials). If one chooses to build the interpolating quadratic
using quadratic Newton fundamental polynomials as a basis (which is the approach taken
by Conn, Scheinberg and Toint [9] and Conn,Gould and Toint [7]), poisedness is ensured if
and only if the pivots, that is the values of the non-normalized Newton fundamental polyno-
mials at their associated1 interpolation point 4 "$#

�
� �
�
�,4 are all different from zero (we denote

1We again refer the reader to de Boor and Ron [12], Sauer [27], Sauer and Xu [28], Conn, Gould ans Toint
[7] and Conn, Scheinberg and Vicente [10] for details on how fundamental Newton polynomials are associated
with interpolation points and normalized.

3

the non-normalized Newton fundamental polynomials by " #
�

and their normalized version
by "

�
). While from a theoretical point of view this may be sufficient to ensure poisedness,

in practice we must verify that,

4 " #
�
� �
�
�,4���� for all �

�
% � (6)

for some pivoting threshold ����� . If condition (6) is satisfied, then the interpolation
problem (4) is said to be well poised, and the entries of � � and � � can be computed safely. If
this condition fails, we may have to improve the geometry of our interpolation set to ensure
it. Following Conn, Scheinberg and Toint [9] and Conn, Gould and Toint [7], a reasonable
strategy for improving the geometry of this set might be to replace a point �	� � �

�

� � � by

another point ��� such that 4 "
�
� �� �,4 is larger, for instance by choosing
� � � argmax � ���� 4 "

�
� � �,4 (7)

provided 4 "
�
� � � �,4�� � � � since otherwise the geometry was already fine. Note that solving

(7) reduces to solving two classical trust-region subproblem, for which good algorithms
exists (see Chapter 7 of Conn, Gould and Toint [7], for instance).

Once we have computed the model �$� ��� � � � � in the neighbourhood of the current
iterate � � , we follow the classical procedure of trust-region methods and compute the step� � % IR � minimizing the polynomial model �$� over the trust region defined by (3). Again,
this can be done using any of the well-known algorithms described in Chapter 7 of [7]. If

� � � ����� � � � ����� � ��� � ���� ��� � � � ��� ��� � ��� � � (8)

is sufficiently positive, we say that iteration � is successful, define our next iterate � � � � to
be � � �$� � and possibly enlarge our trust-region radius � � . If � � is not sufficiently positive,
our iteration is deemed unsuccessful, the current iterate is not altered and the trust-region
radius is potentially reduced.

We now consider three particular issues arising in the particular framework of derivative-
free optimization. The first point regards the convergence test at the end of each iteration.
While in classical trust-region methods it may be sufficient to check that the gradient of � is
small enough at the current point, our derivative-free framework makes things more difficult
since we cannot compute the gradient �	������� . It is nevertheless the case that, if the model
(2) is a sufficiently accurate representation of the objective function, we may assume that

� � � ��� ���	����� � � � +
Hence, as soon as the quadratic model � � has been updated, we compute � � � � and check
whether it is small enough. If this is the case, we ensure that the model is sufficiently
accurate by making it valid in some ball centered at � � , i.e. we verify that the points of
the interpolation set are sufficiently close to � � and that the associated Newton fundamen-
tal polynomials are bounded (see Theorem 9.4.4 of [7]). If � � � � remains small after this
verification, convergence is declared and the algorithm terminates (see Lemma 9.1.2 of [7]
for a proof that this process is well defined and finite whenever �������). Otherwise the
optimization process is continued.

The second issue is the way to use new available function values in a suitable way.
To see this, let us now assume that at some iteration � we get a point � �� � � � � � � of

4

associated function value ����� �� � , one may consider the problem of finding the best way to
make � �� play a role in the next iterations when building the interpolating quadratic. Indeed,
since in our derivative-free optimization framework the function evaluations are expensive,
it is natural to take advantage of the fact that ����� �� � is known to check whether � �� may be
added to the set of interpolation points or not. If 4 � 4�� � , which generally occurs in the first
few iterations of the process, we may simply add � �� to � , which allows to progressively
complete the set of interpolation points. Otherwise, if 4 � 4 � � , we try to find a point in

�
,

say � � , which can advantageously be replaced by � �� . This replacement is performed in a
way that makes the pivots as large as possible in order to obtain a well-poised interpolation
problem. More precisely, we proceed as follows:

Let �
�

(1 � � �,+,+,+ �32) denote the size of a complete interpolation set for func-
tion �

�
.

We first initialize the radius � geom – as follows:

� geom �
������ �����
�	�� � � � � � � � � � if the iteration is successful,�	�� � � � � � � � � ���	� div if the iteration is unsuccessful

and the model is valid,�	�� � � � � � � � ref �	� lim � otherwise,

(9)

where � div � � +�
� , � ref is the trust-region radius of the most recent successful
iteration and � lim � ����� � � �#� � � ��� div +
We then look for the point � � whose distance to the base is the largest.� if � � � � � � � � � is not too small (e.g. larger than

� +�� � �) and the value
of the fundamental polynomial associated to � � evaluated at � �� is larger
than

��� � geom

� ��� � � � � � ����� �
then we replace � � by � �� ;� otherwise, we choose to select � � to be the point associated to the fun-
damental polynomial whose absolute value is maximal at � �� , and we
replace � � by � �� provided this absolute value is sufficiently large (e.g.
larger than 1).

Finally, a third issue is the management of the trust-region radius. In classical trust-
region methods, the radius � � is always decreased at unsuccessful iterations. In our frame-
work, however, we must first verify that the interpolation set is poised before reducing � �
since a bad geometry might be the main reason for the iteration to be unsuccessful. If �
is not well poised, we thus have to improve its geometry (using – again – the procedure
described above) possibly reducing � � . It is particularly important not to modify � � too
early in the process as this would often impose too small steps and cause the algorithm to
be excessively slow.

5

3 A trust-region algorithm for minimizing partially separable
functions

We now turn back to the case of unconstrained problems involving a partially separable
function (1). Intuitively, we may compute a solution to problem (1) by applying the inter-
polation ideas outlined above to each individual function �

�
����� (1 � � �,+,+,+ �32): we thus

consider 2 interpolation sets �
�

whose points are used to construct 2 quadratic models
approximating �

�
around the current iterate � � :

�
���
� ��� � ��� � � �

�
��� � � � � ���� � � � �

� � � � ��� � � � 15� � �,+,+,+-�32 � (10)

where each �
���
� is a vector of IR � � and �

���
� is an �

�
-by- �

�
matrix with real coefficients for1�� � �,+,+,+-�32 . Note that each model �

���
� actually depends on the �

�
-dimensional vectors of

the subspace 7
�

(1 � � �,+,+,+ �32) and approximate the �
�
’s around the projection of � � onto7

�
, even if, for the sake of simplicity, our notations in (10) keep this projection implicit.
Once the models (10) interpolating the individual functions are computed, a quadratic

model of the global objective function � at � � is trivially obtained as

��� ��� � ��� ���
�� �
� �

�
���
� ��� � � � ���

� ����� � � � � �� � � �
� � � � � � � (11)

where the vector � � % IR � and the matrix � � % IR � � � are built from ”incomplete” – or
”partial” – vectors �

���
� and matrices �

���
� (10� � �,+,+,+ �32). As usual in trust-region methods,

the model (11) can then be minimized within the current trust region
� � , which yields a

new point � � ��� � at which the objective function � may be evaluated.
However, we now have to manage 2 interpolation sets �

�
(1 � � �,+,+,+-�32) instead of a

single one. We then have to consider two possible cases: either it is possible for the user
to evaluate a single element function �

�
����� independently of the others, or the objective

function must always be evaluated as a whole (i.e. only the collection of values

*
�
�
�����3/ �

�
� �

can be computed for a given �). In the second case, a straightforward implementation of
our algorithm could be very expensive in terms of function evaluations if we blindly apply
procedures similar to those of the previous section to each �

�
for geometry improvement

or for replacing an existing interpolation point with a new one. Indeed, computing a vector
that improves the geometry of the $ -th interpolation set yields a vector having only �5"
“useful” components, and it is not clear which values should be assigned to the remaining� � � " components. Our strategy in this case is to group the necessary individual function
evaluations by applying the CPR procedure of Curtis, Powell and Reid [11] for estimating
sparse Jacobian matrices to the ��� 2 occurence matrix of variables � " into elements �

�
defined by

 "
�
�
� � if function �

�
depends on � "

� otherwise,

with 1 %
* � �,+,+,+ �32 / and $ %

* � �,+,+,+ �.�0/ .
Now, at some iteration � , we denote by � � the set of indices corresponding to the inter-

polation sets for which a geometry improvement is requested. If � � � *
1 � �.1 � �,+,+,+ �.1
	 /
���

6

(that is 4 � � 4����), we partition the set of columns of � in a number of groups, each of them
containing columns corresponding to individual functions whose associated index sets have
an empty intersection. Hence the individual functions whose associated columns belong to
the same subset depend on strictly different components of a vector � % IR � . There are var-
ious ways to obtain such a grouping. For the experiments reported below, we have chosen
the greedy approach originally proposed by Curtis, Powell and Reid, which is summarized
as follows for � � � *

1 � �.1 � �,+,+,+ �.1�� / :� a new group � � � � is first created that contains column 1 � ;� the function 1 � is then considered and one checks whether �
�
� and �

�
� have common

variables (that is whether
 " �
�
 " � � �

for all $ � � �,+,+,+-�.�): if this is not the
case, then � � � � is replaced by � � � ���

*
1 � / ; otherwise, a new group � � � � is created

containing column 1 � ;� the process is repeated, considering the remaining elements of � � in increasing order,
and adding the corresponding columns to one of the existing subsets when possible,
or creating a new group when this proves impossible.

The authors are aware that it might be more efficient to use more sophisticate tech-
niques, such as the graph coloring method of Coleman and Moré [2], to further improve the
efficiency of this approach.

We now summarize the main steps of our algorithm. Note that at this point we must
consider the two above mentioned possible frameworks: the first one corresponds to the
situation where the functions �

�
(1 � � �,+,+,+-�32) are accessible individually while in the

second one the value of an individual function �
�
can only be obtained by calling the routine

for evaluating the whole function � . We denote the corresponding versions of the algorithm
by I and G respectively.

Partially Separable functions and Derivative-Free Optimization

Step 0. Initialization. An initial point ��� is given, as well as a trust-region radius �	� � � ,
a user defined tolerance � � ��� and constants � % � �#� � � ,
 ��� , � � , � � , � � and
� � satisfying � � � � � � � � �

and � ��� � �� � � �
. We also initialize that

the parameters for geometry improvements � div, � lim and we choose � ref � ��� . It
is assumed that for each 1 � � �,+,+,+-�32 there exists a (possibly incomplete) set

�
�

of
interpolation points. The iteration counter � is set to 0.

Step 1. Computing the models. Compute quadratic interpolation polynomials �
���
� (for1 � � �,+,+,+-�32) approximating each �

�
around the projection of � � onto each 7

�
, as

defined by (10).
Form the complete model � � defined by (11).

Step 2. Convergence test. If � � � � � � � and
�

is well poised in a ball of radius � ��� �

 � � � � centered at � � stop. Otherwise improve the geometry until

�
is well poised

in a ball of radius � ��� � ��
 � � � � centered at � � and return to the beginning of
Step 2.

7

Step 3. Minimizing the models. Solve� ���� IR � ��� ��� � ��� �
s.t. � � � � � � �

and obtain
� � .

Step 4. Step acceptance. Compute � � from (8). If � � � � � then � � � � � � � � � � � and� � � � � � , otherwise set � � � � � ��� � and � � � � � � � � � .
Update � � as follows:

� � � � %
�� � � � � ��� � if � � � � � �� � � � � � � ��� if � � % �

� � � � � � �� � � � � � � � � ��� if � � � � � +
Step 5. Improve the geometry. Update � geom as in (9).

Version I: for 1 � � �,+,+,+-�32 , compute the projection of � � on 7
�

and see if it can
be advantageously added to

�
�

(i.e. making its geometry better, as described in
Section 2), possibly replacing an existing point. If this is the case, modify

�
�

and
update the fundamental polynomials related to it. Otherwise, try and compute
an additional point that could improve the geometry

�
�

(yielding larger pivots);
if this is possible, compute this point as described in Section 2, update

�
�

and
the corresponding fundamental polynomials.

Version G: first set � � � � � and then loop over the individual functions �
�

and their
interpolation sets

�
�
(10� � �,+,+,+ �32) as above. If the insertion or replacement of

a point in the interpolation set
�
�

is possible, then proceed as before. Otherwise,
add the index 1 to � � .
If � �
� � , apply the above described CPR procedure to group the indices in� � . The number of resulting groups gives the number of new points to compute
for improving the geometry of the interpolation sets

� " such that $ % � � .
If incidentally one of these new points has a better objective function value than� � � � , then replace � � � � and update all fundamental polynomials.

Go to Step 1.

Note that the trust-region radius � � remains ”global”, i.e. it is related to � and not to
the (possible) individual improvements in terms of the �

�
’s.

4 Numerical experience

The Fortran code resulting from the implementation of this algorithm is named PSDFO
and the purpose of this section is to discuss preliminary numerical results obtained with it
to solve unconstrained problems involving a partially separable objective function. The two
above described versions of our algorithm were implemented and are denoted by PSDFO(I)
and PSDFO(G) in the sequel. Table 1 provides the list of tested test problems. All these
problems are part of the CUTEr (see [13]) collection, most of them being already described
in Toint [29]. Note that since the primary goal of the CUTEr collection is to regroup test

8

Problem name Dimension Specifity 2
ARWHEAD � � � �#� � � � � �#� � � � � �#� � � � � � � � sparse ��� �
BDQRTIC � � � �#� � � � � �#� � � � � �#� � � � � � � � banded �����
BDVALUE � � � �#� � �#� � �#� � � �#� � � � banded �
BRYDN3D � � � �#� � �#� � �#� � � �#� � � � banded �
CHROSEN � � � �#� � � � � �#� � � � � �#� � � � � � � � banded ��� �
CRAGGLVY � � � �#� � �#� � �#� � � �#� � � � banded ����� � ��� �
DQDRTIC � � � �#� � �#� � �#� � � �#� � � � banded ��� �
EXTPOWELLSG � � � �#� � � ����� � � � �#� � � � sparse ����� � �����
EXTROSNB � � � �#� � �#� � �#� � � �#� � � � sparse ��� �
GENHUMPS � � � �#� � �#� � �#� � � �#� � � � sparse ��� �
LIARWHD � � � �#� � �#� � �#� � � �#� � � � sparse ��� �
MOREBV � � � �#� � �#� � �#� � � �#� � � � banded �
ROSENBR � � � �#� � �#� � �#� � � �#� � � � banded ��� �
SCHMVETT � � � �#� � �#� � �#� � � �#� � � � banded ��� �
WOODS � � � � � � �#����� � � � �#� � � � sparse � ���

Table 1: Problem specifications.

problems for general nonlinear programming software packages, most CUTEr problems
are not derivative-free problems. Besides their availability in the public domain, the main
advantage of using the CUTEr problems is that their solution is known, a very useful feature
for testing.

Before describing the test results, we emphasize that the framework of partially separa-
ble functions makes it necessary to distinguish two different types of function evaluations:
those related to the global objective function � and those related to the element functions�
�

(1 � � �,+,+,+-�32). The PSDFO package is implemented in such a way that a subroutine
(named UFN_I) allows to evaluate one particular individual function at a time. As a result,
when the value of the global objective function is required (e.g. after computation of an
improvement step � �), PSDFO calls the subroutine UFN_I 2 times (once for every ele-
ment function). As we wish to compare the number of function evaluations required by our
algorithm with that required by other approaches, we report below the equivalent number
of objective function evaluations, which is obtained by dividing the total number of element
functions evaluations by 2 . Since we did not observe major variations in the number of
calls to UFN_I for evaluating the different element functions, we consider that this equiva-
lent number of objective function evaluations is an appropriate measure for the assessment
of the performance of PSDFO.

4.1 Comparison of the approaches

We first provide some numbers to compare PSDFO with two other packages: UDFO is the
basic implementation of the algorithm of Conn, Scheinberg and Toint [8] and UDFO(S)
is one of its two extensions considered in [3, 4] (for banded and sparse Hessian matrices);
UOBYQA is Powell’s package described in [25] while UOBSQA and UOBDQA are its
extensions taking sparsity into account and constructing approximations having a diagonal

9

Hessian respectively (see [24]).
Table 2 summarizes the performance of these five packages for the three problems of

the CUTE collection considered by Powell (see Table 1 in [24]). We also consider the same

Problem Dimension UDFO UDFO(S) UOBSQA UOBDQA PSDFO(I) PSDFO(G)
ARWHEAD ��� ��� 311 150 118 105 30 54

��� ��� 790 339 170 164 30 56
���
	 � 1268 333 225 260 35 161
���
	 � 1478 448 296 277 37 198

BDQRTIC ��� ��� 519 327 350 288 348 358
��� ��� 1014 639 594 385 345 382
���
	 � 1610 893 855 534 509 596
���
	 � 2615 940 1016 705 360 542

CHROSEN ��� ��� 2032 775 247 3652 85 123
��� ��� 4901 1660 431 4590 91 154
���
	 � � 10000 3268 553 5871 95 168
���
	 � � 10000 5015 736 5943 98 173

Table 2: Comparison of the number of function evaluations required by DFO solvers for
solving medium-size instances of problems.

problem dimensions, that is � � � � , 15, 20 and 25 and as in [24] we focus on the number
of function evaluations required for solving the problems. Figure 1 shows the evolution of
the number of function evaluations required by the five solvers. As shown by this figure
and the results in Table 2, both versions of PSDFO generally require much fewer function
evaluations than the other packages. The reason for these savings in function evaluations
may be explained by the fact that PSDFO obtains complete interpolation sets more rapidly
since the dimensions �

�
(1 � � �,+,+,+-�32) are (sometimes considerably) smaller than the

dimension � of the problem. More precisely, the number of � function evaluations that is
required by UDFO to obtain a full interpolation set is given by

�

� ��� ��� � ��� � � � � � for UDFO (see (5))� � �� for UDFO(S)
�

� ���� ��� � ���� � � � � � for PSDFO

where ��� is the number of nonzero entries in the lower triangular part of the Hessian and
where

�� � � ���
���

�
� � �

�
� �

which is typically independent of the actual size of the problem. (Due the the involved
quasi-Newton mechanism, this comparison is not really relevant for UOBSQA and UOB-
DQA, except that in both cases � is bounded below by � .)

4.2 Performance of PSDFO

We now concentrate on PSDFO and analyze the complete results we obtained with this
package. These results are reported in Table 3 and they were obtained with a PC Pentium
4 2.00GHz (900 MB Ram) running Linux. The three measures we collected with both
PSDFO(I) and PSDFO(G) are the number of function evaluations, the number of iterations
and the CPU time required for solving the problems of Table 1.

10

10 15 20 25
0

500

1000

1500

F
un

ct
io

n
ev

al
ua

tio
ns

Problem dimension

Problem ARWHEAD

UDFO
UDFO(S)
UOBSQA
UOBDQA
PSDFO(I)
PSDFO(G)

10 15 20 25
0

500

1000

1500

F
un

ct
io

n
ev

al
ua

tio
ns

Problem dimension

Problem BDQRTIC

UDFO
UDFO(S)
UOBSQA
UOBDQA
PSDFO(I)
PSDFO(G)

10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

F
un

ct
io

n
ev

al
ua

tio
ns

Problem dimension

Problem CHROSEN

UDFO
UDFO(S)
UOBSQA
UOBDQA
PSDFO(I)
PSDFO(G)

Figure 1: Number of function evaluations required by some DFO solvers for problems
ARWHEAD , BDQRTIC and CHROSEN .

11

Problem Measure � � � � � � � � � ��� � � � � � � � � � � �I G I G I G I G I G
ARWHEAD evaluations 30 54 35 161 34 226 43 925 40 1624

iterations 18 18 19 19 22 22 26 26 24 24
CPU time 0.02 0.02 0.04 0.04 0.11 0.12 0.49 0.49 2.96 3.47
groups - 1.5 - 7.0 - 9.0 - 34.2 - 66.3

BDQRTIC evaluations 348 358 509 596 627 1275 343 2263 336 5786
iterations 214 214 408 408 567 561 295 295 279 279
CPU time 1.68 1.75 8.33 4.68 33.58 33.60 37.74 39.23 118.80 117.50
groups - 0.05 - 0.2 - 1.2 - 6.5 - 19.6

BDVALUE evaluations 46 57 45 73 44 72 42 79 27 42
iterations 28 28 24 24 23 23 20 20 9 9
CPU time 0.05 0.04 0.03 0.09 0.27 0.26 0.71 0.72 1.54 1.60
groups - 0.5 - 1.4 - 1.4 - 2.1 - 2.0

BROYDN3D evaluations 53 70 56 84 68 144 153 342 123 278
iterations 38 38 40 40 42 42 116 116 84 84
CPU time 0.05 0.06 0.13 0.14 0.48 0.49 2.83 3.98 16.82 17.01
groups - 0.5 - 0.8 - 2.1 - 1.8 - 2.2

CHROSEN evaluations 85 123 95 168 143 262 177 313 226 396
iterations 63 63 67 67 99 99 111 111 141 141
CPU time 0.03 0.05 0.11 0.11 0.57 0.58 2.50 2.54 22.67 21.58
groups - 0.8 - 1.4 - 1.6 - 1.7 - 1.7

CRAGGLVY evaluations 392 455 390 530 525 878 713 1228 1040 1841
iterations 327 327 334 334 424 424 562 562 799 799
CPU time 0.55 0.70 1.73 1.73 6.13 6.14 23.58 23.10 160.43 159.58
groups - 0.3 - 0.5 - 1.0 - 1.1 - 1.3

DQDRTIC evaluations 191 289 337 726 342 747 274 834 484 775
iterations 151 162 233 275 212 212 170 226 283 204
CPU time 0.21 0.26 0.93 1.18 2.20 2.59 6.59 6.78 49.27 43.98
groups - 0.6 - 2.4 - 2.4 - 2.6 - 2.7

EXTPOWELLSG evaluations 270 276 256 308 401 525 504 772 844 1319
iterations 225 225 213 213 354 354 441 441 746 746
CPU time 0.37 0.41 0.85 0.75 3.70 3.71 14.42 14.38 132.52 132.30
groups - 0.05 - 0.3 - 0.4 - 0.6 - 0.7

EXTROSNB evaluations 60 108 103 571 113 1553 205 6575 168 10864
iterations 46 46 70 70 78 78 135 135 112 112
CPU time 0.04 0.04 0.11 0.11 0.42 0.43 3.08 3.46 17.98 20.47
groups - 1.2 - 7.0 - 18.9 - 47.7 - 96.0

GENHUMPS evaluations 124 (step) 212 228 185 (step) 880 (step) 198 338
iterations 97 152 92 126 536 124 123
CPU time 0.07 0.26 0.13 0.73 12.37 16.00 18.05
groups - - 1.4 - - - 1.7

LIARWHD evaluations 45 95 58 173 63 589 67 1345 93 (step)
iterations 31 31 45 45 46 46 46 46 66 -
CPU time 0.03 0.03 0.05 0.09 0.23 0.26 0.94 1.01 10.20 -
groups - 1.8 - 2.7 - 11.7 - 28.1 - -

MOREBV evaluations 32 40 32 41 34 49 37 65 23 34
iterations 15 15 16 16 15 15 17 17 6 6
CPU time 0.03 0.04 0.07 0.08 0.18 0.18 0.60 0.61 1.11 1.11
groups - 0.6 - 0.6 - 1.1 - 1.8 - 1.8

ROSENBR evaluations 187 321 418 759 1158 2057 2502 4420 6728 11811
iterations 136 136 276 276 738 738 1553 1553 4005 4070
CPU time 0.13 0.13 0.53 0.56 4.78 4.94 40.32 33.3 707.91 731.69
groups - 1.3 - 1.7 - 1.8 - 1.8 - 1.9

SCHMVETT evaluations 61 75 51 82 65 144 89 191 150 285
iterations 44 44 33 33 41 41 62 62 97 97
CPU time 0.09 0.10 0.12 0.13 0.46 0.47 0.78 0.87 21.37 21.49
groups - 0.4 - 1.1 - 2.2 - 1.9 - 1.8

WOODS evaluations 963 1080 1046 1183 477 518 671 758 1366 1714
iterations 840 840 933 933 416 416 585 585 1044 1044
CPU time 1.53 1.56 2.54 2.91 3.46 3.49 18.05 18.24 192.22 192.72
groups - 0.2 - 0.2 - 0.2 - 0.3 - 0.6

Table 3: Further results for PSDFO.

12

We first examine the performance of PSDFO(I), that is the version for which it is as-
sumed that the functions �

�
(1 � � �,+,+,+-�32) are accessible individually. As expected, the

number of function evaluations does not increase much when higher dimensions are con-
sidered, except for some difficult problems like ROSENBR . This is illustrated on Figure 2,
where the evolution of the number of function evaluations required by PSDFO(I) for the
various sizes of the problems is displayed (note that these numbers are normalized in the
sense that, for a given line of Table 3, the various values it contains are divided by the
average of these values). For some problems (e.g. EXTROSNB and GENHUMPS), interme-

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

F
un

ct
io

n
ev

al
ua

tio
ns

 (
no

rm
al

iz
ed

)

Dimension

Performance of PSDFO

ARWHEAD
BDQRTIC
BDVALUE
BROYDN3D
CHROSEN
CRAGGLVY
DQDRTIC
EXTPOWELLSG
EXTROSNB
GENHUMPS
LIARWHD
MOREBV
ROSENBR
SCHMVETT
WOODS

Figure 2: Performance of PSDFO(I) in terms of function evaluations when the size of
problems increases.

diate dimension instances require more computational effort than for the larger instances
we considered.

Let us now consider the results obtained with PSDFO(G). As could be expected, this
version of the algorithm requires more function evaluations than PSDFO(I), which is a clear
illustration of the advantages of the previous framework. However, it seems that the group-
ing strategy described in Section 3 allows to limit the increase in the computational cost. To
show this, we reported a further measure regarding the results obtained with PSDFO(G),
namely the average number of groups (per iteration) constructed by the algorithm when
geometry improvements occur. For some problems, this number varies much from � � � �
to � � � � � while for others it remains between 0.5 and 2.0: this is due to the fact that
some problems (like ARWHEAD or EXTROSNB) have individual functions that can never be
grouped because they all depend on (at least) one common variable (for ARWHEAD , func-
tion �

�
depends on �

�
and � � � while for EXTROSNB it depends on � � and �

�
) while other

13

problems (like BDVALUE or WOODS) involve individual functions that can be grouped eas-
ily. As a consequence, solving the former problems with PSDFO(G) requires much more
function evaluations (with the same number of iterations as that observed with PSDFO(I))
while the latter can be solved at a cost which is only slightly higher than with PSDFO(I).
Note that for three problem instances PSDFO(G) terminated prematurely because the step� � fell below the tolerance (� + � � � �), indicating that the algorithm was stalling.

Finally, we should mention that while PSDFO is clearly better than UDFO in terms
of computational effort, the latter remains advantageous from the point of view of storage
issues, should this become an issue. Indeed, since PSDFO constructs models for the 2
individual functions forming the objective, it must manage 2 interpolation sets, 2 bases
of Newton fundamental polynomials and 2 models �

���
� . Despite the fact that each of these

components is smaller than that corresponding to the single model � � generated by UDFO
(since �

� � � for each 1 %
* � �,+,+,+ �32 /), the need to consider 2 such spaces in PSDFO

makes it more demanding in terms of storage.

5 Conclusions

We have presented a new algorithm for solving unconstrained derivative-free optimization
problems whose objective function is partially separable. This algorithm proves to be very
efficient in terms of function evaluations, the latter being the most important criterion for
the assessment of derivative-free methods.

We believe that our algorithm can be extended further and we would like to mention
here some possible refinements. The first one is related to Powell’s methods and consists
in using only the dominant parts of the Hessian matrix. Indeed, it seems that introducing
”artificial sparsity” and ignoring some of the entries of the Hessian that may be considered
as being negligible is likely to yield the same improvements as those reported by Powell
[24]. A more promising approach would be to combine the least Frobenius norm update of
Powell within our partially separable scheme and to apply Powell’s technique at the level
of individual functions and their models. Furthermore, we could use a criterion like that of
Conn, Gould, Sartenaer and Toint [5] for selecting ”negligible” individual functions whose
model might be left unchanged in a larger region. Their criterion suggests to define the
index set of negligible functions as follows:
� 1 %

* � �,+,+,+-�32 / � 4 �
���
� ����� ��� � � �

���
� ����� ��� ��� � ��� �,4 �
2 4 ��� ����� ��� ��� ��� ����� ��� ��� � ��� �,4�� �

where �
���
� and ��� denote the model of the individual function �

�
and that of the global

objective � respectively while
 is a parameter such that ���
 � � .
Also note that the current version of the algorithm assumes that we can only evaluate the�

�
’s at any point � but we might have a more complete knowledge concerning the gradient

and/or the Hessian of some individual functions �
�
�	� � . The use of all available derivatives

is straightforward in (10). Combination with quasi-Newton methods is also possible for the
element functions whose gradient but not the Hessian is available.

14

References

[1] C. Audet and J. E. Dennis Jr. Analysis of generalized pattern searches. SIAM Journal
on Optimization, 13(3):889–903, 2003.

[2] T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph col-
oring problems. SIAM Journal on Numerical Analysis, 20(1):187–209, 1983.

[3] B. Colson and Ph. L. Toint. Exploiting band structure in unconstrained optimization
without derivatives. Optimization and Engineering, 2(4):399–412, 2001.

[4] B. Colson and Ph. L. Toint. A derivative-free algorithm for sparse unconstrained opti-
mization problems. In A. H. Siddiqi and M. Kocvara, editors, Trends in Industrial and
Applied Mathematics, volume 72 of Applied Optimization, pages 131–147. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2002.

[5] A. R. Conn, N. I. M. Gould, A. Sartenaer, and Ph. L. Toint. Convergence properties of
minimization algorithms for convex constraints using a structured trust region. SIAM
Journal on Optimization, 6(4):1059–1086, 1996.

[6] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for
large-scale nonlinear optimization (Release A). Springer Verlag, Heidelberg, New
York, USA, 1992.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. SIAM Publica-
tions, Philadelphia, Pennsylvania, USA, 2000.

[8] A. R. Conn, K. Scheinberg, and Ph. L. Toint. On the convergence of derivative-free
methods for unconstrained optimization. In A. Iserles and M. Buhmann, editors, Ap-
proximation Theory and Optimization: Tributes to M. J. D. Powell, pages 83–108.
Cambridge University Press, Cambridge, England, 1997.

[9] A. R. Conn, K. Scheinberg, and Ph. L. Toint. Recent progress in unconstrained
nonlinear optimization without derivatives. Mathematical Programming, Series B,
79(3):397–414, 1997.

[10] A. R. Conn, K. Scheinberg, and L. N. Vicente. Error estimates and poisedness in mul-
tivariate polynomial interpolation. Pré-Publicações do Departamento de Matemática,
Universidade de Coimbra, Preprint Number 03-09, 2003.

[11] A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse Jacobian
matrices. J. Inst. Maths Applics, 13:117–119, 1974.

[12] C. de Boor and A. Ron. Computational aspects of polynomial interpolation in several
variables. Mathematics of Computation, 58(198):705–727, 1992.

[13] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr (and SifDec),
a Constrained and Unconstrained Testing Environment, revisited. Transac-
tions of the ACM on Mathematical Software, 2003. To appear. See also
http://cuter.rl.ac.uk/cuter-www/ .

15

[14] A. Griewank and P. L. Toint. Local convergence analysis of partitioned quasi-Newton
updates. Numerische Mathematik, 39:429–448, 1982.

[15] A. Griewank and P. L. Toint. On the unconstrained optimization of partially separable
objective functions. In M. J. D. Powell, editor, Nonlinear Optimization 1981, pages
301–312, London, England, 1982. Academic Press.

[16] A. Griewank and P. L. Toint. Partitioned variable metric updates for large structured
optimization problems. Numerische Mathematik, 39:119–137, 1982.

[17] L. Grippo, F. Lampariello, and S. Lucidi. Global convergence and stabilization of
unconstrained minimization methods without derivatives. Journal of Optimization
Theory and Applications, 56:385–406, 1988.

[18] R. M. Lewis, V. Torczon, and M. W. Trosset. Direct search methods: then and now.
Journal of Computational and Applied Mathematics, 124(1–2):191–207, December
2000.

[19] S. Lucidi and M. Sciandrone. Numerical results for unconstrained optimization with-
out derivatives. In F. Giannessi and G. Di Pillo, editors, Nonlinear Optimization and
Applications, pages 261–269. Plenum Publishing, New York, NY, USA, 1995.

[20] M. J. D. Powell. An efficient method for finding the minimum of a function of several
variables without calculating derivatives. Computer Journal, 17:155–162, 1964.

[21] M. J. D. Powell. A method for minimizing a sum of squares of nonlinear functions
without calculating derivatives. Computer Journal, 7:303–307, 1965.

[22] M. J. D. Powell. A hybrid method for nonlinear equations. In P. Rabinowitz, editor,
Numerical Methods for Nonlinear Algebraic Equations, pages 87–114. Gordon and
Breach, London, England, 1970.

[23] M. J. D. Powell. Least Frobenius norm updating of quadratic models that satisfy
interpolation conditions. Technical Report NA2002/08, Department of Applied Math-
ematics and Theoretical Physics, Cambridge University, Cambridge, England, 2002.

[24] M. J. D. Powell. On trust region methods for unconstrained minimization without
derivatives. Technical Report NA2002/02, Department of Applied Mathematics and
Theoretical Physics, Cambridge University, Cambridge, England, 2002.

[25] M. J. D. Powell. UOBYQA: unconstrained optimization by quadratic interpolation.
Mathematical Programming, 92:555–582, 2002.

[26] M. J. D. Powell. On the use of quadratic models in unconstrained minimization with-
out derivatives. Technical Report NA2003/03, Department of Applied Mathematics
and Theoretical Physics, Cambridge University, Cambridge, England, 2003.

[27] T. Sauer. Computational aspects of multivariate polynomial interpolation. Advances
in Computational Mathematics, 3:219–238, 1995.

16

[28] Th. Sauer and Y. Xu. On multivariate Lagrange interpolation. Mathematics of Com-
putation, 64:1147–1170, 1995.

[29] Ph. L. Toint. Test problems for partially separable optimization and results for the rou-
tine PSPMIN. Technical Report 83/4, Department of Mathematics, FUNDP, Namur,
Belgium, 1983.

[30] V. Torczon. On the convergence of pattern search algorithms. SIAM Journal on Opti-
mization, 7(1):1–25, 1997.

17

