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RECURSIVE TRUST-REGION METHODS FOR MULTISCALE
NONLINEAR OPTIMIZATION

SERGE GRATTON∗, ANNICK SARTENAER † , AND PHILIPPE L. TOINT ‡

Abstract. A class of trust-region methods is presented for solving unconstrained nonlinear
and possibly nonconvex discretized optimization problems, like those arising in systems governed
by partial differential equations. The algorithms in this class make use of the discretization level
as a mean of speeding up the computation of the step. This use is recursive, leading to true mul-
tilevel/multiscale optimization methods reminiscent of multigrid methods in linear algebra and the
solution of partial-differential equations. A simple algorithm of the class is then described and its nu-
merical performance is shown to be numerically promising. This observation then motivates a proof
of global convergence to first-order stationary points on the fine grid that is valid for all algorithms
in the class.

Keywords: nonlinear optimization, multiscale problems, simplified models, recursive

algorithms, convergence theory.

AMS subject classifications. 90C30, 65K05, 90C26, 90C06

1. Introduction. Large-scale finite-dimensional optimization problems often
arise from the discretization of infinite-dimensional problems, a primary example be-
ing optimal-control problems defined in terms of either ordinary or partial differential
equations. While the direct solution of such problems for a discretization level is often
possible using existing packages for large-scale numerical optimization, this technique
typically does make very little use of the fact that the underlying infinite-dimensional
problem may be described at several discretization levels; the approach thus rapidly
becomes cumbersome. Motivated by this observation, we explore here a class of algo-
rithms which makes explicit use of this fact.

Using the different levels of discretization for an infinite-dimensional problem is
not a new idea. A simple first approach is to use coarser grids in order to compute
approximate solutions which can then be used as starting points for the optimization
problem on a finer grid (see [5, 6, 7, 22], for instance). Other efficient techniques are
inspired from the multigrid paradigm in the solution of partial differential equations
and associated systems of linear algebraic equations (see, for example, [10, 11, 12, 23,
41, 43], for descriptions and references).

The purpose of our paper is threefold. We first introduce a new extension of
the Full Approximation Scheme (FAS, see, for instance, Chapter 3 of [12] or [25]),
an existing multigrid-type method, to a class of trust-region based optimization al-
gorithms. We then indicate that this class contains numerically efficient members,
thereby motivating further analysis. We finally provide a global convergence proof for
all members of the class, which gives a robustness guarantee typical in optimization
but, to the authors’ knowledge, uncommon in multigrid approaches. Significantly,
this guarantee holds even for nonconvex (non-elliptic) problems.

The work presented here was in particular motivated by the paper by Gelman and
Mandel [16], the “generalized truncated Newton algorithm” presented in Fisher [15],
a talk by Moré [28] and the contributions by Nash and co-authors [26, 27, 30]. These
latter three papers present the description of MG/OPT, a linesearch-based recursive
algorithm, an outline of its convergence properties and impressive numerical results.
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2 S. GRATTON, A. SARTENAER, Ph. TOINT

The generalized truncated Newton algorithm and MG/OPT are very similar and,
like many linesearch methods, naturally suited to convex problems, although their
generalization to the nonconvex case is possible. An older contribution for convex
problems is the damped nonlinear multilevel method by Hackbusch and Reusken [24],
where convergence is analyzed for a variant of the full approximation scheme under the
condition that a Lipschitz constant for the problem Hessian is explictly known or can
be numerically estimated. In the same spirit, the very recent contribution by Yavneh
and Dardyk [45] considers a linesearch to improve the radius of local convergence
of a nonlinear equations solver. Further motivation to consider the more general
nonconvex problem is also provided by the computational success of the low/high-
fidelity model management techniques of Alexandrov, Lewis and co-authors [2, 3] and
a paper by Borzi and Kunisch [9] on multigrid globalization.

The class of algorithms discussed in this note can be viewed as an alternative
where one uses the trust-region technology whose efficiency and reliability in the
solution of nonconvex problems is well-known (we refer the reader to [13] for a more
complete coverage of this subject). Our developments are organized as follows. We
first describe our class of multiscale trust-region algorithms in Section 2, and show
in Section 3 that it can be specialized to a multigrid method that performs well on
examples. This observation then motivates the proof of global convergence to first-
order critical points presented in Section 4. The main results of this section are
Theorems 4.10, which establishes a level-independent complexity bound for general
trust-region algorithms, and 4.13, which is the desired convergence property. Some
conclusions and perspectives are presented in Section 5.

2. Recursive multiscale trust-region algorithms. We start by considering
the solution of the unconstrained optimization problem

min
x∈<n

f(x),(2.1)

where f is a twice-continuously differentiable objective function which maps <n into
< and is bounded below. The trust-region methods which we investigate are iter-
ative: given an initial point x0, they produce a sequence {xk} of iterates (hope-
fully) converging to a first-order critical point for the problem, i.e., to a point where

g(x)
def
= ∇f(x) = 0. At each iterate xk, trust-region methods build a model mk(x)

of f(x) around xk. This model is then assumed to be adequate in a “trust region”,
defined as a sphere of radius ∆k > 0 centered at xk, and a step sk is then computed
such that the trial point xk + sk sufficiently reduces this model in the region. The
objective function is computed at xk + sk and the trial point is accepted as the next
iterate if the ratio of achieved to predicted reduction is larger than a small positive
constant. The value of the radius is finally updated to ensure that it is decreased when
the trial point cannot be accepted as the next iterate, and is increased or unchanged
otherwise. In many practical trust-region algorithms, the model mk is quadratic and
obtaining sufficient decrease then amounts to (approximately) solving

min
‖s‖≤∆k

mk(xk + s) = min
‖s‖≤∆k

f(xk) + 〈gk, s〉+ 1
2
〈s,Hks〉,(2.2)

for s, where gk
def
= ∇f(xk), Hk is a symmetric n× n approximation of ∇2f(xk), 〈·, ·〉

is the Euclidean inner product and ‖ · ‖ is the Euclidean norm.
Such methods are efficient and reliable, and provably converge to first-order crit-

ical points whenever the sequence {‖Hk‖} is uniformly bounded. Besides computing
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the value f(xk + sk), their work per iteration is dominated by the numerical solution
of the subproblem (2.2), which crucially depends on the dimension n of the problem.
When (2.1) results from the discretization of some infinite-dimensional problem on a
relatively fine grid, the solution cost is therefore often significant.

In what follows, we investigate what can be done to reduce this cost by exploiting
the knowledge of alternative simplified expressions of the objective function, when
available. More specifically, we assume that we know a collection of functions {fi}ri=0

such that each fi is a twice-continuously differentiable function from <ni to < (with
ni ≥ ni−1), the connection with our original problem being that nr = n and fr(x) =
f(x) for all x ∈ <n. We will also assume that, for each i = 1, . . . , r, fi is “more
costly” to minimize than fi−1. This may be because fi has more variables than fi−1

(as would typically be the case if the fi represent increasingly finer discretizations of
the same infinite-dimensional objective), or because the structure (in terms of partial
separability, sparsity or eigenstructure) of fi is more complex than that of fi−1, or
for any other reason. To fix terminology, we will refer to a particular i as a level.

Of course, for fi−1 to be useful at all in minimizing fi, there should be some
relation between the variables of these two functions. We henceforth assume that, for
each i = 1, . . . , r, there exist a full-rank linear operator Ri from <ni into <ni−1 (the
restriction) and another full-rank operator Pi from <ni−1 into <ni (the prolongation)
such that

σiPi = RTi(2.3)

for some known constant σi > 0. In the context of multigrid algorithms, Pi and Ri
are interpreted as restriction and prolongation between a fine and a coarse grid (see
[12], for instance). This assumption is also used in Nash [30].

The main idea is then to use fr−1 to construct an alternative model hr−1 for
fr = f in the neighbourhood of the current iterate, that is cheaper than the quadratic
model at level r, and to use this alternative model, whenever suitable, to define the
step in the trust-region algorithm. If more than two levels are available (r > 1),
this can be done recursively, the approximation process stopping at level 0, where
the quadratic model is always used. In what follows, we use a simple notation where
quantities of interest have a double subscript i, k. The first, i (0 ≤ i ≤ r), is the level
index (meaning in particular, if applied to a vector, that this vector belongs to <ni)
and the second, k, is the index of the current iteration within level i, and is reset to
0 each time level i is entered 1.

Consider now some iteration k at level i (with current iterate xi,k) and suppose
that one decides to use the lower level model hi−1 based on fi−1 to compute a step.
The first task is to restrict xi,k to create the starting iterate xi−1,0 at level i− 1, that
is xi−1,0 = Rixi,k. We then define the lower level model by

hi−1(xi−1,0 + si−1)
def
= fi−1(xi−1,0 + si−1) + 〈vi−1, si−1〉(2.4)

where vi−1 = Rigi,k − ∇fi−1(xi−1,0) with gi,k
def
= ∇hi(xi,k). By convention, we set

vr = 0, such that, for all sr,

hr(xr,0 + sr) = fr(xr,0 + sr) = f(xr,0 + sr) and gr,k = ∇hr(xr,k) = ∇f(xr,k).

1We are well aware that this creates some ambiguities, since a sequence of indices i, k can occur
more than once if level i (i < r) is used more than once, implying the existence of more than one
starting iterate at this level. This ambiguity is resolved by the context.
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The function hi therefore corresponds to a modification of fi by a linear term that
enforces the relation

gi−1,0 = ∇hi−1(xi−1,0) = Rigi,k.(2.5)

The first-order modification (2.4) is not unusual in multigrid applications in the con-
text of the full approximation scheme, and is also used by Fisher [15] and Nash [30].
It crucially ensures that the first-order behaviours of hi and hi−1 are coherent in a
neighbourhood of xi,k and xi−1,0, respectively: indeed, one verifies that, if si and si−1

satisfy si = Pisi−1, then

〈gi,k, si〉 = 〈gi,k, Pisi−1〉 =
1

σi
〈Rigi,k, si−1〉 =

1

σi
〈gi−1,0, si−1〉(2.6)

where we have also used (2.3) and (2.5). This coherence was independently imposed
in [26] and, in a slighly different context, in [2] and other papers on first-order model
management.

Our task, when entering level i = 0, . . . , r, is then to (locally) minimize hi starting
from xi,0. At iteration k of this minimization, we first choose, at iterate xi,k, either
the model hi−1(xi−1,0 + si−1) (given by (2.4)) or

mi,k(xi,k + si) = hi(xi,k) + 〈gi,k, si〉+ 1
2
〈si, Hi,ksi〉(2.7)

where the latter is the usual truncated Taylor series in whichHi,k is a symmetric ni×ni
approximation to the second derivatives of hi (which are also the second derivatives
of fi) at xi,k . Once the model is chosen (we will return to the conditions of this
choice below), we then compute a step si,k that generates a decrease on this model
within a trust region {si | ‖si‖i ≤ ∆i,k}, for some trust-region radius ∆i,k > 0. The
norm ‖ · ‖i in this last expression is level-dependent and defined, for some symmetric
positive-definite matrix Mi, by

‖si‖i def
=

√

〈si,Misi〉 def
= ‖si‖Mi

.(2.8)

If the model (2.7) is chosen2, this is nothing but a usual ellipsoidal trust-region sub-
problem solution yielding a step si,k. The decrease of the model mi,k is then under-
stood in its usual meaning for trust-region methods, which is to say that si,k is such
that

mi,k(xi,k)−mi,k(xi,k + si,k) ≥ κred‖gi,k‖min

[ ‖gi,k‖
1 + ‖Hi,k‖

, ∆i,k

]

(2.9)

for some constant κred ∈ (0, 1). This condition is known as the “sufficient decrease” or
“Cauchy point” condition. Chapter 7 of [13] reviews several techniques that enforce
it, including the exact minimization of mi,k within the trust region or an approximate
minimization using (possibly preconditioned) Krylov space methods. On the other
hand, if the model hi−1 is chosen, minimization of this latter model (hopefully) pro-
duces a new point xi−1,∗ such that hi−1(xi−1,∗) < hi−1(xi−1,0) and a corresponding
step xi−1,∗ − xi−1,0 which must then be brought back to level i by the prolongation
Pi. Since

‖si‖i = ‖si‖Mi
= ‖Pisi−1‖Mi

= ‖si−1‖PT
i
MiPi

def
= ‖si−1‖Mi−1

= ‖si−1‖i−1(2.10)

2Observe that this is the only possible choice for i = 0.
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(which is well-defined since Pi is full-rank), the trust-region constraint at level i − 1
then becomes

‖xi−1,∗ − xi−1,0‖i−1 ≤ ∆i,k.(2.11)

The lower level subproblem consists in (possibly approximately) solving

min
‖si−1‖i−1≤∆i,k

hi−1(xi−1,0 + si−1).(2.12)

The relation (2.10) also implies that, for i = 0 . . . , r − 1,

Mi = QTi Qi where Qi = Pr . . . Pi+2Pi+1,(2.13)

while we define Mr = I for consistency. Preconditioning can also be accommodated
by choosing Mr more elaborately.

Is the cheaper model hi−1 always useful? Obviously no, as it may happen for
instance that gi,k lies in the nullspace of Ri and thus that Rigi,k is zero while gi,k
is not. In this case, the current iterate appears to be first-order critical for hi−1 in
<ni−1 while it is not for hi in <ni . Using the model hi−1 is hence potentially useful
only if ‖gi−1,0‖ = ‖Rigi,k‖ is large enough compared to ‖gi,k‖. We therefore restrict
the use of the model hi−1 to iterations where

‖Rigi,k‖ ≥ κg‖gi,k‖ and ‖Rigi,k‖ > εgi−1(2.14)

for some constant κg ∈ (0,min[1,mini ‖Ri‖]) and where εgi−1 ∈ (0, 1) is a measure of
the first-order criticality for hi−1 that is judged sufficient at level i − 1. Note that,
given gi,k and Ri, this condition is easy to check before even attempting to compute
a step at level i− 1.

We are now in position to describe our recursive multiscale trust-region (RMTR)
algorithm more formally as Algorithm 2.1.

In this description, we use the constants η1, η2, γ1 and γ2 satisfying the con-
ditions 0 < η1 ≤ η2 < 1, and 0 < γ1 ≤ γ2 < 1. It is assumed that the prolonga-
tions/restrictions Pi and Ri are known, as are the description of the levels i = 0, . . . , r.
An initial trust-region radius for each level ∆s

i > 0 is also defined, as well as level-
dependent gradient norm tolerances εgi ∈ (0, 1) and trust-region tolerances ε∆i ∈ (0, 1)
for i = 0, . . . , r. The algorithm’s initial data consists of the level index i (0 ≤ i ≤ r),
a starting point xi,0, the gradient gi,0 at this point, the radius ∆i+1 of the level-
(i + 1) trust region and the tolerances εgi and ε∆i . The original task of minimizing
f(x) = fr(xr) = hr(xr) (up to the gradient norm tolerance εgr < ‖∇fr(xr,0)‖) is
achieved by calling RMTR(r, xr,0, ∇fr(xr,0), ∆r+1,0, ε

g
r, ε

∆
r , ∆s

r), for some starting
point xr,0 and initial trust-region radius ∆s

r, and where we define ∆r+1,0 = ∞. For
coherence of notations, we thus view this call as being made with an infinite radius
from some (virtual) iteration 0 at level r + 1. The motivation for (2.17) in Step 6 of
the algorithm and the termination test ‖xi,k+1 − xi,0‖i > (1 − ε∆i )∆i+1 in Step 5 is
to guarantee that iterates at a lower level in a recursion remain in the trust region
defined at the calling level, as verified below in Lemma 4.1.

Iteration k at level i, associated with the computation of the step si,k, will be
referred to as iteration (i, k). It will be called a Taylor iteration if Step 3 is used
(that is if Taylor’s model mi,k(xi,k + si) is chosen at Step 1). If Step 2 is used
instead, iteration (i, k) will then be called a recursive iteration. We emphasize that
we expect the most efficient algorithms in our class to make use of a combination of
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Algorithm 2.1: RMTR(i, xi,0, gi,0, ∆i+1, ε
g

i , ε
∆
i , ∆s

i)

Step 0: Initialization. Compute vi = gi,0 −∇fi(xi,0) and hi(xi,0). Set ∆i,0 =
min[∆s

i , ∆i+1] and k = 0.
Step 1: Model choice. If i = 0 or if (2.14) fails, go to Step 3. Otherwise,

choose to go to Step 2 (recursive step) or to Step 3 (Taylor step).
Step 2: Recursive step computation.

Call Algorithm RMTR(i − 1, Rixi,k, Rigi,k, ∆i,k, ε
g
i−1, ε

∆
i−1, ∆s

i−1),
yielding an approximate solution xi−1,∗ of (2.12). Then define si,k =
Pi(xi−1,∗−Rixi,k), set δi,k = hi−1(Rixi,k)−hi−1(xi−1,∗) and go to Step 4.

Step 3: Taylor step computation. Choose Hi,k and compute a step si,k ∈
<ni that sufficiently reduces the modelmi,k (given by (2.7)) in the sense of
(2.9) and such that ‖si,k‖i ≤ ∆i,k. Set δi,k = mi,k(xi,k)−mi,k(xi,k+si,k).

Step 4: Acceptance of the trial point. Compute hi(xi,k + si,k) and define

ρi,k = (hi(xi,k)− hi(xi,k + si,k))/δi,k.(2.15)

If ρi,k ≥ η1, then define xi,k+1 = xi,k+si,k; otherwise define xi,k+1 = xi,k .
Step 5: Termination. Compute gi,k+1. If ‖gi,k+1‖∞ ≤ εgi or ‖xi,k+1−xi,0‖i >

(1− ε∆i )∆i+1, then return with the approximate solution xi,∗ = xi,k+1.
Step 6: Trust-region radius update. Set

∆+
i,k ∈







[∆i,k ,+∞) if ρi,k ≥ η2,
[γ2∆i,k,∆i,k] if ρi,k ∈ [η1, η2),
[γ1∆i,k, γ2∆i,k] if ρi,k < η1,

(2.16)

and

∆i,k+1 = min
[

∆+
i,k, ∆i+1 − ‖xi,k+1 − xi,0‖i

]

.(2.17)

Increment k by one and go to Step 1.

both iteration types, which means, in particular, that recursive iterations should not
be automatic if (2.14) holds. As is usual for trust-region methods, iteration (i, k) is
said to be successful if ρi,k ≥ η1, that is if the trial point xi,k + si,k is accepted as
the next iterate xi,k+1. It is said to be very successful if ρi,k ≥ η2, implying that
∆+
i,k ≥ ∆i,k.

In the case where r = 0, that is if there is only one level in the problem, the
algorithm reduces to the well-known usual trust-region method (see p. 116 of [13])
and enjoys all the desirable properties of this method. If r > 0, the recursive nature
of Algorithm RMTR is clear from Step 2. It is, in that sense, reminiscent of multigrid
methods for linear systems [23] and is close in spirit to the MG/OPT method [30].
However, this latter method differs from ours in two main respects: Algorithm RMTR
is of trust-region type and its global convergence properties considered in this paper do
not rely on performing Taylor’s iterations before or after a recursive one. Algorithm
RMTR can also be viewed as an extension of the low/high-fidelity model manage-
ment method of [2] and [3]. The main differences are that our framework explicitly
uses prolongation and restriction operators between possibly different variable spaces,
allows more than two nested levels of fidelity and, maybe less importantly, does not
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require coherence of low-fidelity model values with the high-fidelity objective function
(zeroth-order model management). On the other hand, Algorithm RMTR does not
fit in the framework of [16] because this latter formalism only considers “memory-
less” iterations and therefore does not cover adaptive algorithmic features such as
the trust-region radius. Moreover, the convergence results analyzed in this reference
require non-local properties on the involved functions and the limit points are only
proved to belong to a set containing the problem’s critical points and the iteration
fixed points. Finally, the proposal by Borzi and Kunisch [9] differs from ours in that
it emphasizes convergence to minimizers on the coarsest grid, but does not directly
consider globalization on finer ones.

3. A practical algorithm and some numerical motivation. Clearly, our
algorithmic description so far leaves a number of practical choices unspecified, and is
best viewed at this stage as a theoretical shell which potentially contains both efficient
and inefficient algorithms. Can efficient algorithms be found in this shell? It is the
purpose of this section to show that it is indeed the case. Instead of considering the
RMTR class in its full generality, we will therefore focus on a simple implementation of
our framework, and then show that the resulting method is, in our view, numerically
promising.

3.1. Algorithm definition.
Smoothing and Taylor iterations. The most important of the open algorithmic

questions is how one enforces sufficient decrease at Taylor iterations. A first answer
is provided by existing algorithms for large-scale optimization, such as Truncated
Conjugate-Gradients (TCG) [37, 38] or Generalized Lanczos Trust-Region (GLTR)
[19] methods, in which the problem of minimizing (2.7) is solved in successive embed-
ded Krylov subspaces (see also Section 7.5 in [13]). This method is known to ensure
(2.9). While it can be viewed as a Ritz procedure where solutions of subproblems
of increasing sizes approach the desired high-dimensional one, the definition of these
embedded subspaces does not exploit the explicit knowledge of discretization grids.
We are thus interested in alternatives that exploit this knowledge.

If the model (2.7) is strictly convex and the trust-region radius ∆k sufficiently
large, minimizing (2.7) amounts to an (approximate) solution of the classical New-
ton equations Hi,ksi = −gi,k. If the problem additionally results from discretizing a
convex operator on successively finer grids, then multigrid solvers constitute a most
interesting alternative. Our intention is not to review this vast class of numerical algo-
rithms here (we refer the reader to [12], for an excellent introduction to the field), but
we briefly outline their main characteristics. Multigrid algorithms are based on three
complementary observations. The first is that some algorithms, called smoothers, are
very efficient at selectively reducing the high frequency components of the error on
a grid, that is (in most cases) components whose “wavelength” is comparable to the
grid’s mesh-size. The second is that a low frequency error component on a fine grid
appears more oscillatory on a coarse grid and may thus be viewed as a high frequency
component on this grid. The third is that computations on coarse grids are typically
much cheaper than on finer ones. These observations may be exploited by a two-grid
procedure, as follows. A few iterations of a smoother are first applied on the fine grid,
reducing the error’s high frequencies. The residual is then projected on the coarse
grid where the low frequencies are more oscillatory and thus efficiently and cheaply re-
duced by the smoother applied on the coarse grid. The remaining error on the coarse
grid is then prolongated back to the fine grid, which reintroduces a small amount of
high frequency error. A few more steps of the fine-grid smoother are finally applied
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to eliminate it. The multigrid algorithm is obtained by recursively replacing the error
smoothing on the coarse grid by another two-grid procedure. Multigrid methods for
positive-definite systems of equations typically result in remarkably efficient linearly
convergent processes. Our intention here is to exploit the same features in minimiz-
ing (2.7), although it is only expected to reduce to a positive-definite system of linear
equations asymptotically, when a minimizer of the problem is approached.

At the coarsest level, where further recursion is impossible, the cost of exactly
minimizing (2.7) within the trust region remains small, because of the low dimension-
ality of the subproblem. Our strategy is thus to solve it using the method by Moré
and Sorensen [29] (see also Section 7.3 in [13]), whose very acceptable cost is then
dominated by that of a small number of small-scale Cholesky factorizations. At finer
levels, we have the choice of using the TCG or GLTR algorithms mentioned above,
or an adaptation of the multigrid smoothing techniques that guarantees sufficient de-
scent inside the trust region and also handles the possible non-convexity of the model.
The remaining of this paragraph is devoted to describing this last option.

A very well-known multigrid smoother for systems of equations is the Gauss-
Seidel method, in which every individual equation of the Newton system is solved in
succession3. This procedure can be extended to optimization without major difficulty
as follows: instead of successively solving equations, we may perform cyclic successive
one-dimensional minimizations along the coordinate axes of the model (2.7), provided
the curvature of this model along each axis is positive. Thus, if j is an index such
that the jth diagonal entry of Hi,k is strictly positive, the updates

αj = −[g]j/[Hi,k]jj , [s]j ← [s]j + αj and g ← g + αjHi,kei,j

are performed for the minimization along the j-th axis (starting each cycle from s such
that ∇mi,k(xi,k+s) = g), where we denote by [v]j the j-th component of the vector v
and by [M ]ij the (i, j)-th entry of the matrixM , and where ei,j is the j-th vector of the
canonical basis of <ni . This is nothing but the well-known (and widely ill-considered)
sequential coordinate minimization (see, for instance, [33], Section 14.6), which we
abbreviate as SCM. In order to enforce convergence on nonconvex problems to first-
order points, we still have to ensure sufficient model decrease (2.9) while keeping the
step in the trust region. This can be achieved in various ways, but we choose here to
start the SCM cycle by initiating the cycle with the axis corresponding to the largest
component of the gradient gi,k in absolute value. Indeed, if this component is the `-th
one and if d` = −sign([gi,k]`)ei,`, minimization of the model mi,k along d` within the
trust region is guaranteed to yield a Cauchy step α`d` such that the inequality

mi,k(xi,k)−mi,k(xi,k + α`d`) ≥ 1
2
|[gi,k]`|min

[ |[gi,k]`|
1 + |[Hi,k ]``|

, ∆i,k

]

(3.1)

holds. But

|[gi,k]`| = max
j
| [gi,k]j | ≥

1√
n
‖gi,k‖, and |[Hi,k ]``| ≤ ‖Hi,k‖,

and (2.9) then follows from these inequalities and (3.1) since the remaining SCM
operations only reduce the value of the model mi,k further. If, after completing one
SCM cycle, one then notices that the overall step s lies outside of the trust region, we
then apply a variant of the dogleg strategy (see [35], or [13], Section 7.5.3) to the step,

3See [12], page 10, or [18], page 510, or [33], page 214, amongst many others.
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by minimizing mi,k along the segment [α`d`, s] restricted to the trust region. The final
step is then given by α`d` + αs(s− α`d`), where αs is the multiple of s− α`d` where
the minimizer is achieved.

Our description of the smoothing method is complete if we finally specify what
is done when negative curvature is encountered along one of the coordinate axes, the
j-th one, say, during the SCM cycles. In this case, the model minimizer along ei,j lies
on the boundary of the trust region, and it is very easy to compute the associated
model reduction. The largest of these reductions is remembered (along with the
corresponding step) if negative curvature is met along more than one axis. It is
then compared to the reduction obtained by minimizing along the axes with positive
curvature, and the step is finally chosen as that giving the maximum reduction.

The V-cycles. One of the flexible features of our RMTR framework is that the
minimization at lower levels (i = 1, . . . , r−1) can be stopped after the first successful
iteration without affecting convergence properties (as will become clear in Section 4).
This therefore opens the possibility to consider fixed form recursion patterns and free
form ones. A free form pattern is obtained when Algorithm RMTR is run without
using the premature termination option, in which case minimization is carried out
at each level until the gradient becomes small enough or the relevant trust-region
boundary is approached sufficiently (see Step 5 of Algorithm RMTR). The actual
recursion pattern is then uniquely determined by the progress of minimization at
each level and may be difficult to forecast. By contrast, the fixed form recursion
patterns are obtained by specifying a maximum number of successful iterations at
each level, a technique directly inspired from the definitions of V- and W-cycles in
multigrid algorithms (see [12], page 40, for instance).

In this section, we only consider V-cycle iterations, where minimization at lower
levels (above the coarsest) consists in, at most, one successful smoothing iteration
followed by either a successful TCG Taylor iteration (if (2.14) fails) or a recursive
iteration (if (2.14) holds), itself followed by a second successful smoothing iteration.
The lower iteration is however terminated if the boundary of the upper-level trust
region is met, which typically only occurs far from a solution, or if the gradient
becomes sufficiently small.

Second-order and Galerkin models. The definition of the gradient correction vi−1

in (2.4) is engineered to ensure (2.6) which is to say that hi and hi−1 coincide at first
order (up to the constant σi) in the range of the prolongation operator. But coherence
of the models can also be achieved at second order: if we choose

hi−1(xi−1,0 + si−1) = fi−1(xi−1,0 + si−1) + 〈vi−1, si−1〉+ 1
2
〈si−1,Wi−1si−1〉,(3.2)

where Wi−1 = RiHi,kPi −∇2fi−1(xi−1,0), then we also have that

〈Pisi−1, Hi,kPisi−1,〉 =
1

σi
〈si−1,∇2hi−1(xi−1,0)si−1〉,

as desired. An even more radical strategy is to choose fi−1(xi−1,0 + si−1) = 0 for
all si−1 in (3.2), which amounts to choosing the lower level objective function as
the “restricted” version of the quadratic model at the upper level, also known as
the “Galerkin approximation”. This technique is known to improve performance for
difficult cases involving an underlying infinite-dimensional problem with discontinuous
coefficients (see, in particular, the recent analysis in [45]). This is also the option
considered in this section. In the case where this model is strictly convex and the
trust-region radius large enough, an iteration of the algorithm reduces to the solution
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of a positive-definite linear system; multigrid algorithms for solving this system, such
as the multigrid V-Cycle scheme of [12], p. 44, can then be viewed as instances of
Algorithm RMTR.

Computing the starting point at successively finer levels. It is clear that, if the
multilevel recursion idea has any power within an iteration from the finest level down
and back, it must also be advantageous to use the lower-level problems for computing
the starting point xr,0. In our motivating application, we have chosen to compute xr,0
by successively minimizing at levels 0 up to r− 1 starting from the lowest one, where
an initial starting point is assumed to be supplied by the user. (Note that, in general,
the starting point can be supplied at any discretization level and transferred to other
levels by using the prolongations or restrictions.) At level i < r, the accuracy on the
gradient infinity norm that is required for termination is given by

εgi = min(0.01, εgi+1/ν
ψ
i ),(3.3)

where ψ is the dimension of the underlying continuous problem, νi is the discretiza-
tion mesh-size along one of these dimensions and εgr is the user-supplied gradient
accuracy requirement for the topmost level. Once computed at level i, the solution is
prolongated to level i+ 1 using cubic interpolation.

3.2. Two test examples.
A simple quadratic example. We consider here the two-dimensional model prob-

lem for multigrid solvers in the unit square domain S2

−∆u(x, y) = f in S2, u(x, y) = 0 on ∂S2,

where f is such that the analytical solution to this problem is

u(x, y) = sin[2πx(1− x)] sin[2πy(1− y)].

This problem is discretized using a 5-points finite-difference scheme, giving a linear
systems Aix = bi at level i where Ai is a symmetric positive-definite matrix. The
algorithm RMTR is used on the variational minimization problem

min
x∈<nr

1
2
xTArx− xT br,

which is equivalent to the linear system Arx = br. The starting point for the values
of u not on the boundary is chosen as a random perturbation (of amplitude 10−5)
of the vector of all ones. This example illustrates that RMTR exhibits performance
similar to traditional linear multigrid solvers on a model problem.

A nonconvex example. We introduce the nonlinear least-squares problem

min
u,γ

1
1000

∫

S2

γ(x, y)2 +

∫

S2

[u(x, y)− u0(x, y)]
2 +

∫

S2

[∆u(x, y)− γ(x, y)u(x, y)]2,

where the unknown functions u(x, y) and γ(x, y) are defined on the unit square S2 and
the function u0(x, y) is defined on S2 by u0(x, y) = sin(6πx) sin(2πy). This problem
is again discretized using 5-points finite differences, but the square in the last term
makes the Hessian denser than for the pure Laplacian. The starting values for u
and γ are random perturbations (of amplitude 100) of u0 and zero, respectively. The
nonconvexity of the resulting discretized problem on the fine grid has been assessed
by a direct eigenvalue computation on the Hessian of the problem.



RECURSIVE MULTISCALE TRUST-REGION METHODS 11

Prolongations and restrictions. In both examples, we have defined the prolonga-
tion to be the linear interpolation operator and the restriction to be its transpose
normalized to ensure that ‖Ri‖ = 1. These operators are never assembled, but are
applied locally for improved efficiency.

3.3. Numerical results. The algorithm described above has been coded in
MATLAB r© (Release 7.0.0) and the experiments below were run on a Dell r© Precision
M70 laptop computer with 2MBytes of RAM. The test problems are solved with
εgr = 0.5×10−9. Smoothing iterations use a single SCM cycle and we choose η1 = 0.01,
η2 = 0.95, γ1 = 0.05, γ2 = 0.25, κg = 0.5 and ε∆i = 0.001 for all i. The choice of ∆s

r,
the initial trust-region radius at level r, is slightly more difficult (see, for instance,
[34, 36] for suggested strategies), but we choose here to use ∆s

r = 1. The gradient
thresholds εgi are chosen according to the rule (3.3).

We consider the simple quadratic example first. In this example, recursive itera-
tions were always accepted by the test (2.14). As a result, the work only consisted in
exactly minimizing (2.7) in the trust region at the coarsest level and SCM smooth-
ing at higher levels. Table 3.1 gives the problem dimension (n) for each level and
the number of smoothing SCM cycles (# fine SCM) at the finest level required to
solve the complete problem from scratch. This is, by far, the dominant linear algebra
cost. For completeness, we also report the solution time in seconds (as reported by
MATLAB) in the line “CPU(s)” of the same table.

level 0 1 2 3 4 5 6 7 8
n 9 49 225 961 3,969 16,129 65,025 261,121 1,046,529

# fine SCM - 11 11 11 9 8 6 5 3
CPU(s) - 0.05 0.14 0.37 0.97 2.84 9.4 38.4 150.88

Table 3.1

Performance on the simple quadratic example

For comparison, we also tested an efficient classical trust-region method using
mesh-refinement with cubic interpolation and a TCG solver, where the conjugate-
gradient minimization at iteration (i, k) is terminated as soon as the model gradient
falls under the threshold

max

[

min

(

0.1,
√

‖gi,k‖
)

‖gi,k‖, 0.95 εgr

]

(see Section 7.5.1 of [13], for instance). This algorithm solved the level-7 problem
(n = 261, 121) with 657 conjugate-gradient iterations at the finest level in 190.54
seconds, and solved the level-8 problem (n = 1, 046, 529) with 1,307 conjugate-gradient
iterations at the finest level in 2,463.33 seconds. (Note that this TCG solver can also
be obtained as a special case of our framework by replacing smoothing iterations by
TCG ones and disabling the recursive calls to RMTR.) As expected for a typical
multigrid algorithm for linear equations, we observe that the number of smoothing
cycles is fairly independent of the mesh size and dimension, which indicates that the
trust-region machinery does not alter this property.

We now consider our nonconvex test problem, for which the same statistics are
given in Table 3.2. As for the quadratic example, the test (2.14) was always satisfied
and the algorithm thus never had to use TCG iterations for levels above the coarsest.

On this example, the mesh-refinement algorithm using the TCG solver solved the
level-6 problem (n = 130, 050) with 33,033 conjugate-gradient iterations at level 6 in
3,262.06 seconds, and solved the level-7 problem (n = 522, 242) with 3,926 conjugate-
gradient iterations at level 7 in 6,154.96 seconds.
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level 0 1 2 3 4 5 6 7
n 18 98 450 1,922 7,938 32,258 130,050 522,242

# fine SCM - 21 19 21 28 32 14 9
CPU(s) - 0.43 1.05 3.60 14.90 73.63 151.53 560.26

Table 3.2

Performance on the nonconvex example

Even if these results were obtained by a very simple implementation of our frame-
work, they are nevertheless highly encouraging, as they suggest that speed-ups of
one order of magnitude or more could be obtained over (good) contending methods.
Moreover, the statistics presented here also suggest that, at least for not too nonlinear
problems, performance in CPU time can be essentially proportional to problem size,
a very desirable property. The authors are of course aware that only continued ex-
perience with more advanced implementations will vindicate those preliminary tests
(this work is currently under way), but consider that the potential numerical bene-
fits justify a sound convergence analysis of the algorithm, which is best carried out
considering the general RMTR class. This is the purpose of the next section.

4. Global convergence. Our exposition of the global convergence properties
of our general class of recursive multiscale algorithms starts with the analysis of
properties that are specific to our class. The main concepts and developments of
Section 6.4 in [13] are subsequently revisited to conclude in the case of the multiscale
algorithm. Interestingly, the techniques of proof are different and lead to a new
complexity result (Theorem 4.10) that is also valid in the classical single-level case.

We first complete our assumptions by supposing that the Hessians of each hi and
their approximations are bounded above by the constant κH ≥ 1, i.e., more formally,
that, for i = 0, . . . , r,

1 + ‖∇2hi(xi)‖ ≤ κH(4.1)

for all xi ∈ <ni , and

1 + ‖Hi,k‖ ≤ κH(4.2)

for all k. In order to keep our notation simple, we also assume, without loss of
generality, that

σi = 1(4.3)

in (2.3) for i = 0, . . . , r (this can be directly obtained from the original form by scaling
Pi and/or Ri). We also define the constants

κPR

def
= max

[

1, max
i=1,...,r

‖Pi‖
]

= max

[

1, max
i=1,...,r

‖Ri‖
]

(4.4)

(where we used (2.3) and (4.3) to deduce the second equality), and

κσ
def
= min

[

1, min
i=0,...,r

σmin(Mi)

]

> 0,(4.5)

where σmin(A) denotes the smallest singular value of the matrix A. We finally define

∆s
min = min

i=0,...,r
∆s
i , εgmin = min

i=0,...,r
εgi and ε∆min = min

i=0,...,r
ε∆i .(4.6)

We also introduce some additional concepts and notation.
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1. If iteration (i, k) is recursive, we say that this iteration initiates a minimiza-
tion sequence at level i− 1, which consists of all successive iterations at this
level (starting from the point xi−1,0 = Rixi,k) until a return is made to level
i within iteration (i, k). In this case, we also say that iteration (i, k) is the
predecessor of the minimization sequence at level i − 1. If (i − 1, `) belongs
to this minimization sequence, this is written as (i, k) = π(i− 1, `).

2. To a given iteration (i, k), we associate the set

R(i, k)
def
= {(j, `) | iteration (j, `) occurs within iteration (i, k)}.(4.7)

The set R(i, k) always contains the pair (i, k) and only contains that pair if
Step 3 is used at iteration (i, k). If Step 2 is used instead of Step 3, then it
additionally contains the pairs of level and iteration numbers of all iterations
that occur in the potential recursion started in Step 2 and terminating on
return within iteration (i, k). Because R(i, k) is defined in terms of iterations,
it does not contain the pairs of indices corresponding to the terminating
iterates (j, ∗) of its (internal) minimization sequences. One easily verifies
that j ≤ i for every j such that (j, `) ∈ R(i, k) for some non-negative k and
`. The mechanism of the algorithm also ensures that

∆j,` ≤ ∆i,k whenever (j, `) ∈ R(i, k),(4.8)

because of the choice of ∆j,0 in Step 0 and (2.17). Note that R(i, k) contains
at most one minimization sequence at level i− 1, but may contain more than
one at level i− 2, since each iteration at level i− 1 may generate its own.

3. For any iteration (j, `) ∈ R(i, k), there exists a unique path from (j, `) to (i, k)
defined by taking the predecessor of iteration (j, `), say (j + 1, q) = π(j, `),
and then the predecessor of (j+ 1, q) and so on until iteration (i, k). We also
define

d(i, k) = min
(j,`)∈R(i,k)

j,(4.9)

which is the index of the deepest level reached by the potential recursion of
iteration (i, k). The path from (d(i, k), `) to (i, k) is the longest in R(i, k).

4. We use the symbol

T (i, k)
def
= {(j, `) ∈ R(i, k) | iteration (j, `) uses Step 3},

to denote the subset of Taylor iterations in R(i, k), that is iterations at which
Taylor’s model mj,`(xj,` + sj) is chosen.

We start the analysis of Algorithm RMTR by proving that it has a central property
of trust-region methods, namely that the steps remain in the trust region.

Lemma 4.1. For each iteration (i, k), we have that

‖si,k‖i ≤ ∆i,k.(4.10)

Moreover, if ∆j+1,q is the trust-region radius of iteration (j + 1, q) = π(j, `), we have
that, for each (j, `) ∈ R(i, k),

‖xj,` − xj,0‖j ≤ ∆j+1,q and ‖xj,∗ − xj,0‖j ≤ ∆j+1,q .(4.11)
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Proof. The constraint (4.10) is explicit for Taylor iterations. We therefore
only have to verify that it holds if Step 2 is chosen at iteration (i, k). If this is the
case, consider j = d(i, k), and consider the first time it occurs in R(i, k). Assume
furthermore that xj,∗ = xj,p. Because no recursion occurs to a level lower than j, one
must have (from Step 3) that

‖sj,`‖j ≤ ∆j,` (` = 0, . . . , p− 1).(4.12)

Then we obtain, for ` = 1, . . . , p, that, if iteration (j, `− 1) is successful,

‖xj,` − xj,0‖j = ‖xj,`−1 − xj,0 + sj,`−1‖j ≤ ‖xj,`−1 − xj,0‖j + ‖sj,`−1‖j ,

because of the triangle inequality, while

‖xj,` − xj,0‖j = ‖xj,`−1 − xj,0‖j ≤ ‖xj,`−1 − xj,0‖j + ‖sj,`−1‖j ,

if it is unsuccessful. Combining these two bounds and (4.12), we have that

‖xj,` − xj,0‖j ≤ ‖xj,`−1 − xj,0‖j + ∆j,`−1

≤ ‖xj,`−1 − xj,0‖j + ∆j+1,q − ‖xj,`−1 − xj,0‖j
= ∆j+1,q

(4.13)

for ` = 2, . . . , p, where the last inequality results from (2.17). The same result also
holds for ` = 1, since ‖xj,1−xj,0‖j ≤ ∆j,0 ≤ ∆j+1,q because of Step 0 in the algorithm.
We then verify, using (2.10), that

‖sj+1,q‖j+1 = ‖Pj+1 (xj,∗ − xj,0) ‖j+1 = ‖xj,∗ − xj,0‖j = ‖xj,p − xj,0‖j ≤ ∆j+1,q ,

which is nothing but inequality of (4.12) at iteration (j + 1, q). The same reasoning
may then be applied to each iteration at level j + 1 that uses Step 2. Since the
inequality in (4.12) is guaranteed for all other iterations of that level by Step 3, we
obtain that (4.12) also holds with j replaced by j + 1. The same must therefore be
true for (4.13). The induction can then be continued up to level i, yielding both (4.10)
and (4.11) (for which the case ` = 0 is obvious). 2

In the same vein, the algorithm also ensures the following two properties.
Lemma 4.2. The mechanism of Algorithm RMTR guarantees that, for each iter-

ate of index (j, `) such that (j, `) 6= (j, ∗) (i.e., for all iterates at level j but the last
one),

‖gj,`‖ > εgj(4.14)

and

‖xj,` − xj,0‖j ≤ (1− ε∆j )∆j+1,q ,(4.15)

where ∆j+1,q is the trust-region radius of iteration (j + 1, q) = π(j, `).
Proof. These bounds directly follow from the stopping criteria for minimization

at level j, in Step 5 of the algorithm. 2

We now prove some useful bounds on the gradient norms for all iterates that belong
to a recursion process initiated within a sufficiently small trust region.
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Lemma 4.3. Assume that, for some iteration (i, k),

∆i,k ≤
√
κσκ

r
g

2rκH

‖gi,k‖ def
= κ1‖gi,k‖,(4.16)

where κ1 ∈ (0, 1). Then one has that, for all (j, `) ∈ R(i, k),

1
2
κr

g
‖gi,k‖ ≤ ‖gj,`‖ ≤ κrPR

(1 + 1
2
κr

g
)‖gi,k‖.(4.17)

Proof. The result is obvious for (j, `) = (i, k) since, by definition, κg < 1 and
κPR ≥ 1. Let us now consider some iteration (j, `) ∈ R(i, k) with j < i. From the
mean-value theorem, we know that, for any iteration (j, `),

gj,` = gj,0 +Gj,`(xj,` − xj,0),(4.18)

where

Gj,` =

∫ 1

0

∇2hj(xj,0 + t(xj,` − xj,0)) dt.(4.19)

But

‖Gj,`‖ ≤ max
t∈[0,1]

‖∇2hj(xj,0 + t(xj,` − xj,0))‖ ≤ κH,(4.20)

and hence, by definition of the norms and (4.5),

‖gj,`‖ ≥ ‖gj,0‖ − κH‖xj,` − xj,0‖ ≥ ‖gj,0‖ −
κH√
κσ
‖xj,` − xj,0‖j(4.21)

for all (j, `). On the other hand, if (j + 1, q) = π(j, `), we have also that, for all
(j, `) ∈ R(i, k),

‖xj,` − xj,0‖j ≤ ∆j+1,q ≤ ∆i,k(4.22)

because of (4.11) and (4.8) (as (j + 1, q) ∈ R(i, k)). Combining (4.21) and (4.22), we
obtain that, for all (j, `) ∈ R(i, k),

‖gj,`‖ ≥ ‖gj,0‖ −
κH√
κσ

∆i,k .(4.23)

Consider now the path from (j, `) to (i, k) in R(i, k). Let this path consists of the
iterations (j, `), (j + u, tj+u) for u = 1, . . . , i− j − 1 and (i, k). We then have that

‖gj,`‖ ≥ ‖gj,0‖ − κH√
κσ

∆i,k ≥ κg‖gj+1,tj+1
‖ − κH√

κσ
∆i,k

≥ κg‖gj+1,0‖ − 2 κH√
κσ

∆i,k ≥ κ2
g
‖gj+2,tj+2

‖ − 2 κH√
κσ

∆i,k

≥ κr
g
‖gi,k‖ − r κH√

κσ
∆i,k ,

where we successively used (4.23), (2.5), the first part of (2.14) and the inequality
κg < 1. We then deduce the first inequality of (4.17) from (4.16).

To prove the second, we re-use (4.18)–(4.20) to obtain that

‖gj,`‖ ≤ ‖gj,0‖+ κH‖xj,` − xj,0‖ ≤ ‖gj,0‖+
κH√
κσ
‖xj,` − xj,0‖j .(4.24)
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Combining this with (4.22), we conclude that

‖gj,`‖ ≤ ‖gj,0‖+
κH√
κσ

∆i,k .(4.25)

We now retrack the iteration path from (j, `) back to (i, k) as above, and successively
deduce from (4.25), (2.5) and (4.4) that

‖gj,`‖ ≤ ‖gj,0‖+ κH√
κσ

∆i,k ≤ κPR‖gj+1,tj+1
‖+ κH√

κσ
∆i,k

≤ κPR‖gj+1,0‖+ (κPR + 1) κH√
κσ

∆i,k ≤ κ2
PR
‖gj+2,tj+2

‖+ 2κPRκH√
κσ

∆i,k

≤ κr
PR
‖gi,k‖+ r

κr−1
PR

κH√
κσ

∆i,k ≤ κrPR

[

‖gi,k‖+ r κH√
κσ

∆i,k

]

,

using κPR ≥ 1. We may now use the bound (4.16) to conclude that the second
inequality of (4.17) must hold. 2

We now investigate what happens at non-critical points if the trust-region radius ∆i,k

is small enough. This investigation is conducted by considering the subset V(i, k) of
R(i, k) defined by

V(i, k) =
{

(j, `) ∈ R(i, k) | δj,` ≥ 1
2
κredκ

r
g
κj−d(i,k)ε ‖gi,k‖∆j,`

}

,(4.26)

where

κε
def
= η2ε

∆
min < 1.(4.27)

V(i, k) is the subset of iterations within the recursion at iteration (i, k) for which
the model decrease is bounded below by a (level-dependent) factor times the product
of the gradient norm ‖gi,k‖ and the trust-region radius ∆j,`. Note that, if iteration
(j, `) belongs to V(i, k), this implies that δj,` can be computed in a finite number of
iterations, and thus that R(j, `) is finite. The idea of the next two results is to show
that V(i, k) and R(i, k) coincide for a sufficiently small radius ∆i,k.

Theorem 4.4. Consider an iteration (i, k) for which ‖gi,k‖ > 0 and

∆i,k ≤ min

[

∆s

min, min

(

κ1,
κredκσκ

r
g
κrε(1− η2)

2κH

)

‖gi,k‖
]

def
= min[∆s

min, κ2‖gi,k‖],
(4.28)

where κ2 ∈ (0, 1). Then the following conclusions hold:

1. every iteration using Taylor’s model belongs to (4.26), that is

T (i, k) ⊆ V(i, k),(4.29)

2. iteration (j, `) is very successful for every (j, `) ∈ V(i, k).

Moreover, if all iterations (j, `) of a minimization sequence at level j < i belong to
V(i, k) and if π(j, `) = (j + 1, q), then

3. the decrease in the objective function at level j satisfies, for each ` > 0,

hj(xj,0)− hj(xj,`) ≥ 1
2
κredκ

r
g
κj−d(i,k)+1
ε ` ‖gi,k‖∆j+1,q ,(4.30)
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4. there are at most

p∗
def
=

⌈

κr
PR

√
κσ(2 + κr

g
) + κ2κH

κredκσκrgκ
r
ε

⌉

(4.31)

iterations in the minimization sequence at level j,
5. we have that

(j + 1, q) ∈ V(i, k).(4.32)

Proof. [1.] We start by proving (4.29). Note that, for (j, `) ∈ R(i, k), (4.8),
the fact that the positive constants κred, κσ , κε and η2 are all bounded above by one,
(4.28), the left inequality in (4.17) and (4.2) allow us to conclude that

∆j,` ≤ ∆i,k ≤
κr

g

2κH

‖gi,k‖ ≤
‖gj,`‖

1 + ‖Hj,`‖
.(4.33)

If we now assume that (j, `) ∈ T (i, k), the decrease condition (2.9) must hold at this
iteration, which, together with the left part of (4.17) and (4.33), gives that

δj,` = mj,`(xj,`)−mj,`(xj,` + sj,`) ≥ κred‖gj,`‖∆j,` ≥ 1
2
κredκ

r
g
‖gi,k‖∆j,`,(4.34)

which then implies (4.29) since κε < 1.
[2.] We prove item 2 separately for (j, `) ∈ T (i, k) and for (j, `) ∈ V(i, k)\T (i, k).

Consider the case where (j, `) ∈ T (i, k) first. We deduce from Taylor’s theorem that,
for (j, `) ∈ T (i, k),

|hj(xj,` + sj,`)−mj,`(xj,` + sj,`)| ≤ κH

(‖sj,`‖
‖sj,`‖j

)2

∆2
j,`,(4.35)

(see, for instance, Theorem 6.4.1 on p. 133 of [13]). But, by definition of the norms
and (4.5), we know that ‖sj,`‖j ≥

√
κσ‖sj,`‖. Hence, (4.35) becomes

|hj(xj,` + sj,`)−mj,`(xj,` + sj,`)| ≤
κH

κσ
∆2
j,`.

Combining this last bound with (4.34), we obtain from (2.15) that

|ρj,` − 1| ≤
∣

∣

∣

∣

hj(xj,` + sj,`)−mj,`(xj,` + sj,`)

mj,`(xj,`)−mj,`(xj,` + sj,`)

∣

∣

∣

∣

≤ 2κH

κredκσκrg‖gi,k‖
∆j,` ≤ 1− η2,

where the last inequality is deduced from (4.8) and the fact that (4.28) implies the
bound

∆i,k ≤ κredκσκ
r
g
‖gi,k‖(1− η2)/2κH

since κε < 1. Hence ρj,` ≥ η2 and iteration (j, `) ∈ T (i, k) is very successful, as
requested in item 2.

We next prove item 2 for (j, `) ∈ V(i, k) \ T (i, k), which implies, in particular,
that R(j, `) is finite and xj−1,∗ well-defined. If we consider iteration (j, `), we may
still deduce from the mean-value theorem that

hj(xj,`)− hj(xj,` + sj,`) = −〈gj,`, sj,`〉 − 1
2
〈sj,`,∇2hj(ξj) sj,`〉
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for some ξj ∈ [xj,`, xj,` + sj,`], and also that

hj−1(xj−1,0)− hj−1(xj−1,∗) = −〈gj−1,0, zj−1〉 − 1
2
〈zj−1,∇2hj−1(ξj−1) zj−1〉

for some ξj−1 ∈ [xj−1,0, xj−1,0 + zj−1], where zj−1 = xj−1,∗ − xj−1,0 = xj−1,∗ −
Rjxj,`. Now, because sj,` = Pjzj−1, we deduce from (2.6) and (4.3) that 〈gj,`, sj,`〉 =
〈gj−1,0, zj−1〉, and therefore that

hj(xj,`)− hj(xj,` + sj,`) = hj−1(xj−1,0)− hj−1(xj−1,∗)

− 1
2
〈sj,`,∇2hj(ξj) sj,`〉

+ 1
2
〈zj−1,∇2hj−1(ξj−1) zj−1〉.

(4.36)

But Lemma 4.1 implies that ‖sj,`‖j ≤ ∆j,` and ‖zj−1‖j−1 ≤ ∆j,`, which in turn, with
the Cauchy-Schwarz inequality, gives that

|〈sj,`,∇2hj(ξj) sj,`〉| ≤ κH‖sj,`‖2 ≤ κH

(‖sj,`‖
‖sj,`‖j

)2

∆2
j,` ≤

κH

κσ
∆2
j,`.(4.37)

Similarly,

|〈zj−1,∇2hj−1(ξj−1) zj−1〉| ≤
κH

κσ
∆2
j,`.(4.38)

Combining (4.36), (4.37), (4.38) and the definition of δj,`, we obtain that

hj(xj,`)− hj(xj,` + sj,`) ≥ δj,` −
κH

κσ
∆2
j,`.(4.39)

But since (j, `) ∈ V(i, k) and κε < 1, we have that

δj,` ≥ 1
2
κredκ

r
g
κj−d(i,k)ε ‖gi,k‖∆j,` ≥ 1

2
κredκ

r
g
κrε‖gi,k‖∆j,` > 0

and we conclude from (4.39), the definition of ρj,` and this last bound that

ρj,` =
hj(xj,`)− hj(xj,` + sj,`)

δj,`
≥ 1−

κH∆2
j,`

κσδj,`
≥ 1− 2κH∆j,`

κredκσκrgκ
r
ε‖gi,k‖

.

Noting now that (4.28) implies the inequality

∆i,k ≤ 1
2
κredκσκ

r
g
κrε‖gi,k‖(1− η2)

and using the bound (4.8), we obtain that ρj,` ≥ η2. Iteration (j, `) is thus very
successful, which completes the proof of item 2.

[3.] We now assume that all iterations (j, `) of a minimization sequence at level
j < i belong to V(i, k) with (j+1, q) = π(j, `). We first notice that (j+1, q) ∈ R(i, k),
(4.8), (4.28) and (4.6) imply that ∆j+1,q ≤ ∆i,k ≤ ∆s

min ≤ ∆s
j . Hence Step 0 gives

that ∆j,0 = ∆j+1,q and since all iterations at level j are very successful because of
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item 2, we have from Step 6 that, for all (j, `) with ` > 0,

∆j,` = min
[

∆+
j,`−1, ∆j+1,q − ‖xj,` − xj,0‖j

]

≥ min
[

∆j,`−1, ∆j+1,q − ‖xj,` − xj,0‖j
]

= min
[

min[∆+
j,`−2,∆j+1,q − ‖xj,`−1 − xj,0‖j ], ∆j+1,q − ‖xj,` − xj,0‖j

]

≥ min

[

∆j,`−2, ∆j+1,q − max
p=`−1,`

‖xj,p − xj,0‖j
]

≥ min

[

∆j,0, ∆j+1,q − max
p=1,...,`

‖xj,p − xj,0‖j
]

= ∆j+1,q − max
p=1,...,`

‖xj,p − xj,0‖j
≥ ε∆j ∆j+1,q ,

where we used (4.15) to deduce the last inequality. Note that ∆j,0 = ∆j+1,q >
ε∆j ∆j+1,q , covering the case where ` = 0. Combining these bounds with the very
successful nature of each iteration at level j, we obtain that, for each (j, p) with
p = 0, . . . , `− 1,

hj(xj,p)− hj(xj,p + sj,p) ≥ η2δj,p

≥ 1
2
η2κredκ

r
g
κ
j−d(i,k)
ε ‖gi,k‖∆j,p

≥ 1
2
κredκ

r
g
κ
j−d(i,k)
ε η2ε

∆
j ‖gi,k‖∆j+1,q

≥ 1
2
κredκ

r
g
κ
j−d(i,k)+1
ε ‖gi,k‖∆j+1,q ,

where we used (4.6) and (4.27) to obtain the last inequality. Summing now over
iterations p = 0, . . . , `− 1 at level j, we obtain that

hj(xj,0)− hj(xj,`) =
`−1
∑

p=0

[hj(xj,p)− hj(xj,p + sj,p)]

≥ 1
2
κredκ

r
g
κ
j−d(i,k)+1
ε ` ‖gi,k‖∆j+1,q ,

yielding (4.30).

[4.] In order to prove item 4, we start by proving that the total decrease in hj
(the objective function for the considered minimization sequence at the j-th level)
is bounded above by some multiple of ‖gi,k‖ and ∆j+1,q . We first note that the
mean-value theorem gives that

hj(xj,0 + sj,min) = hj(xj,0) + 〈gj,0, sj,min〉+ 1
2
〈sj,min,∇2hj(ξj) sj,min〉

for some ξj ∈ [xj,0, xj,0 + sj,min], where we have defined

sj,min = arg min
‖sj‖j≤∆j+1,q

hj(xj,0 + sj).

Hence, we obtain that, for all sj such that ‖sj‖j ≤ ∆j+1,q ,

hj(xj,0)− hj(xj,0 + sj) ≤ hj(xj,0)− hj(xj,0 + sj,min) ≤
‖gj,0‖√
κσ

∆j+1,q +
κH

2κσ
∆2
j+1,q .
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But we have that ‖xj,` − xj,0‖j ≤ ∆j+1,q because of (4.11) and therefore the right
inequality of (4.17), (4.8) and (4.28) now give that

hj(xj,0)− hj(xj,`) ≤
[

κr
PR

+ 1
2
κr

PR
κr

g√
κσ

+
κ2κH

2κσ

]

‖gi,k‖∆j+1,q(4.40)

for all (j, `) with ` ≥ 0. Combining now this bound with (4.30) and remembering that
κε < 1, we deduce that item 4 must hold with (4.31).

[5.] Finally, since the minimization sequence at level j is guaranteed to terminate
after a finite number of iterations 1 ≤ ` ≤ p∗, we deduce from (4.30) and the definition
of δj+1,q that

δj+1,q ≥ 1
2
κredκ

r
g
κj+1−d(i,k)
ε ‖gi,k‖∆j+1,q ,

and (4.32) then immediately follows. 2

We may deduce the following important corollary from this theorem.
Corollary 4.5. Assume (4.28) holds for some iteration (i, k) for which ‖gi,k‖ >

0. Then all iterations (j, `) ∈ R(i, k) are very successful. Moreover, the total number
of iterations in R(i, k) is finite and ∆+

i,k ≥ ∆i,k.
Proof. As suggested above, we proceed by showing that V(i, k) = R(i, k),

working from the deepest recursion level upwards. Thus consider level j = d(i, k)
first. At this level, all iterations (j, `) belong to T (i, k) and thus, by (4.29), to V(i, k).
If j = i, we have achieved our objective. Assume therefore that j < i and consider
level j + 1. Using (4.32), we see that all iterations involving a recursion to level j
must belong to V(i, k), while the other (Taylor) iterations again belong to V(i, k) by
(4.29). If j + 1 = i, we have thus proved that V(i, k) = R(i, k). If j + 1 < i, we may
then apply the same reasoning to level j + 2, and so on until level i is reached. We
may thus conclude that V(i, k) and R(i, k) always coincide and, because of item 2 of
Theorem 4.4, only contain very successful iterations. Furthermore, using item 4 of
Theorem 4.4, we see that the total number of iterations in R(i, k) is bounded above
by

r
∑

l=0

p`∗ ≤ rpr∗ + 1.

Finally, the fact that ∆+
i,k ≥ ∆i,k then results from the mechanism of Step 6 of the

algorithm and the very successful nature of iteration (i, k) ∈ R(i, k). 2

This last result guarantees the finiteness of the recursion at iteration (i, k) (and thus
finiteness of the computation of si,k) if ∆i,k is small enough. It also ensures the
following useful consequence.

Lemma 4.6. Each minimization sequence contains at least one successful itera-
tion.

Proof. This follows from the fact that unsuccessful iterations cause the trust-
region radius to decrease, until (4.28) is eventually satisfied and a (very) successful
iteration occurs because of Corollary 4.5. 2

We now investigate the consequence of the above results on the trust-region radius at
each minimization level.
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Lemma 4.7. For every iteration (j, `), with j = 0, . . . , r and ` ≥ 0, we have that

∆j,` ≥ γ1 min
[

∆s

min, κ2ε
g

j , ε
∆
j ∆j+1,q

]

,(4.41)

where (j + 1, q) = π(j, `).
Proof. Consider the minimization sequence at level j ≤ r initiated from iteration

(j+1, q), and assume, for the purpose of obtaining a contradiction, that iteration (j, `)
is the first such that

∆j,` < γ1 min
[

∆s
min, κ2ε

g
j , ε

∆
j ∆j+1,q

]

.(4.42)

Note that, because ε∆j < 1 and γ1 < 1,

∆j,0 = min[∆s
j , ∆j+1,q ] ≥ min[∆s

min, ε
∆
j ∆j+1,q ] > γ1 min

[

∆s
min, κ2ε

g
j , ε

∆
j ∆j+1,q

]

,

which ensures that ` > 0 and hence that ∆j,` is computed by applying Step 6 of the
algorithm at iteration (j, `− 1). Suppose now that

∆j,` = ∆j+1,q − ‖xj,` − xj,0‖j ,(4.43)

i.e., the second term is active in (2.17). Our definition of ∆r+1,0 =∞ and (4.42) then
ensure that j < r. Then, using (4.15), the definition of γ1 and (4.42), we deduce that,
for j < r,

∆j,` ≥ ∆j+1,q − (1− ε∆j )∆j+1,q = ε∆j ∆j+1,q > γ1ε
∆
j ∆j+1,q > ∆j,`,

which is impossible. Hence (4.43) cannot hold and we obtain from (2.17) that ∆j,` =
∆+
j,`−1 ≥ γ1∆j,`−1, where the last inequality results from (2.16). Combining this

bound with (4.42) and (4.14), we deduce that

∆j,`−1 ≤ min
[

∆s
min, κ2ε

g
j , ε

∆
j ∆j+1,q

]

≤ min [∆s
min, κ2‖gj,`−1‖] .

Hence we may apply Corollary 4.5 and conclude that iteration (j, `−1) is very success-
ful and that ∆j,`−1 ≤ ∆+

j,`−1 = ∆j,`. As a consequence, iteration (j, `) cannot be the
first such that (4.42) holds. This contradiction now implies that (4.42) is impossible,
which completes the proof. 2

Thus trust-region radii are bounded away from zero by a level-dependent factor. We
now verify that this factor may be made independent of the level.

Theorem 4.8. There exists a constant ∆min ∈ (0,min[∆s

min, 1]) such that

∆j,` ≥ ∆min(4.44)

for every iteration (j, `).
Proof. Observe first that Lemma 4.7 ensures the bound

∆r,k ≥ γ1 min[∆s
min, κ2ε

g
r]

def
= γ1µ(4.45)

for all k ≥ 0, because we have assumed that the call to the uppermost level is made
with an infinite trust-region radius. Note that µ ∈ (0, 1) because κ2 and εgr both
belong to (0, 1). Suppose now that, for some iteration (j, `),

∆j,` < γr+2
1 (ε∆min)

rµ.(4.46)
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If j = r, this contradicts (4.45); hence 0 ≤ j < r. Lemma 4.7 and the definition of µ
in (4.45) then imply that

min[µ, ε∆j ∆j+1,q ] < γr+1
1 (ε∆min)

rµ,

where, as above, iteration (j + 1, q) = π(j, `). If min[µ, ε∆j ∆j+1,q ] = µ, then µ <

γr+1
1 (ε∆min)rµ, which is impossible because γr+1

1 (ε∆min)r < 1. As a consequence,

ε∆j ∆j+1,q = min[µ, ε∆j ∆j+1,q ] < γr+1
1 (ε∆min)

rµ ≤ γr+1
1 (ε∆min)

r−1ε∆j µ,

because of (4.6), and hence

∆j+1,q < γr+1
1 (ε∆min)

r−1µ.

This condition is entirely similar to (4.46), but one level higher. We may therefore
repeat the reasoning at levels j + 1, . . . , r − 1, yielding the bound

∆r,k < γ
r+2−(r−j)
1 (ε∆min)r−(r−j)µ = γj+2

1 (ε∆min)
jµ < γ1µ.

But this last inequality contradicts (4.45), and we therefore deduce that (4.46) never
holds. This proves (4.44) with

∆min
def
= γr+2

1 (ε∆min)
r min[∆s

min, κ2ε
g
r](4.47)

and the bounds γ1 ∈ (0, 1), ε∆min ∈ (0, 1), κ2 ∈ (0, 1) and εgr ∈ (0, 1) together imply
that ∆min ∈ (0,min[∆s

min, 1]), as requested. 2

This result must be compared to Theorem 6.4.3 on p. 135 of [13], keeping (4.14) in
mind with the fact that we have called the uppermost minimization level with some
nonzero tolerance εgr. Also note in (4.47) that ∆min is linearly proportional to εgr for
small enough values of this threshold. The next crucial step of our analysis is to show
that the algorithm is well-defined in that all the recursions are finite.

Theorem 4.9. The number of iterations at each level is finite. Moreover, there
exists κh ∈ (0, 1) such that, for every minimization sequence at level i = 0, . . . , r,

hi(xi,0)− hi(xi,p+1) ≥ τi,p ηi+1
1 κh,

where τi,p is the total number of successful iterations in

p
⋃

`=0

T (i, `).

Proof. We prove the desired result by induction on higher and higher levels from
0 to r. We start by defining ωi,` to be the number of successful iterations in T (i, `),
as well as the number of successful iterations in the set

⋃p

`=0 T (i, `):

τi,p =

p
∑

`=0

ωi,`.(4.48)

Note that ωi,` ≥ 1 if iteration (i, `) is successful.

Consider first an arbitrary minimization sequence at level 0 (if any), and assume,
without loss of generality, that it belongs to R(r, k) for some k ≥ 0. Every iteration
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in this minimization sequence must be a Taylor iteration, which means that every
successful iteration in the sequence satisfies

h0(x0,`)− h0(x0,`+1) ≥ η1κredε
g
0 min

[

εg0
κH
, ∆min

]

≥ ω0,` η1κredε
g
min min

[

εgmin
κH

, ∆min

]

,
(4.49)

where we have used (2.9), (4.14), (4.2), Theorem 4.8, (4.6) and the fact that ω0,` = 1
for every successful iteration (0, `) because T (0, `) = {(0, `)}. Since we know from
Lemma 4.6 that there is at least one such iteration for every minimization sequence,
we may sum the objective decreases at level 0 and obtain from (4.49) that

h0(x0,0)− h0(x0,p+1) =

p
∑

`=0

(S)[h0(x0,`)− h0(x0,`+1)] ≥ τ0,pη1κh,(4.50)

where the sum with superscript (S) is restricted to successful iterations and where

κh
def
= κredε

g
min min

[

εgmin

κH

, ∆min

]

∈ (0, 1).(4.51)

If r = 0, we know that h0 = f is bounded below by assumption, and (4.50) implies that
τ0,p must be finite. If r > 0, our assumption that f0 is continuous implies that h0 is
also continuous and hence bounded below on the set {x ∈ <n0 | ‖x− x0,0‖0 ≤ ∆r,k}.
The relation (4.50), Lemma 4.1 and (4.8) therefore again impose the finiteness of
τ0,p. Since τ0,p accounts for all successful iterations in the minimization sequence, we
obtain that there must be a last finite successful iteration (0, `0). If the sequence were
nevertheless infinite, this would mean that every iteration (0, `) is unsuccessful for all
` > `0, causing ∆j,` to converge to zero, which is impossible in view of Theorem 4.8.
Hence the minimization sequence is finite. The same reasoning may be applied to
every such sequence at level 0.

Now consider an arbitrary minimization sequence at level i (again, without loss
of generality, within R(r, k) for some k ≥ 0) and assume that each minimization
sequence at level i−1 is finite and also that each successful iteration (i−1, u) in every
minimization sequence at this lower level satisfies

hi−1(xi−1,u)− hi−1(xi−1,u+1) ≥ ωi−1,u η
i
1κh,(4.52)

which is the direct generalization of (4.49) at level i−1. Consider a successful iteration
(i, `), whose existence is ensured by Lemma 4.6. If it is a Taylor iteration (i.e., if
(i, `) ∈ T (i, `)), we obtain as above that

hi(xi,`)− hi(xi,`+1) ≥ η1κh ≥ ηi+1
1 κh = ωi,` η

i+1
1 κh(4.53)

since η1 ∈ (0, 1) and ωi,` = 1 for every successful Taylor iteration. If, on the other
hand, iteration (i, `) uses Step 2, then, assuming xi−1,∗ = xi−1,t+1, we obtain that

hi(xi,`)− hi(xi,`+1) ≥ η1[hi−1(xi−1,0)− hi−1(xi−1,∗)]

= η1

t
∑

u=0

(S)[hi−1(xi−1,u)− hi−1(xi−1,u+1)].
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Observing that ωi,` = τi−1,t, (4.52) and (4.48) then give that

hi(xi,`)− hi(xi,`+1) ≥ ηi+1
1 κh

t
∑

u=0

ωi−1,u = τi−1,t η
i+1
1 κh = ωi,` η

i+1
1 κh.(4.54)

Combining (4.53) and (4.54), we see that (4.52) again holds at level i instead of i− 1.
Moreover, as above,

hi(xi,0)− hi(xi,p+1) =

p
∑

`=0

(S)[hi(xi,`)− hi(xi,`+1)] ≥ τi,p ηi+1
1 κh,(4.55)

for the minimization sequence including iteration (i, `). If i = r, hi = f is bounded
below by assumption and (4.55) imposes that the number of successful iterations in
this sequence must again be finite. The same conclusion holds if i < r, since hi is
continuous and hence bounded below on the set {x ∈ <ni | ‖x− xi,0‖i ≤ ∆r,k} which
contains xi,p+1 because of Lemma 4.1 and (4.8). As for level 0, we may then conclude
that the number of iterations (both successful and unsuccessful) in the minimization
sequence is finite. Moreover, the same reasoning holds for every minimization sequence
at level i, and the induction is complete. 2

A first remarkable consequence of this theorem is an upper bound on the number of
iterations needed by the trust-region algorithm to reduce the gradient norm at level
r below a given threshold value.

Theorem 4.10. Assume that one knows a constant flow such that hr(xr) =
f(x) ≥ flow for every x ∈ <n. Then Algorithm RMTR needs at most

⌈

f(xr,0)− flow
θ(εgmin)

⌉

successful Taylor iterations at any level to obtain an iterate xr,k such that ‖gr,k‖ ≤ εgr,
where

θ(ε) = ηr+1
1 κredεmin

[

ε

κH

, γr+2
1 (ε∆min)

r min[∆s

min, κ2ε]

]

.

Proof. The desired bound directly follows from Theorem 4.9, (4.51), (4.47) and
the definition of εgmin. (To keep the expression manageable, we have refrained from
substituting the value of κ2 from (4.28) and, in this value, that of κ1 from (4.16), all
this values being independent of ε.) 2

Of course, the bound provided by this theorem may be very pessimistic and not
all the constants in the definition of θ(ε) may be known in practice, but this loose
complexity result is nevertheless theoretically interesting as it applies to general non-
convex problems. One should note that the bound is in terms of iteration numbers,
and only implicitly accounts for the cost of computing a Taylor step satisfying (2.9).
Theorem 4.10 suggests several comments.

1. The bound involves the number of successful Taylor iterations, that is success-
ful iterations where the trial step is computed without resorting to further
recursion. This provides an adequate measure of the linear algebra effort
for all successful iterations, since successful iterations using the recursion
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of Step 2 cost little beyond the evaluation of the level-dependent objective
function and its gradient. Moreover, the number of such iterations is, by
construction, at most equal to r times that of Taylor iterations (in the worst
case where each iteration at level r includes a full recursion to level 0 with a
single successful iteration at each level j > 0). Hence the result shows that
the number of necessary successful iterations, all levels included, is of order
1/ε2 for small values of ε. This order is not qualitatively altered by the inclu-
sion of unsuccessful iterations either, provided we replace the very successful
trust-region radius update (top case in (2.16)) by

∆+
i,k ∈ [∆i,k, γ3∆i,k ] if ρi,k ≥ η2,

for some γ3 > 1. Indeed, Theorem 4.8 imposes that the decrease in radius
caused by unsuccessful iterations must asymptotically be compensated by an
increase at successful ones, irrespective of the fact that ∆min depends on ε
by (4.47). This is to say that, if α is the average number of unsuccessful
iterations per sucessful one at any level, then one must have that γ3γ

α
2 ≥ 1,

and therefore that α ≤ − log(γ3)/ log(γ2). Thus the complexity bound in 1/ε2

for small ε is only modified by a constant factor if all iterations (successful
and unsucessful) are considered. This therefore also gives a worst case upper
bound on the number of function and gradient evaluations.

2. This complexity bound is of the same order as the corresponding bound for
the pure gradient method (see [31], page 29). This is not surprising given
that it is based on the Cauchy condition, which itself results from a step in
the steepest-descent direction.

3. The bound involves the number of successful Taylor iterations summed up on
all levels (as a result of Theorem 4.9). Thus successful such iterations at cheap
low levels decrease the number of necessary expensive ones at higher levels,
and the multiscale algorithm requires (at least in the theoretical worst case)
fewer Taylor iterations at the upper level than the single-level variant. This
provides theoretical backing for the practical observation that the structure
of multiscale unconstrained optimization problems can be used to advantage.

4. The constants involved in the definition of θ(ε) do not depend on the problem
dimension, but rather on the properties of the problem (r, κH, κσ) or of the
algorithm itself (κred, κg, γ1, η1, η2, ε

∆
min, ∆s

min). If we consider the case
where different levels correspond to different discretization meshes and make
the mild assumption that r and κH are uniformly bounded above and that
κσ is uniformly bounded below, we observe that our complexity bound is
mesh-independent.

A second important consequence of Theorem 4.9 is that the algorithm is globally
convergent, in the sense that it generates a subsequence of iterates whose gradients
converge to zero if run with εgr = 0.

Corollary 4.11. Assume that Algorithm RMTR is called at the uppermost level
with εgr = 0. Then

lim inf
k→∞

‖gr,k‖ = 0.(4.56)

Proof. We first observe that the sequence of iterates {xr,k} generated by the
algorithm called with εgr = 0 is identical to that generated as follows. We consider, at
level r, a sequence of gradient tolerances {εgr,j} ∈ (0, 1) monotonically converging to
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zero, start the algorithm with εgr = εgr,0 and alter slightly the mechanism of Step 5 (at
level r only) to reduce εgr from εgr,j to εgr,j+1 as soon as ‖gr,k+1‖ ≤ εgr,j . The calculation
is then continued with this more stringent threshold until it is also attained, εgr is then
again reduced and so on. Since ∆r+1,0 = ∞, each successive minimization at level r
can only stop at iteration k if

‖gr,k+1‖ ≤ εgr,j .(4.57)

Theorem 4.9 then implies that there are only finitely many successful iterations be-
tween two reductions of εgr. We therefore obtain that for each εgr,j there is an arbitrarily
large k such that (4.57) holds. The desired result then follows immediately from our
assumption that {εgr,j} converges to zero. 2

The interest of this result is mostly theoretical, since most practical applications of
Algorithm RMTR consider a nonzero gradient tolerance εgr.

The reader may have noticed that our theory still applies when we modify the
technique described at the start of Corollary 4.11 by allowing a reduction of all the εgi
to zero at the same time4, instead of merely reducing the uppermost one. If this mod-
ified technique is used, and assuming the trust region becomes asymptotically inactive
at every level (as is most often the case in practice), each minimization sequence in
the algorithm becomes infinite (as if it were initiated with a zero gradient threshold
and an infinite initial radius). Recursion to lower levels then remains possible for
arbitrarily small gradients, and may therefore occur arbitrarily far in the sequence of
iterates. Moreover, we may still apply Corollary 4.11 at each level and deduce that,
if the trust region becomes asymptotically inactive,

lim inf
k→∞

‖gi,k‖ = 0(4.58)

for all i = 0, . . . , r.
As is the case for single-level trust-region algorithms, we now would like to prove

that the limit inferior in (4.56) (and possibly (4.58)) can be replaced by a true limit,
while still allowing recursion for very small gradients. We start by deriving a variant
of Theorem 4.9 that does not assume that all gradient norms remain above some
threshold to obtain a measure of the predicted decrease at some iteration (i, k).

Lemma 4.12. There exists a constant κ3 ∈ (0, 1) such that, for all (i, k) such
that ‖gi,k‖ > 0,

δi,k ≥ κredη
r
1γ

r
1κ

r
g
‖gi,k‖min [ ∆s

min, κ3‖gi,k‖, ∆i,k ] .(4.59)

Proof. Consider iteration (i, k). If it is a Taylor iteration, then, if we set

κ3 = min

[

κr
g

κH

, κ2κ
r
g

]

= κ2κ
r
g
∈ (0, 1),(4.60)

(4.59) immediately follows from (2.9), (4.2) and the bounds κg ∈ (0, 1), η1 ∈ (0, 1)
and γ1 ∈ (0, 1). Otherwise define the iteration (j, `) (with j < i) to be the deepest
successful iteration in R(i, k) such that gj,0 = gj,1 = · · · = gj,` = Rj+1 . . . Ri gi,k
and such that all iterations (j + 1, tj+1), (j + 2, tj+2), . . . , up to (i − 1, ti−1) of the

4The ratios ε
g
i
/ε

g
r could for instance be fixed or kept within prescribed bounds.
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path from (j, `) to (i, k) are successful (meaning that iterations (j, u) are unsuccessful
for u = 0, . . . , ` − 1, if any, and that iterations (p, u) are also unsuccessful for p =
j + 1, . . . , i− 1 and u = 0, . . . , tp − 1, if any). Note that such a path is guaranteed to
exist because of Lemma 4.6. Using the first part of (2.14), we then obtain that

‖gj,0‖ = ‖gj,1‖ = · · · = ‖gj,`‖ = ‖Rj+1 . . . Ri gi,k‖ ≥ κrg‖gi,k‖ > 0.(4.61)

If ` = 0, then

∆j,` = min[∆s
j , ∆j+1,tj+1

] ≥ min[∆s
min, ∆j+1,tj+1

].(4.62)

If, on the other hand, ` > 0, we know that iterations (j, 0) to (j, `−1) are unsuccessful.
Corollary 4.5 then implies that (4.28) cannot hold for iteration (j, ` − 1), and thus
that

∆j,`−1 > min[ ∆s
min, κ2‖gj,`−1‖ ] = min[ ∆s

min, κ2‖gj,0‖ ].

But this inequality, (2.16), (2.17), the unsuccessful nature of the first ` iterations at
level j, (4.61) and the bound γ1 < 1 then yield that

∆j,` ≥ min[ γ1∆j,`−1, ∆j+1,tj+1
− ‖xj,0 − xj,`‖j ]

= min[ γ1∆j,`−1, ∆j+1,tj+1
]

≥ min[ γ1 min(∆s
min, κ2‖gj,0‖), ∆j+1,tj+1

]

≥ min[ γ1 min(∆s
min, κ2κ

r
g
‖gi,k‖), ∆j+1,tj+1

]

≥ γ1 min[ ∆s
min, κ2κ

r
g
‖gi,k‖, ∆j+1,tj+1

].

Combining this last inequality with (4.62), we conclude that, for ` ≥ 0,

∆j,` ≥ γ1 min[ ∆s
min, κ2κ

r
g
‖gi,k‖, ∆j+1,tj+1

].

Our choice of iteration (j, `) also ensures that the same reasoning can now be applied
not only to iteration (j, `), but also to every iteration in the path (j + 1, tj+1), . . . ,
(i− 1, ti−1), because the first part of (2.14) implies that ‖gp,0‖ = ‖Rp+1 . . . Ri gi,k‖ ≥
κr

g
‖gi,k‖, for all j ≤ p < i. Thus we obtain that

∆j+u,tj+u
≥ γ1 min[ ∆s

min, κ2κ
r
g
‖gi,k‖, ∆j+u+1,tj+u+1

]

for u = 0, . . . , i− j − 1 (where we identify ti = k for u = i− j − 1). We may then use
these bounds recursively level by level and deduce that

∆j,` ≥ γ1 min[ ∆s
min, κ2κ

r
g
‖gj,k‖, ∆j+1,tj+1

]

≥ γ1 min[ ∆s
min, κ2κ

r
g
‖gi,k‖, γ1 min(∆s

min, κ2κ
r
g
‖gi,k‖, ∆j+2,tj+2

) ]

≥ γ2
1 min[ ∆s

min, κ2κ
r
g
‖gi,k‖, ∆j+2,tj+2

]

≥ γr1 min[ ∆s
min, κ2κ

r
g
‖gi,k‖, ∆i,k ]

(4.63)

because γ1 < 1. On the other hand, (j, `) ∈ T (i, k) by construction, and we therefore
obtain from (2.9) and (4.2) that

δj,` ≥ κred‖gj,`‖min

[ ‖gj,`‖
κH

, ∆j,`

]

.(4.64)
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Gathering now (4.61), (4.63) and (4.64), we obtain that

δj,` ≥ κredκ
r
g
‖gi,k‖min

[

κr
g
‖gi,k‖
κH

, γr1 min[∆s
min, κ2κ

r
g
‖gi,k‖, ∆i,k]

]

,

and thus, using (4.60), that

δj,` ≥ κredκ
r
g
γr1‖gi,k‖min [ ∆s

min, κ3‖gi,k‖, ∆i,k ] .(4.65)

But the fact that all iterations on the path from (j, `) to (i, k) are successful also
implies that

δi,k = hi−1(xi−1,0)− hi−1(xi−1,∗) ≥ hi−1(xi−1,ti−1
)− hi−1(xi−1,ti−1+1)

≥ η1δi−1,ti−1
= η1[hi−2(xi−2,0)− hi−2(xi−2,∗)]

≥ η1[hi−2(xi−2,ti−2
)− hi−2(xi−2,ti−2+1)] ≥ η2

1δi−2,ti−2
≥ ηr1δj,`.

The bound (4.59) then follows from this last inequality and (4.65). 2

All the elements are now in place to show that, if the algorithm is run with εgr = 0,
then gradients at level r converge to zero.

Theorem 4.13. Assume that Algorithm RMTR is called at the uppermost level
with εgr = 0. Then

lim
k→∞

‖gr,k‖ = 0.(4.66)

Proof. The proof is identical to that of Theorem 6.4.6 on p. 137 of [13], with
(4.59) (with i = r) now playing the role of the sufficient model reduction condition
AA.1 at level r. 2

This last result implies, in particular, that any limit point of the infinite sequence
{xr,k} is first-order critical for problem (2.1). But we may draw stronger conclusions.
If we assume that the trust region becomes asymptotically inactive at all levels and
that all εgi (i = 0, . . . , r − 1) are driven down to zero together with εgr (thus allowing
recursion even for very small gradients), then, as explained above, each minimization
sequence in the algorithm becomes infinite, and we may apply Theorem 4.13 to each
of them, concluding that, if the trust region becomes asymptotically inactive,

lim
k→∞

‖gi,k‖ = 0

for every level i = 0, . . . , r. The behaviour of Algorithm RMTR is therefore truly
coherent with its multiscale formulation, since the same convergence results hold for
each level.

The convergence results at the upper level are unaffected if minimization se-
quences at lower levels are “prematurely” terminated, provided each such sequence
contains at least one successful iteration. Indeed, Lemmas 4.1 and 4.2 do not depend
on the actual stopping criterion used, and all subsequent proofs do not depend on
it either. Thus, one might think of stopping a minimization sequence after a preset
number of successful iterations: in combination with the freedom left at Step 1 to
choose the model whenever (2.14) holds, this strategy allows a straightforward im-
plementation of fixed lower-iterations patterns, like the V or W cycles in multigrid
methods. This is what we have done in Section 3.
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Our theory also remains essentially unchanged if we merely insist on first-order
coherence (i.e., conditions (2.5) and (2.6)) to hold only for small enough trust-region
radii ∆i,k, or only up to a perturbation of the order of ∆i,k or ‖gi,k‖∆i,k. Other
generalizations may be possible. Similarly, although we have assumed for motivation
purposes that each fi is “more costly” to minimize that fi−1, we have not used this
feature in the theory presented above, nor have we used the form of the lower levels
objective functions. In particular, our choice of Section 3 to define fi as identically
zero for i = 0, . . . , r − 1 satisfies all our assumptions. Nonconstant prolongation
and restriction operators of the form Pi(xi,k) and Ri(xi,k) may also be considered,
provided the singular values of these operators remain uniformly bounded.

In its full generality, convergence to second-order critical points appears to be
out of reach unless one is able to guarantee some “eigen-point condition”. Such a
condition imposes that, if τi,k, the smallest eigenvalue of Hi,k, is negative, then

mi,k(xi,k)−mi,k(xi,k + si,k) ≥ κeip|τi,k|min[τ2
i,k ,∆

2
i,k]

for some constant κeip ∈ (0, 1
2
) (see AA.2 in [13], page 153). This is easy to obtain

at relatively coarse levels, where the cost of an eigenvalue computation or of a fac-
torization remains acceptable. For instance, the algorithm considered in Section 3
is convergent to critical points that satisfy second-order optimality conditions at the
coarsest level. This results from the application of the Moré-Sorensen exact trust-
region subproblem solver at that level, for which this property is well known (see
Section 6.6 of [13], for instance). The idea of imposing an eigen-point condition at the
coarsest level to obtain second-order criticality at that level is also at the core of the
globalization proposal in [9], but it can be verified [21] that this technique does not
enforce second-order convergence at finer levels. However, imposing an eigen-point
condition at fine levels may be judged impractical: for instance, the SCM smoothing
strategy described above does not guarantee such a condition, but merely that

mi,k(xi,k)−mi,k(xi,k + si,k) ≥ 1
2
|µi,k|∆2

i,k

where µi,k is the most negative diagonal element of Hi,k. This weaker result is caused
by the fact that SCM limits its exploration of the model’s curvature to the coordinate
axes, at variance with the TCG/GLTR methods which implicitly construct Lanczos
approximations to Hessian eigenvalues. Convergence to fine-level first-order critical
points satisfying a weak version of second-order optimality can however be expected
in this case. In particular, the diagonal elements of the objective function’s Hessian
have to be non-negative at such limit points (see [21]).

5. Comments and perspectives. We have defined a class of recursive trust-
region algorithms whose members are able to exploit cheap lower levels models in
a multiscale optimization problem. This class has been proved to be well-defined
and globally convergent to first-order; preliminary numerical experience suggests that
it may have a strong potential. We have also presented a theoretical complexity
result giving a bound on the number of iterations that are required by the algorithms
of our class to find an approximate critical point of the objective function within
prescribed accuracy. This last result also shows that the total complexity of solving
an unconstrained multiscale problem can be shared amongst the levels, exploiting the
structure to advantage.

Although the example of discretized problems has been used as a major motiva-
tion for our work, this is not the only case where our theory can be applied. We think
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in particular of cases where different models of the true objective function might live
in the same space, but involve different levels of complexity and/or cost. This is for
instance of interest in a number of problems arising from physics, like data assimi-
lation in weather forecasting [15], where different models may involve different levels
of sophistication in the physical modelling itself. More generally, the algorithms and
theory presented here are relevant in most areas where simplified models are consid-
ered, such as multidisciplinary optimization [1, 2, 3] or PDE-constrained problems
[4, 14].

We may also think of investigating even more efficient algorithms combining the
trust-region framework developed here with other globalization techniques, like line-
searches [17, 32, 39], non-monotone techniques [40, 42, 44] or filter methods [20].
While this might add yet another level of technicality to the convergence proofs, we
expect such extensions to be possible and the resulting algorithms to be of practical
interest.

Another important research direction is to investigate what kinds of Hessian (and
possibly gradient) approximations are practically efficient within our framework, es-
pecially at the fine levels. Various options are possible, ranging from specialized
finite-differences to secant approximations.

Applying recursive trust-region methods of the type discussed here to constrained
problems is another obvious avenue of research. Although we anticipate the associated
convergence theory to be again more technically difficult, intuition and limited nu-
merical experience suggests that the power of such methods should also be exploitable
in this case.

A number of practical issues related to Algorithm RMTR (such as alternative
gradient smoothing and choice of cycle patterns) have not been discussed although
they may be crucial in practice. We investigate these issues in a forthcoming paper
describing (so far encouraging) numerical experience with Algorithm RMTR.

Acknowledgements. The authors are indebted to Nick Gould for his comments
on a draft of the manuscript and to Natalia Alexandrov for stimulating discussion.

REFERENCES

[1] N. M. Alexandrov, J. E. Dennis, R. M. Lewis, and V. Torczon. A trust region framework for
managing the use of approximation models. Structural Optimization, 15(1):16–23, 1998.

[2] N. M. Alexandrov and R. L. Lewis. An overview of first-order model management for engineer-
ing optimization. Optimization and Engineering, 2:413–430, 2001.

[3] N. M. Alexandrov, R. L. Lewis, C. R. Gumbert, L. L. Green, and P. A. Newman. Approximation
and model management in aerodynamic optimization with variable fidelity models. Journal
of Aircraft, 38(6):1093–1101, 2001.

[4] E. Arian, M. Fahl, and E. W. Sachs. Trust-region proper orthogonal decomposition for flow
control. Technical Report 2000-25, Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center Hampton, Virginia, USA, 2000.

[5] R. E. Bank, P. E. Gill, and R. F. Marcia. Interior point methods for a class of elliptic variational
inequalities. In Biegler et al. [8], pages 218–235.
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