
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

The Nature of Data Reverse Engineering

Hainaut, Jean-Luc; Henrard, Jean

Publication date:
2003

Link to publication
Citation for pulished version (HARVARD):
Hainaut, J-L & Henrard, J 2003, The Nature of Data Reverse Engineering..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198250152?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/the-nature-of-data-reverse-engineering(5e0f9551-9a84-4fe5-82c9-2b4f1551ad51).html

The Nature of Data Reverse Engineering

Jean-Luc Hainaut

Facultés universitaires de Namur • Institut d’informatique
Laboratoire d’ingénierie des applications de bases de données

CETIC a.s.b.l.

FNRS Contact day
LLN, May 20, 2003

Organization

1. What is Data Reverse Engineering?

2. The Implicit construct problem

3. The main processes of Data Reverse Engineering

4. Data Structure Extraction

5. Data Structure Conceptualization

6. Data Reverse Engineering Tools

7. Effort Quantification

8. Conclusions

1. What is Data Reverse Engineering?

 Domain

Legacy Information Systems, [i.e., data-intensive applications, such as business sys-
tems based on hundreds or thousands of data files (or tables)], that significantly resist
modifications and changes [Brodie, 1995].

 Objective of DBRE

To recover the technical and conceptual descriptions of the permanent data of the
application, i.e., its database.

• Technical description: what are the files, the record types, the fields and their
data types, the relationships and the constraints. Expressed in a Logical
schema.

• Conceptual description: what do these data structures mean? Expressed in a
Conceptual schema.

1. What is Data Reverse Engineering? (2)

Is Data Reverse Engineering really that difficult?

It’s fairly easy ... in some cases

⇓

create table CUSTOMER (
CNUM .. not null,
CNAME .. not null,
CADDRESS .. not null,
primary key (CNUM))

 create table ORDER (
ONUM .. not null,
CNUM .. not null,
DATE .. not null,
primary key (ONUM),
foreign key (CNUM)
references CUSTOMER))

0-N places ONUM
DATE
id: ONUM

ORDER
CNUM
CNAME
CADDRESS
id: CNUM

CUSTOMER

1-1

. . . but quite difficult in others

⇓

select CF008 assign to DSK02:P12,
 organization is indexed,
 record key is K1 of REC-CF008-1.

 select PF0S assign to DSK02:P27,
 organization is indexed,
 record key is K1 of REC-PFOS-1.

 fd CF008;
 record is REC-CF008-1.
 01 REC-CF008-1.
 02 K1 pic 9(6).
 02 filler pic X(125).

 fd PF0S;
 records are REC-PF0S-1,REC-PF0S-2.
 01 REC-PF0S-1.
 02 K1
 03 K11 pic X(9).
 03 filler pic 9(6)
 02 filler pic X(180).
 01 REC-PF0S-2.
 02 filler pic X(35).

0-N
Qty
produces PNUM

PNAME
CATEGORY
id: PNUM

PRODUCT
CNUM
CNAME
CADDRESS
id: CNUM

COMPANY

0-N

1. What is Data Reverse Engineering? (3)

Why Data Reverse Engineering?

Doesn’t seem to be the most exciting engineering activity, but it is a prerequisite for:

• Knowledge acquisition in system development
• System maintenance
• System reengineering
• System extension
• System migration
• System integration
• Quality assessment
• Data extraction/conversion/migration (e.g., to data warehouses)
• Data Administration
• Component reuse

1. What is Data Reverse Engineering? (4)

Data reverse engineering vs Program reverse engineering

Two observations

• It is impossible to understand a (business) program until the main data structures
have been fully understood.

• It is impossible to fully understand data structures without a clear understanding of
the programs that manipulate them.

Objective of Program Reverse Engineering
To extract abstractions from the programs in order to understand some of its aspects
(= program understanding). Recovering full functional specifications still unreacha-
ble.

Objective of Data reverse Engineering
To recover the (hopefully) complete technical and functional specifications of the data
structures.

1. What is Data Reverse Engineering? (5)

Specific DBRE problems

• Weakness of the DBMS models: The technical model provided by the DMS can express
only a small subset of the structures and constraints of the intended conceptual schema.

• Implicit structures: Some constructs have intentionally not been explicitly declared in the
DDL specification of the database

• Optimized structures: For technical reasons, such as time and/or space optimization,
many database structures include non semantic constructs

• Awkward design: Not all databases were built by experienced designers. Novice and
untrained developers, generally unaware of database theory and database methodology,
often produce poor or even wrong structures.

• Obsolete constructs: Some parts of a database have been abandoned, and ignored by the
current programs.

• Cross-model influence: Some relational databases actually are straightforward translations
of IMS or CODASYL databases, or of COBOL files.

• . . . and, of course, no documentation!

2. The Implicit construct problem (1)

 Explicit construct (intended structure)

create table CUSTOMER (C_ID integer not null primary key,
 C_DATA char 80 not null);
create table ORDER (O_ID integer not null primary key,
 OWNER integer not null
 foreign key (OWNER) references CUSTOMER);

 Implicit construct (coded structure)

 create table CUSTOMER (C-ID integer not null primary key,
 C-DATA char(80) not null);
 create table ORDER (O-ID integer not null primary key,
 OWNER integer not null);
 ...
 exec SQL select count(*) in :ERR-NBR from ORDER
 where OWNER not in (select C-ID from CUSTOMER)
 end SQL
 ...
 if ERR-NBR > 0 then display ERR-NBR,'referential constraint violation';

2. The Implicit construct problem (2)

 Explicit construct (intended structure)

01 CUSTOMER.

 02 C-KEY.
 03 ZIP-CODE pic X(8).
 03 SER-NUM pic 9(6).
 02 NAME pic X(15).
 02 ADDRESS pic X(30).
 02 ACCOUNT pic 9(12).

 Implicit construct (coded structure)

 01 CUSTOMER.
 02 C-KEY pic X(14).
 02 filler pic X(57).

3. The main processes of Data Reverse Engineering

Project Preparation (mainly source inventory):

• explicit code (co d edd l)

• code for implicit constructs (co d e ex t)

• other, environmental, sources (E (∆))

Data Structure Extraction
Recovering the description of the data structures
(the Logical schema) as seen and used by the pro-
grammer (relational, files, IMS, CODASYL, etc.).

Data Structure Conceptualization
Interpreting the data structures in abstract terms per-
taining to the application domain (the Conceptual
schema).

P ro jec t P rep a ra tio n

D S E x tra c tio n

D S C o n cep tu a liza tio n

(O p tim ize d)
L o g ic a l sch e m a

(N o rm a lize d)
C o n c ep tu a l sch e m a

co d e d d l co d e e x t E (∆)

4. Data Structure Extraction

DDL code Extraction:
Automatic parsing of the code to extract
explicit data structures.

Physical Integration
Merging multiple views of the same data
sets.

Schema Refinement
Recovering the implicit data structures
and constraints.

Schema Cleaning
Removing physical constructs (bearing no
semantics).

raw users viewsraw users views

D D L co d e E x tra ction

P h y sica l In tegration

S ch em a R efin em en t

S ch em a C lean in g

raw p h ys ica l schem as

v iew co de d d lsch em a co de d d l

ex p lic it p h ys ica l sch .

co m p le te p hy sica l sch .

co d eex t E (∆)

(O p tim ized)
L og ica l sch em a

4. Data Structure Extraction - Schema Refinement

E (∆)

cod eext

ex p lic it p h y sica l sch .

co m ple te p h y s ica l sch .

Schem a
R efinem ent

Sch em a
A nalysis

P rogram
A n alysis

F orm s/Screen
A nalysis

E xtern . Specific .
A nalysis

Interview
A nalysis

D ata A nalysis

E xtern . docum ents
A nalysis

E xperim en tation

D M S gen e ric co d e

P ro g ram s

H M I p ro c . frag m en ts

C h eck
T rig g e rs

S t. P ro ced u res

S creen s R ep o rts F o rm s

D o cu m en ta tio n

E x tern . D a ta D ic tio n .

C A S E rep o s ito rie s

U se rs in te rv iew s

D ev e lo p . in te rv iew s

E x p e rts in te rv iew s

D a ta

W o rk sh ee ts
F o rm a tted tex ts

P ro g . ex ecu tio n

4. Data Structure Extraction - Elicitation techniques

Schema Analysis
• Constructs and constraints can be inferred from existing structural patterns.

Program Analysis
• Pattern matching: finding programming clichés (they suggest implicit constraint management).
• Dataflow Analysis: finding variables that share common values at run time (they could be structurally

simalar or semantically related).
• Program Slicing: computing the sequence of statements that contribute to the state of an object at a

program point, therefore reducing the search space of a programming cliché.

Data Analysis
• finding relationships and patterns in a data set; nice to find potential correlations (such as FD).
• evaluating hypotheses: is this field a foreign key?

Name Analysis
• Names can suggest roles, data types and relationships between data.

4. Data Structure Extraction - Finding implicit foreign keys (1)

• Implicit FK can be found in all systems, even in SQL, IMS and CODASYL databases.
• Standard (RDB-like) vs non standard (multivalued, alternate, computed, fuzzy, multi-target, condi-

tional, overlapping, embedded, etc.).

Questions

• is ORDER.O-CUST a foreign key to CUSTOMER.CID?

• what are the possible target record types of ORDER.O-CUST?

• what are the possible source record types that target CUSTOMER.CID?

• what are the possible source record types that target CUSTOMER?

• what are the possible target record types of ORDER?

⇒

ORDER
O-ID: num (6)
O-DATE: date (10)
O-CUST: num (5)
id: O-ID

acc
acc: O-CUST

CUSTOMER
CID: num (5)
NAME: char (22)
ADDRESS: char (32)
id: CID

acc

ORDER
O-ID: num (6)
O-DATE: date (10)
O-CUST: num (5)
id: O-ID
ref: O-CUST

CUSTOMER
CID: num (5)
NAME: char (22)
ADDRESS: char (32)
id: CID

4. Data Structure Extraction - Finding implicit foreign keys (2)

Program Analysis: Dataflow analysis

 DATA DIVISION.
 FILE SECTION.
 FD F-CUSTOMER.
 01 CUSTOMER.
 02 CID pic 9(5).
 02 NAME pic X(22).
 02 ADDRESS pic X(32).
 FD F-ORDER.
 01 ORDER.
 02 O-ID pic 9(6).
 02 O-DATE pic 9(8).
 02 O-CUST pic 9(5).

 WORKING-STORAGE SECTION.
 01 C pic 9(5).
 01 OI pic 9(6).

PROCEDURE DIVISION.
 ...
 display "Enter order number "
 with no advancing.
 accept OI.
 move 0 to IND.
 call "SET-FILE" using OI, IND.
 read F-ORDER
 invalid key go to ERROR-1.
 ...
 if IND > 0 then
 move O-CUST of ORDER to C.
 ...
 if C = CID of CUSTOMER then
 read F-CUSTOMER
 invalid key go to ERROR-2.
 ...

C U STO M E R .C ID C

O R D E R .O -C U S T

4. Data Structure Extraction - Finding implicit foreign keys (3)

Program Analysis: cliché analysis

read-first ORDER(O-CUST=CUSTOMER.CID);
while found do
 process ORDER;
 read-next ORDER(O-CUST=CUSTOMER.CID)
end-while;

Schema Analysis

• The name O-CUST suggests that of CUSTOMER

• O-CUST and the identifier of CUSTOMER (CID) share the same type and the same length.

• O-CUST is supported by an index (acc).

Data Analysis

 select count(*)
 from ORDER
 where O-CUST not in (select CID from CUSTOMER)

5. Data Structure Conceptualization

Goal
extracting a conceptual schema from the complete logical schema
challenge: the logical schema is the result of translation and optimization processes

Also called data structure interpretation.

5. Data Structure Conceptualization

Preparation:
Removing dead and technical constructs; renaming.

Basic Conceptualization
Extracting the relevant semantic concepts.

De-optimization
Identifying and transforming optimization cons-
tructs.

Untranslation
Retrieving the source conceptual structure of each
implementation construct.

Normalization
Reshaping the schema for readability, expressive-
ness, etc.

(O p tim ized)
L og ica l schem a

(N o rm alized)
C on cep tu a l sch em a

R aw co ncep tua l sch .

N orm alization

P reparation

D e-optim ization

U ntranslation

B
as

ic
C

on
ce

pt
ua

liz
at

io
n

5. Data Structure Conceptualization - schema transformations

Transformational view of software engineering

(almost) every software engineering process can be modelled as a chain of specification
transformations

Transformational view of database engineering

(almost) every database engineering process can be modelled as a chain of schema
transformations

Application: DS conceptualization ≈ (DB logical design)-1

5. Data Structure Conceptualization - schema transformations

A schema transformation Σ is a couple of mapping <T,t>, where T is the structural maping (the syn-
tax of Σ) and t the instance mapping (the semantics of Σ).

Σ1 = <T1,1> is reversible, or semantics-preserving, iff there exists a transformation Σ2 = <T2,t2>
such that, for any construct C and any instance c of C,

C = T2(T1(C)) ∧ c = t2(t1(c))

C = T1(T2(C)) ∧ c = t1(t2(c))

Reversible transformations are first-class operators, but weaker operators sometimes are necessary

C C’=T(C)

c c’=t(c)

T

instance of instance of

t

5. Data Structure Conceptualization - schema transformations

⇔

 ⇔

⇔

SUPPLIER
SupID
Name
Phone1[0-1]
Phone2[0-1]
Phone3[0-1]
Phone4[0-1]
id: SupID

SUPPLIER
SupID
Name
Phone[0-4]

Index
Value

id: SupID
id(Phone):

Index

domain(Phone[*].Index) = [1..4]

ORDER

OrdNum
Date
Detail[1-20]

ItemCode
Qty

id: OrdNum
id(Detail):

ItemCode

1-11-20 of

ORDER
OrdNum
Date
id: OrdNum

DETAIL
ItemCode
Qty
id: of.ORDER

ItemCode

ORDER

OrdNum
Date
Origin
id: OrdNum
ref: Origin

CUSTOMER

CustID
Name
Address
id: CustID

1-1 0-NOrigin

ORDER

OrdNum
Date
id: OrdNum

CUSTOMER
CustID
Name
Address
id: CustID

5. Data Structure Conceptualization - interpreting FK (1)

Three classes of non standard foreign keys

A. Hierarchical FK (IMS databases)

⇒
0-N

in

ServName
Budget
id: in.DEPARTMENT

ServName

SERVICE

ExpID
Date
Amount
DptName
ServName
id: ExpID
ref: DptName

ServName

EXPENSE

DptName
Location
id: DptName

DEPARTMENT

1-1

0-N

in

0-N 1-1by
ServName
Budget
id: in.DEPARTMENT

ServName

SERVICE
ExpID
Date
Amount
id: ExpID

EXPENSE

DptName
Location
id: DptName

DEPARTMENT

1-1

5. Data Structure Conceptualization - interpreting FK (2)

B. Partially reciproqual FK

⇒

 capital ⊆ in

CountryName
Capital
id: CountryName
ref: Capital

CountryName

COUNTRY
CityName
Country
id: CityName

Country
ref: Country

CITY

0-1

capital

1-N

1-1

in

CountryName
id: CountryName

COUNTRY

CityName
id: in.COUNTRY

CityName

CITY

1-1

5. Data Structure Conceptualization - interpreting FK (1)

C. Partially optional FK

⇒

 for y∈ Last-Year-STUDENT:
 y.Year = y.writes.MEMOIR.Year

STUDENT
StudID
Name
Option
Title[0-1]
Year
id: StudID
ref: Title

Year

MEMOIR
Title
Year
Advisor
id: Title

Year

1-1

0-N

writes

STUDENT

StudID
Name
Option
Year
id: StudID

MEMOIR

Title
Year
Advisor
id: Year

Title

Last-Year-STUDENT

6. Data Reverse Engineering Tools (1)

• No specific CARE tools so far (not a drawback anyway).

• Only limited DBRE functions in current CASE tools (Power-Designer, AMC-Designor,
Rose, Designer 2000, etc):

• parsers for SQL DB,

• foreign key elicitation under very strong assumptions (PK and FK have same names
and types)

• standard foreign key transformation.

6. Data Reverse Engineering Tools (2)

The DB-MAIN CASE environment

Project and document representation and management

• specifications management: access, browsing, creation, update, copy, analysis, memori-
zing;

• representation of the project history: processes, schemas, views, source texts, reports,
generated programs and their relationships;

• a generic, wide-spectrum, representation model for conceptual, logical and physical
objects; accept both entity-based and object-oriented specifications; schema objects and
text lines can be selected, marked, aligned and colored;

• semantic and technical annotations can be attached to each specification object;

• multiple views of the specifications (4 hypertexts and 2 graphical views); some views are
particularly intended for very large schemas; both entity-based and object-oriented schemas
can be represented;

6. Data Reverse Engineering Tools (3)

Support for the data structure extraction process

• code parsers for SQL, COBOL, CODASYL, RPG and IMS source programs; other parsers
can be developed and plugged into the tool;

• interactive and programmable text analyzer;

• dataflow and dependency diagrams builder and analyzer;

• program slicer;

• name processor to search a schema for name patterns;

• programmable schema analyzer;

• programmable foreign key discovery assistant;

6. Data Reverse Engineering Tools (4)

The foreign key discovery assistant (view of the Search engine)

6. Data Reverse Engineering Tools (5)

Support for the data structure conceptualization process

• a toolbox of about 30 semantics-preserving schema transformation;
• name processor to transform names;
• schema integrator;
• programmable schema transformation assistant.

7. Effort Quantification (tentative)

Typical database

800 files/tables; 20,000 fields/columns;
(current champion: SAP internal database, with 16,000-30,000 tables; 200,000 columns).

Depends on the objective

Quality assessment: 1 week *

Data extraction: 2 month

Reengineering: 6 months.

Depends on the quality of the source

Well documented, normalized relational database : C

Undocumented, poorly designed legacy IMS database : 5 x C

Undocumented, poorly designed COBOL files : 10 x C

Example: recovering 200 implicit foreign keys in a Part inventory IMS DB = 60 work. days.

* Blaha, M., The Case for Reverse Engineering, IEEE IT Professional, March-April, 1999

8. Conclusions (tentative too)

What is available
• Most problems are identified
• Many elicitation techniques (nice for micro-problems, inadequate for large scale projects)
• Heuristics
• Popular but limited CARE functions (in standard CASE tools)
• Proprietary and unpublished powerful analysis tools

What remains to be done
• Sensitizing practioners: Data RE is useful and is practicable
• Sensitizing practioners: Data RE can be expensive
• Training
• Developing popular and powerful CARE tools
• Improving tool and method scalability
• Refining heuristics (less noise, fewer missing constriucts)
• Generalizing to system level problem: how to reverse engineer the whole IS?
• Developing techniques for reengineering legacy systems into distributed components architectures (so

far, DB → OO techniques disappointing).

8. Conclusions (2)

• Addressing less sexy but much more critical problems: COBOL applications, IMS, CODASYL, RPG,
Business Basic.

Distribution of 40 recent research publications according to the DMS model (2000)

Introductory reference

Hainaut, J.-L., Database Reverse Engineering, 5th edition, LIBD research report, Namur, 2002, 150 p.;
available at http://www.info.fundp.ac.be/libd > Documents > Publications > Books

file s h ie ra rc h ic a l n e tw o rksh a llo w re la tio n a l

1 7 .5 % 1 2 .5 %
2 .5 %

1 0 %

5 2 .5 %

5 %

O O

