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Abstract 

A major challenge in electronic structure calculations of extended systems is to compute to 
appropriate accuracy the lattice sums arising in the various ab initio formalisms.  
Unsatisfactory convergence of all or some of these contributions can lead to such imbalance 
in the matrix elements that total energy, hence most stable structure, and other more sensitive 
properties such as force constants cannot be computed.  The purpose of this paper is to point 
out the intrinsic virtues of the Fourier transform method for handling accurately the lattice 
sums arising in Hartree-Fock and many-body approaches such as MP2.  The infinite chain of 
Be atoms, (-Be-)∞, is used to illustrate some of the points addressed in the present 
contribution.  Even in this simple system it is seen that direct-space methods do not permit the 
exchange energy sum to be converged sufficiently to permit computations near the 
equilibrium lattice spacing.  However, the Fourier transform method enables identification of 
the equilibrium configuration in a stable and accurate fashion.  
 
Key words: Restricted Hartree-Fock, MP2, direct space, Fourier space, polymers, band 
structure, lattice summations. 
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e-mail: joseph.delhalle@fundp.ac.be  



 2 

1. Introduction 

With present-day experimental advances, chain-like compounds can be organized to a 

point where model systems with one-dimensional (1D) periodicity are appropriate.  Important 

questions range from the interpretation of spectroscopic measurements to the design of new 

structures and/or organizations for which interesting properties can be calculated with the aim 

of engineering them in actual materials.  An adequate level of theory is critical to achieve a 

proper description for large classes of systems.  Currently the most popular method for purely 

theoretical calculations of the electronic structure of extended systems is density functional 

theory (DFT), which is relatively inexpensive, but includes electron correlation approximately 

and suffers from a lack of systematic ways to improve the results.  In that respect, 

methodologies based on the Hartree-Fock theory and beyond (many-body perturbation theory, 

many-body Green’s functions, etc.) remain the most consistent approaches.  For example, 

early theoretical calculations conducted at the Hartree-Fock level have predicted the 

possibility of getting information on the primary and secondary structures of the polymer 

chains forming the first layers of a substrate [1].  However, subsequent studies based on more 

elaborated theories have called attention to the danger of relying on the simplified model of 

primary ionization lines, particularly in conjugated systems, and the need to develop suitable 

levels of theory [2-5].  In recent works, several authors also mention that structures and 

properties such as band gaps or ionization potentials of extended conjugated systems require 

an adequate account of electron correlation, as in MP2 [6].  A. Damin et al [7], in their study 

on the coverage of CO on the regular MgO (001) surface, conclude that a proper description 

of binding energy requires dispersive contributions.  These examples and others not cited here 

stress the need for efforts to master the points that make Hartree-Fock based methods difficult 

to apply.  

As pointed out by Suhai et al [8], Hartree-Fock calculations on periodic systems using 

extended atomic basis sets are prone to numerical instabilities due to errors caused by 

improper lattice sum truncations.  These instabilities may appear at relatively large 

eigenvalues (> 10-5) of the overlap matrices and are not related to a linear dependence in the 

basis sets.  Considerable attention has been devoted to the calculation of the classical coulomb 

contributions to the Fock matrix elements and efficient methods have been designed for their 

calculation in both the direct [9,10] and Fourier spaces [11-18].  However, Hartree-Fock 

exchange contributions, improperly considered as rapidly decaying with respect to the number 



 3 

of interacting cells, can also create instability problems.  The purpose of this paper is to show 

how sensitive the optimum lattice parameter of the chain of beryllium atoms is to the 

accuracy of the exchange contributions.  It also stresses the fact that the Fourier transform 

approach provides a way to perform accurate calculations not only at the Hartree-Fock level, 

but also beyond. 

 

2. The RHF LCAO Matrix Elements for Systems with 1D Periodicity 

In the RHF approximation, the electronic wave function is an antisymmetrized product 

built from one-electron Bloch basis orbitals   

� 

bp k,r( ) ,  

  

� 

bp k,r( ) = (2N +1)−1/ 2 ei 2πkm χ p
m=−N

N

∑ r− R p + me z( )a0( ) = (2N +1)−1/2 ei2πkmχ p
m

m= −N

N

∑ r( )  (1) 

with 

� 

N →∞ ; p and the vector Rp (in units of the cell length a0) denote the label and the 

position of the atomic orbital

� 

χ p in the reference cell, k is a wave number in the range  

[-1/2,1/2] in units of 

� 

2π
a0

, and a0 is the cell length.  The RHF orbitals   

� 

ϕn k,r( )  are of the form 

� 

 
  

� 

ϕn k,r( ) = bp k,r( )Cpn(k)
p
∑  (2) 

and the coefficients Cpn(k) are the eigenvectors of the Fock matrix, whose elements Fpq(k) can 

be written 

 

� 

Fpq k( ) = Tpq k( ) + Vpq k( ) + J pq k( ) + X pq k( ). (3) 

Here 

� 

Tpq k( ) , 

� 

Vpq k( ) , 

� 

J pq k( )  and 

� 

X pq k( ) are respectively the kinetic, electron-nuclear 

attraction, electron-electron repulsion and exchange contributions to 

� 

Fpq k( ).  Properties of the 

RHF wave function can be expressed in terms of its density matrix 

 

� 

Ppq k( ) = Cpn
*

n
∑ k( )Cqn k( )  (4) 

where the sum is over the occupied spin orbitals.  Details of the formulation are well known; a 

full discussion in the notation used here is in a previous paper from our group [17]. 
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As briefly mentioned in the introduction, schemes have been designed in direct space to 

calculate 

� 

Tpq k( ) , 

� 

Vpq k( )  and 

� 

J pq k( )  to satisfactory accuracy.  In particular, the conditionally 

converging lattice summations for the electrostatic contributions to the Fock matrix elements, 

� 

Vpq k( ) + J pq k( ) , are usually obtained with sufficient accuracy via a multipole expansion 

[9,10].  Attempts to implement similar expansions to accurately evaluate the exchange 

contributions have thus far not been successful.  

3. The Exchange Matrix Elements, 

� 

X pq k( ), in Direct Space 

The purpose of this section is to give a brief account of the present situation regarding the 

computation of the exchange matrix elements 

� 

X pq k( )  in direct space, and to illustrate some of 

the difficulties faced in minimizing the total energy of an infinite chain of beryllium atoms,  

(-Be-)∞, with respect to the lattice parameter a0. 

3.1. DIRECT SPACE CALCULATION OF 

� 

X pq k( ) 

In direct space, the exchange contributions,

� 

X pq k( ) , to the Fock matrix are computed 

directly as expressed in Eqs. (5) to (8), i.e. : 

 

� 

X pq k( ) = ei 2πkm
m= −∞

∞

∑ X pq
0m  (5) 

with 

 

� 

X pq
0m = −

1
2 m'= −∞

∞

∑
m ''= −∞

∞

∑ Prs
0,m '−m−m' '

r,s
∑ p

0
s
m '

r
m+m' '

q
m⎛ 

⎝ ⎜ ⎞ 
⎠ ⎟  (6) 

where 

� 

Prs
0,m '−m−m' is the finite Fourier transform of the LCAO density matrix element 

� 

Prs k '( ) , 

� 

 

� 

Prs
0,m '−m−m' ' = dk'e− i2π m'−m−m"( )k'

BZ
∫ Prs k '( )  (7) 

and 

� 

p
0
s
m '

r
m+m' '

q
m⎛ 

⎝ ⎜ ⎞ 
⎠ ⎟ a multicenter bielectronic integral, 

 
  

� 

p
0
s
m '

r
m+m' '

q
m⎛ 

⎝ ⎜ ⎞ 
⎠ ⎟ = dr1∫∫ dr2χ p

0* r1( )χs
m' r1( )r1 − r2

−1
χr
m+m "* r2( )χ q

m r2( ) . (8) 

In practice, the summations over m, m' and m" run from –N to +N, where N rarely exceeds 

30 because of the large computational effort required for the multicenter integrals entering the 
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definition of 

� 

X pq
0m .  The two factors in

� 

X pq
0m , 

� 

Prs
0,m '−m−m' ' and 

� 

p
0
s
m '

r
m+m' '

q
m⎛ 

⎝ ⎜ ⎞ 
⎠ ⎟ , each depend on the 

summation index m.  The ultimate convergence of the series and the resulting properties are 

thus determined by the decay of these two quantities as m tends to infinity.  For a given m, the 

summations over 

� 

m'  and 

� 

m' '  converge exponentially and usually do not present numerical 

difficulties.  However, in 

� 

p
0
s
m '

r
m+m' '

q
m⎛ 

⎝ ⎜ ⎞ 
⎠ ⎟ the value of 

� 

m  is a measure of the separation of the 

center of charge of the two distributions, and the contribution of the bielectronic integral 

to

� 

X pq
0m decays only as 

� 

m −1.  This factor alone is not sufficient for the series in Eq. (5) to 

converge to a finite value.  Thus, the factors 

� 

Prs
0,m '−m−m' ' are crucial for the global convergence 

of the series.  In the case of systems with fully occupied bands, the density matrix elements 

� 

Prs
0,m' −m−m ''  decay exponentially with increasing 

� 

m .  But the actual rate of decay depends on 

the nature of the system under study and can be surprisingly slow.  Situations with partially 

filled bands are extreme from that point of view; the 

� 

Prs
0,m' −m−m ''  decrease like 

� 

m −1 leading to 

an overall 

� 

m −2 convergence.  This brief analysis stresses the fact that situations of slow decay 

are likely to induce numerical instabilities in the course of the calculations as will be seen in 

the case of the infinite chain of beryllium atoms, (-Be-)∞. 

 

3.2. TOTAL ENERGY MINIMIZATION WITH RESPECT TO a0 FOR (-Be-)∞.  

The calculations reported here have been carried out with the PLH program [19,20], a 

direct-space implementation of the RHF LCAO formalism.  Since the study case will be 

compared in section 4 with results obtained with the Fourier approach using a prototype 

program (FTCHAIN) [16-18] presently limited to s-type Gaussian functions, 2p functions 

have been simulated by a distributed basis set of s-type functions (DSGF).  Accordingly, three 

s-type atomic functions are centered on the Be atom using the same contraction scheme 

(exponents and contraction coefficients) as in the standard 3-21G basis.  Each p-type orbital is 

represented by two identical s-type Gaussian functions symmetrically centered about the 

nucleus, at distances corresponding to the position of the maximum of Be 2p orbital in the 3-

21G basis set (0.1304 nm) with exponent equal to 0.3 bohr-2.  In the PLH program, the 

Brillouin-zone integrations are carried out by a Filon procedure that adaptively refines the 

mesh until convergence is reached. 



 6 

Using this basis, we attempted to find the lattice parameter a0 that minimizes the total 

energy ET.  Calculations were made for summation limits N=10, 20, and 30, as shown in 

Table 1.  At N=10, numerical instabilities made it impossible to obtain reliable results for a0 < 

2.83 Å, far larger than the minimum-energy lattice parameter (at 2.10 Å, as shown by the 

calculations to be discussed in the next section).  Increasing N to 20 enabled stable 

calculations to be extended only to a0 = 2.75 Å, while at N=30 we could reach a0 = 2.69 Å.  It 

was not possible to increase N beyond 30 because of current limits in the PLH program. 

Additional understanding of the source of the numerical difficulties is provided by the 

other data in Table 1: the band gap, the smallest eigenvalue of the overlap matrix (Smin), the 

largest density matrix coefficient connecting cells 0 and N (Pmax), and the number of SCF 

iterations Nit needed to reach convergence (to a threshold of 

� 

≤ 10−6 ) in the density matrix 

elements.  Looking first at the calculations for a0=2.83 Å, the smallest a0 for which we can 

compare results for N=10, 20, and 30, we note little change in Smin, while Pmax decreases 

significantly as N increases.  These observations indicate that the numerical problem is not 

linear dependence, but a lack of convergence of the lattice sums.  This situation may be 

identified as a pseudo linear dependency.  Indeed, none of the table entries for Smin is smaller 

than 10-4, while true linear dependencies, with double precision calculations, are usually 

diagnosed for eigenvalues of the overlap matrix smaller than 10-7 [8]. 

With the current version of the PLH program, it is clearly impractical to increase N until 

convergence can be attained at the equilibrium distance, as this would require evaluation of 

astronomical numbers of computationally intensive multicenter bielectronic integrals.  That 

such a situation already arises for a deceptively simple model system, (-Be-)∞, described with 

a limited basis set including only moderately diffuse functions, points to the need for efficient 

procedures to calculate all contributions to the Fock matrix elements.  Furthermore, systems 

with smaller band gaps and more complex unit cells than the chain of beryllium atoms 

constitute more difficult and more interesting challenges.  

4. The Exchange Matrix Elements, 

� 

X pq k( ), in Fourier Space 

In this section, the procedure for evaluating the Fock matrix elements in Fourier space is 

briefly described and results on the optimization on the beryllium chain are also provided for 

comparison. 



 7 

4.1. FOURIER SPACE CALCULATION OF 

� 

X pq k( ) 

In the Fourier space approach [11-12], 

� 

X pq k( )  assumes the form [17] 

  

� 

X pq k( ) =−
1
2 dk ' Prs

r,s
∑ k '( )X psrq k − k ' ;k ',k( )

−1/2

1/2

∫  (9) 

where  

� 

X psrq k;k ',k"( ) =
1
πa0

dq0
q02 + k − n( )2

Sps k',qk− n( )Srq k",−qk− n( )∫
n= −∞

∞

∑  (10) 

with 

� 

q0
2 = qx

2 + qy
2 and 

� 

qk− n = qx,qy,k − n( ) .  The generalized overlap integrals 

� 

Spq k,q( )  arising 

in Eq. (10) are defined as: 

 

� 

Spq k,q( ) = dvbp* k,r( )bq k,r( )exp i2π
a0
q.r

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ∫

= exp 2πikm( )
m=−∞

∞

∑ dvχ p
0 r( )χ q

m r( )exp i 2πa0
q.r

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ∫

= exp 2πikm( )
m=−∞

∞

∑ Spq
m q( )

 (11) 

The Fourier transform concentrates near the origin of the q-space most of the problematic 

features of the exchange which can then be dealt with formally and practically.  In the case of 

Gaussian basis sets, it is possible to develop accurate summation procedures based on a 

combination of the Poisson summation formula and the Ewald method. 

For Bloch functions, Eq. (1), restricted to s-type atomic orbitals, the exchange terms 

become : 

 

� 

X psrq k;k ',k"( ) =
1
πa0

Sps
(x ,y )Srq

(x,y ) IX k;k ',k"( )
τ
0 + IX k;k ' ,k"( )

∞
τ

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 (12) 

with  
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� 

Ix k;k ' ,k"( )
τ
0

= 2π 3/2 exp 2πim' k '( )exp 2πim"k"( )Sps,m'(z ) Srq ,m"
(z)

m "
∑

m '
∑

× exp 2πimk( )
m
∑

×
1
γ
F0

π 2

γ
G ps

m' −Grq
m" −me z( )2⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟ −

1
γ + τ

F0
π 2

γ + τ
G ps

m ' −Grq
m " − mez( )2⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
⎫ 
⎬ 
⎪ 

⎭ ⎪ 

(13) 

and 

 

� 

Ix k;k ' ,k"( )
∞
τ

= π Sps
(z ) k ' ,m + k( )Srq(z ) k",− m + k( )( )

m
∑

×exp 2πi m + k( ) Gps,z
0 −Grq,z

0( )( )

×K0 γ + τ( ) m + k( )2,
π 2 G ps,0 −Grq ,0( )2

γ +τ( )
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

 (14) 

The value of τ is chosen in such a way that the summations in Eqs. (13) and (14) converge 

optimally, i.e.  

  

� 

τ = π −γ if 0 < γ ≤ π  

otherwise, 

 

� 

 τ = 0  
Quantities 

� 

Spq
(x,y ) , 

� 

Spq,z
m , 

� 

Spq
z( ) k,k '( ) , γ, and 

� 

G pq
m  are defined as follows: 

 

� 

Spq
(x,y ) =

π
α p + αq

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ exp −
α pαq

α p +α q
Rp,x − Rq,x( )2 + Rp,y − Rq,y( )2⎛ 

⎝ 
⎞ 
⎠ a0

2
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟  (15) 

 

� 

Spq,z
m =

π
α p +α q

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

1/ 2

exp −
α pαq

α p + αq
Rp,z − Rq,z − m( )2a02

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟  (16) 

 

� 

Spq
z( ) k,k '( ) = exp 2πim k +

αq

α p + αq
k '

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m=−∞

∞

∑ Spq,z
m  (17) 

 

� 

γ =
π 2

a02
1

α p +α s
+

1
α r + αq

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟  (18) 
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� 

G pq
m =

α pR p +α q Rq + mez( )
α p + αq

= G pq,0 + Gpq,z
m ez  (19) 

F0(x) and K0(x,y) are respectively functions related to the error function [22] and the 

incomplete Bessel function [23] : 

 

� 

F0 x( ) =
1
2

π
x
erf x( )  (20) 

 

� 

K0 x, y( ) = exp −xt −
y
t

⎛ 
⎝ 

⎞ 
⎠ 1

∞

∫ dt
t

  (21) 

 

Thanks to recently developed efficient algorithms to evaluate incomplete Bessel functions 

� 

Kn x,y( )  [24,25], new in the field of quantum chemistry, it has become possible to carry out 

the exchange lattice summations to great accuracy and without approximations of the kind 

needed in the multipole expansion.   

 

4.2. TOTAL ENERGY MINIMIZATION WITH RESPECT TO a0 FOR (-Be-)∞.  

Fourier space calculations have been carried out with the FTCHAIN prototype program.  

We used the same basis set as in the direct-space calculations and 32 k-points of integration 

have been used to sum over the states in the Brillouin zone, Eq. (9).  In Table 2 are listed the 

values of a0, ET, the band gap, Smin, the smallest eigenvalue of the overlap matrix, and Nit, the 

number of SCF iterations needed to achieve convergence.  From the values in Table 2, it is 

observed that all calculations, except at 2.6 Å, have converged for acceptable numbers of SCF 

iterations.  The minimum in ET is attained for a0 equal to 2.10 Å, and the present results are 

consistent with an earlier calculation in which we reported an energy ET =-14.487927 hartree 

at a0 = 2.32 Å [21].  During the scan over the values of a0 from 3.0 to 2.0 Å, we note that Smin 

attained values as small as 

� 

0.3 ×10−3without affecting the minimization process.  In fact, the 

FTCHAIN program remains stable and yields meaningful results for Smin as small as 

� 

0.2 ×10−6 .  The basis functions simulating p orbitals have the interesting feature that they 

generate a near linear dependency at approximately a0 = 2.6 Å, leading to difficulty in 

obtaining SCF convergence.  Nevertheless, the value of ET remained close to those obtained 

for the neighboring values of a0 (Table 2).  This is evidence for the accuracy attained in 

summing the exchange contributions in the Fourier space formulation. 



 10 

5. Möller-Plesset Many-Body Perturbation Theory (MBPT)  

It is obvious that accuracy similar to that needed for RHF calculations will be required for 

many-body approaches such as the second-order Möller-Plesset Many-Body Perturbation 

Theory (MP2). 

The derivation of the MP2 correction to the Restricted Hartree-Fock energy for an infinite 

system is available in the literature [26-28].  

For a closed-shell system, the second order correction E(2) per unit cell is : 

 

� 

E (2) = dk1 dk2 dk4
Qij;ab
T k1,k4 + k2 − k1;k2,k4( )

ε i k1( ) +ε j T k4 + k2 − k1( )( ) −εa k2( ) −εb k4( )
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ a,b
∑

i, j
∑−1/2

1/2

∫−1/2

1/2

∫−1/ 2

1/ 2

∫  (22) 

where i, j, and a, b respectively denote occupied and unoccupied spatial orbitals.  T(k) is a 

function that brings the variable k back to the first Brillouin zone by a translation in the 

reciprocal space when necessary.  

The quantity 

� 

Qij;ab
T k1,k3;k2,k4( ) is : 

 

� 

Qij;ab
T k1,k3;k2,k4( )=2Qij;ab k1,k3;k2,k4( ) 2 − Re Qij;ab

* k1,k3;k2,k4( )Qij ;ba k1,k3;k4,k2( )( )  (23) 

with 

 

� 

Qij;ab k1,k3;k2,k4( ) = Cpi
* k1( )Crj

* k3( )Cqa k2( )Csb k4( )
m 3,m 4 = −∞

∞

∑
m 2 =−∞

∞

∑
r,s
∑

p,q
∑

× p
0
q
m 2

r
m 3

s
m4 +m 3⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟ exp 2πi k2m2 + k4m4 + m3 k4 − k3( )( )( )

 (24) 

Applying the Fourier transformation,  

 

� 

f r( )[ ]T q( ) = f T q( ) = dr f r( )∫ exp i 2π
a0

 q ⋅ r
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  (25) 

to this expression and taking into account the lattice orthogonality relation, 

 

� 

exp 2πi k − qz( )m3( )
m"=−∞

∞

∑ = δ k − qz − n( )
n= −∞

∞

∑   (26) 

one obtains the Fourier space analog to Eq. (24) : 
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� 

Qij;ab k1,k3;k2,k4( )=
1
πa0

Cpi
* k1( )Cqa k2( ) Crj

* k3( )Csb k4( )
r,s
∑

p,q
∑

×
dq

q0
2 + k4 − k3 − n( )2( ) Spq k2,qk4 −k3 − n( )Srs k4 ,−qk 4 − k3 −n( )∫

n= −∞

∞

∑
 (27) 

Using the same notation as for the exchange term, this becomes 

 

� 

Qij;ab k1,k3;k2,k4( ) = Cpi
* k1( )Cqa k2( )

r,s
∑

p,q
∑ Crj

* k3( )Csb k4( )X pqrs k4 − k3;k2,k4( )  (28) 

where the terms Xpqrs(k;k2,k4) are defined by Eq. (10). 

The behavior of Eq. (27) as q0 approaches zero is better understood by dividing it into two 

contributions.  The first contribution, Eq. (29), includes all terms in the summation over n 

except that for which (k4-k3-n) = 0: 

 

� 

Qij;ab
I( ) k1,k3;k2,k4( )=

1
πa0

Cpi
* k1( )Cqa k2( ) Crj

* k3( )Csb k4( )
r,s
∑

p,q
∑

n= −∞
k4 −k3 − n≠ 0

∞

∑

×
dq0

q02 + k4 − k3 − n( )2
Spq k2,qk4 −k 3 −n( )Srs k4,−qk 4 − k3 −n( )∫

 (29) 

and raises no problem when 

� 

q0 → 0 .   

The remaining term, that for which (k4-k3-n)=0, is 

 

� 

Qij;ab
II( ) k1,k3;k2,k4( ) =

1
πa0

Cpi
* k1( )Cqa k2( ) Crj

* k3( )Csb k4( )
r,s
∑

p,q
∑

× dq0
q0
2 Spq k2,q0( )Srs k4 ,−q0( )∫

 (30) 

apparently diverges as 

� 

q0 → 0 .  However, the orthogonality condition on the canonical 

polymeric orbitals contributes to remove the singular behavior. 

The most important point with respect to Eqs (29) and (30) is that they exhibit forms 

similar to those found for exchange and, accordingly, are amenable to the same procedure for 

lattice summation.  This forms the basis of a contribution to be published [29]. 
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6. Conclusion and perspectives 

The purpose of this paper is to point out that accurate calculations of the lattice sums are 

essential to get stable and meaningful results.  Even an extremely simple system with 1D 

periodicity, the infinite chain of beryllium atoms treated at the 3-21G level, requires this kind 

of attention.  In that respect, the Fourier representation method appears to be capable of 

handling with the necessary accuracy all the terms, including exchange and correlation 

corrections found in MP2, needed for stable results.  At the Hartree-Fock level, it has already 

been shown that this method can be turned into a very effective scheme [16-18].  However, it 

still awaits further development before it can be proposed for general use, including 

implementation for atomic functions of non zero angular momentum and the MP2 option.  
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Table 1: Values of the lattice parameter a0 reached during total energy minimization using the 
PLH program with N interacting cells in the exchange contributions. ET (hartree); band gap 
(eV); Smin, the smallest eigenvalue of the overlap matrix 

� 

S(k) ; Pmax, the the LCAO density 
matrix element of largest absolute value at cell N; and Nit, the number of iterative cycles 
needed to reach convergence (10-6). 
 

N a0 (Å) 

� 

ET  Band gap Smin Pmax Nit  

10 3.0 -14.481932 10.03 0.00871 0.68 10-3 15 

10 2.9 -14.480660 9.15 0.00466 0.18 10-2 11 

10 2.83# -14.479631 8.38 0.00238 0.14 10-1 23 

20 2.83 -14.479632 8.37 0.00238 0.90 10-5 11 

30 2.83 -14.479642 8.37 0.00238 0.16 10-7 11 

20 2.75# -14.478562 7.48 0.00011 0.11 10-3 11 

30 2.75 -14.478561 8.00 0.00091 0.41 10-6 11 

30 2.69# -14.477655 6.62 0.00026 0.16 10-3 173 

FT 2.10 -14.495116 9.76 0.00307 - 17 

# : Marks the smallest a0 which could be reached with the corresponding summation limit N. 
 



 15 

 
Table 2 : Total energy, ET (hartree), band gap (eV), the smallest overlap eigenvalue Smin, and 
the number of SCF iterations Nit, as a function of the cell parameter a0 (in Å) obtained with 
the FT-RHF method. 
 

a0 (Å) 

� 

ET  band gap Smin Nit 

 

3.0 -14.481928 10.034 0.008713  18  

2.9 -14.480661 9.153 0.004655 19  

2.8 -14.479280 8.088 0.001800 20  

2.7 -14.477835 6.799 0.000353 24  

2.6# -14.476450 5.194 0.000002 50#  

2.5 -14.475486 2.873 0.000331 45  

2.4 -14.482405 4.735 0.001059 29  

2.3 -14.488854 6.529 0.002075 21  

2.2 -14.493386 8.174 0.003126 18  

2.1 -14.495116 9.757 0.003065 17  

2.0 -14.493153 11.324 0.002270 16  

# : The SCF process has not converged to 10-6.  After 50 iterations, the largest difference in 
density matrix elements between two iterations is 10-3. 

 


