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Abstract

The purpose of this article is to point out to the scientific community interested in
Hartree-Fock ab initio calculations that accurate calculations of the exchange contributions

are essential. An extremely simple system such as the infinite chain of Be atoms, (-Be-)∞,

treated in direct space at the RHF level with the 3-21G basis fails to converge to physically
meaningful results. An analysis based on the convergence properties of finite Fourier series

points to the exchange contributions as the source of the problem. Owing to its capability of
handling with the necessary accuracy all lattice summations, including the exchange sums, the
Fourier representation is able to treat the problem effectively and is confirmed as a procedure

of choice for RHF electronic structure calculations of systems with 1D periodicity.
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Introduction

This contribution is offered in commemoration of the scientific career of Per-Olov Löwdin.

We hope it adequately reflects his emphasis on obtaining a good understanding of the

physical and mathematical aspects of the phenomena under study.

Modern research on materials requires new and improved understanding of the

relationships between structure and properties and how they can be engineered. With present-

day experimental advances, polymer chains can be organized to a point where models

characterized by one-dimensional (1D) periodicity are appropriate. Important questions range

from the interpretation of spectroscopic measurements (infrared, NMR, electronic, etc.) to the

design of new structures and/or organizations for which interesting properties (surface energy,

corrosion protection via optimum bonding and organization of inhibitors, electric responses,

optical and transport properties, etc.) can be calculated with the aim of engineering them in

actual materials.  For example, it has been possible to predict valence band spectra from the

knowledge of the surface molecular structure of chain-like systems [1]. This approach can be

inverted and from photoelectron experiments, which essentially probe the surface sample, it is

possible to get information on the primary and secondary structures of the polymer chains

forming the first layers of a substrate. Theoretical calculations have not only predicted this

possibility, but also provided the basis for refined interpretation. They have also stressed the

danger of relying on the simplified model of primary ionization lines, particularly in

conjugated systems, as well as developing suitable levels of theory [2-5].

As just pointed out with this example, an adequate level of theory is critical to achieve a

proper description of a system. Currently the most popular method for purely theoretical

calculations of the electronic structure of extended systems is density functional theory

(DFT), which is relatively inexpensive, but includes electron correlation approximately and

suffers from a lack of systematic ways to improve the results. In that respect, methodologies

based on the Hartree-Fock theory and beyond (many-body perturbation theory, many-body
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Green’s functions, etc.) remain the most consistent approaches. Efforts to master the points

that make them difficult to apply should thus be continued.

Some of the main difficulties in the Hartree-Fock based methods originate, not

surprisingly, from exchange. In the case of extended systems Hartree-Fock exchange

contributions are obtained from lattice summations of which convergence properties and

consequences on the quality of the calculations have been mostly overlooked and to some

extent continue to be so. The purpose of this article is to provide an account of the recent

understanding of the situation regarding restricted Hartree-Fock (RHF) exchange

contributions for systems with 1D periodicity and the use of the Fourier representation

method to compute them efficiently. Assuming that the reader has familiarity with the general

RHF equations for systems with 1D periodicity, only the essential equations will be provided

and commented on in the second section. The interested, but unfamiliar reader is referred to

the original papers [6-8] and books [9,10] to trace additional information and/or details. The

paper is divided into two complementary parts. With the RHF-LCAO matrix elements

expressed in direct space, an analysis of the convergence properties of the lattice sums is

presented and the consequences thereof are stressed considering the simple case of the infinite

chain of beryllium atoms (third section). In the fourth section, the same equations expressed

in the Fourier space [11-18] are very briefly discussed to point out the virtue of the approach

for computing efficiently the problematic exchange contributions.  The paper ends with some

considerations regarding the future of calculations on 1D periodic systems using the Fourier

transform (FT) approach.

2. The RHF LCAO Matrix Elements for Systems with 1D Periodicity

In the RHF approximation, the electronic wave function is an antisymmetrized product

built from one-electron orbitals of Bloch type.  The RHF-Bloch orbitals, ( )r,kn , are doubly

occupied up to the Fermi energy,   EF , and are orthonormalized as shown in the following

equation:
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dr∫ n'

* k ',r( ) n k,r( ) = k 'k n'n (1)

where k and n are the wave numbers and the band index, respectively.  In the notation used, k

is expressed in units of 
  

2
a0

, a0 being the cell length, and is defined in the Brillouin zone (BZ),

whose length is 
  

2
a0

, i.e., 
  
k ∈ −

1
2

,
1
2

 
  

 
  .  The Bloch orbitals,

    
n k,r( ) = bp k,r( )Cpn(k )

p
∑ (2)

are expressed in terms of Bloch sums, ( )r,kbp ,

    
bp k,r( ) = (2N +1)−1/2 e i2 km

p
m =− N

N

∑ r − p + me z( )a0( ) = (2N +1)−1/2 e i 2 km
p
m

m =− N

N

∑ r( ) (3)

where p and the vector p (in units of cell length a0), respectively, represent the label and the

position of the atomic orbital  p in the reference cell.  The quantity (2N+1)-1/2 is the

normalization factor for a polymer containing 2N+1 N → ∞( ) unit cells.  In the following, the

indices p, q, r and s denote atomic orbitals.  The direction of periodicity is defined by the unit

vector ze and the lattice sites are identified by integers   m, m'and ''m (with values

  0,±1, ±2,.....,±N ).

The normalization condition, in terms of Bloch sums and for n = n’ and k = k’, is

  
Cpn

*

p,q
∑ k( )Spq k( )Cqn k( ) = 1 (4)

where Spq(k) are the overlap matrix elements
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Spq k( ) = drbp

*∫ k,r( )bq k,r( ) . (5)

The density matrix elements, ( )kPpq , are given by

  
Ppq k( ) = Cpn

*

n
∑ k( )Cqn k( ) n k( ) (6)

where the occupation function, ( )kn , is equal to 2 for Fn EkE ≤)(  and 0 otherwise; ( )kEn  is

the nth energy band.

The expansion coefficients, ( )kC pn , and one-electron energy eigenvalues, En(k), are

solutions of the following system of equations:

  
Fpq k( )

q
∑ Cqn k( ) = En k( ) Spq k( )

q
∑ Cqn k( ) (7)

in which ( )kFpq  are the Fock matrix elements given by

( ) ( ) ( ) ( ) ( ).kXkJkVkTkF pqpqpqpqpq +++= (8)

( )kTpq , ( )kVpq , ( )kJ pq  and ( )kX pq  are the kinetic, electron-nuclear attraction,

electron-electron repulsion and exchange contributions to ( )kFpq , respectively.  They are

defined as follows:

    
Tpq k( ) = drbp

* k,r( )∫ −
1
2

∇2 r( ) 
  

 
  bq k,r( ) , (9)

    
Vpq k( ) = − drbp

* k,r( )∫ − ZA r − RA + m'e z( )a0

−1

A,m'
∑ 

 
 

 

 
 bq k,r( ), (10)
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J pq k( ) = 2N +1( ) dk ' Prs

r,s
∑

BZ
∫ k '( )J pqrs k,k '( ), (11)

where

    
J pqrs k,k '( ) = dr1∫∫ dr2bp

* k,r1( )bq k,r1( )r1 − r2

−1
br

* k ',r2( )bs k ',r2( ) (12)

and

  
X pq k( ) = −

1
2

2N +1( ) dk ' Prs
r,s
∑

BZ
∫ k '( )X psrq k,k '( ), (14)

where

    
X psrq k,k '( ) = dr1∫∫ dr2bp

* k,r1( )bs k ',r1( )r1 − r2

−1
br

* k ',r2( )bq k,r2( ) (15)

The kinetic elements,   Tpq k( ) , raise no problem since they decay exponentially with the

distance between the atomic orbital centers and can be computed to suitable accuracy with no

difficulty.

The electron-nuclear attraction and electron-electron repulsion matrix elements,   Vpq k( )

and   J pq k( ), must be combined under the cell electroneutrality condition to ensure

convergence of their contributions to the Fock matrix elements.  However, some of the

resulting lattice sums are of slow convergence,   N
−2 , and require special techniques for

practical evaluation.  In direct space, multipole based approaches are classically used [19].

They turn out to be satisfactory for localized atomic basis functions, but much less so when

the basis sets include diffuse functions.  Furthermore, when the multipole approximation is
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used in the case of continuous charge distributions, which is the case here, the associated

series are semiconvergent.

Exchange matrix elements raise much less appreciated yet equally important problems as

will be pointed out in the forthcoming sections.

3. Exchange Matrix Elements in Direct Space Representation

In direct space [6-10], ( )kX pq , can be written as,

  
X pq k( ) = e i 2 km

m =−∞

∞

∑ X pq
0m (16)

with

  
X pq

0m = −
1
2 m'=−∞

∞

∑
m''= − ∞

∞

∑ Prs
0,m'− m− m''

r,s
∑ p

0

s
m'

r
m +m''

q
m 

   
  (17)

where   Prs
0,m'− m− m' is the finite Fourier transform of the LCAO density matrix element ( )'kPrs ,

  
Prs

0,m'− m− m'' = dk 'e−i 2 m'− m− m"( )k '

BZ
∫ Prs k '( ) (18)

and 
  

p
0

s
m'

r
m+ m''

q
m 

   
  a multicenter bielectronic integral,

    
p
0

s
m'

r
m+ m''

q
m 

   
  = dr1∫∫ dr2 p

0* r1( ) s
m' r1( )r1 − r2

−1

r
m+ m"* r2( ) q

m r2( ) . (19)

In approaches like RHF, several properties (HOMO-LUMO gap, density of states, etc.)

derive from the characteristics of the energy bands, ( )kEn , which are obtained after solving
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the associated eigenvalue problem, Eq. (7).  The analytical properties of the energy bands are

thus directly connected, via a unitary transformation, to those of the Fock matrix elements,

  Fpq k( ) , which in turn include the exchange contributions ( )kX pq , Eq. (16).  Analyzing

( )kX pq  from the point of view of its dependence with respect to the continuous index k is

thus important from the point of view of understanding the specific properties of the RHF

method applied to systems with 1D periodicity.

Eq.(16) is a trigonometric series whose expansion coefficients,   X pq
0m , contain products of

two factors,   Prs
0,m'− m− m''and 

  
p
0

s
m'

r
m+ m''

q
m 

   
  , each depending on the summation index m.  The

ultimate convergence of the series and the resulting properties are thus determined by the

decay of these two quantities as m tends to infinity.  For a given   m , the summations over

  m'and  m''  converge exponentially and do not present numerical difficulties. However, the

value of   m  is a measure of the separation of the center of charge of the two distributions in

  X pq
0m , and the contribution of the bielectronic integral to   X pq

0m decays only as   m
−1. This factor

alone is not sufficient for the series in Eq. (16) to converge to a finite value.

Thus, the factors   Prs
0,m'− m− m''are crucial for the global convergence of the series.  They

correspond to the coefficients of the finite Fourier transform of ( )'kPrs  and their decay is

controlled by the analytic properties of ( )'kPrs  which in turn depend on those of the LCAO

expansion coefficients   Crn k '( ) and   Csn k '( ) as well as of the occupation function   n k '( ) , Eq.

(6).  Two general cases must be distinguished:

1.   n k '( ) is constant over the entire BZ.  This corresponds to a fully occupied BZ or a

situation with non zero energy gap between the highest occupied and the lowest

unoccupied levels.  In this case the one-electron states are analytic functions of   k ' [20]

and so are the LCAO density matrix elements ( )'kPrs .  Since Fourier coefficients of
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analytic functions decrease exponentially [21], it turns out that that   Prs
0,m'−m −m''  decay

exponentially with increasing   m .  In this case the series in Eq.(16) is formally of

exponential decay.

2.   n k '( ) exhibit discontinuities in the BZ.  This corresponds to a partially filled BZ or a

situation of degeneracy between the highest occupied and the lowest unoccupied levels.

In this case, the LCAO density matrix elements ( )'kPrs  are obviously discontinuous, as

may be seen from Eq. (6). Fourier coefficients (here   Prs
0,m'−m −m'' ) of sectionally continuous

functions decrease like  m
−1 [21].  This, combined with the convergence rate   m

−1of

  
p
0

s
m'

r
m+ m''

q
m 

   
  , leads to an overall   m

−2decay which ensures absolute convergence to the

series in Eq. (16).  However, it is not only very slow, but it is at the origin of the so-called

anomalous behavior of the RHF approach when describing degenerate or metallic

situations, the most dramatic expression of which is the vanishing of the density of states

at the Fermi energy [22].

The importance of properly converged exchange contributions to the Fock matrix elements

does not solely matter for cases with degeneracy between occupied and unoccupied levels.

Discussions with practitioners of ab initio electronic structure calculations reveal that a

significant number of attempted applications have not been completed, due to difficulties in

getting physically meaningful results with the otherwise classical basis sets (3-21G, 6-31G,

…) used in molecular quantum chemistry.

To illustrate the situation we have carried out direct space calculations with the PLH

program [23] on the trivially simple infinite chain of Be atoms, (-Be-)∞, using the rather

common and somewhat limited 3-21G basis set.  The unit cell length a0 was arbitrarily set

equal to 0.232 nm, a value based on previous calculations on Be clusters [24].  The number of

explicitly interacting cells on each side of the reference unit cell was set to 10, and the number



10

of cells used in the intermediate region to correct for the long-range coulombic interactions

was set to 49 (for more details about the meaning of these parameters see ref. [25]).  It turns

out that, under these conditions, the calculations failed to converge, after 28 cycles of SCF

iteration yielding meaningless values.  For instance, the maximum value of the LCAO density

matrix 
  
Ppq

0m  for m = 10 is equal to 47.960 and the total energy per atom in the chain is

-31.7192 hartree !  Yet the minimal eigenvalue of the overlap matrix,   S k( ) , for all   k  points

where it has been computed, is larger than 10−3 , which with the accuracy of the computers

normally should not lead to problems related to linear dependency.  As pointed out in an

analysis by Suhai, Bagus and Ladik [26], the failure to converge arises from errors in the Fock

matrix elements which are propagated and amplified during the SCF iteration cycles.  In the

present case the errors are due to a lack of accuracy in the exchange contributions to the Fock

matrix elements.  Forcing convergence is possible by removing some components of the basis

[27].  However, doing so, in addition to the empirical and limited game of adding or

subtracting interacting cells in the calculations, is not only frustrating, but raises questions

about the reliability of such calculations on systems with 1D periodicity.

This brief analysis of the analytic and numerical behavior of the RHF exchange

contributions, ( )kX pq , stresses the importance of computing them properly to get results that

are consistent with the RHF model.  To our knowledge, attempts to implement the multipole

expansion to compute with suitable accuracy the exchange contributions in direct space have

not been successful so far .  In the next section we call attention to the Fourier transform

approach which is more propitious for handling the difficulties related to lattice summations

in general.

4. Exchange Matrix Elements in Fourier Space Representation

Applying the Fourier transform [11-12],
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f r( )[ ]T

q( ) = f T q( ) = dr f r( )∫ exp i 
2
a0

 q ⋅r
 
  

 
  (20)

to the RHF equations yields different, but equivalent expressions of the RHF-LCAO matrix

elements [14-18]. In particular, ( )kX pq , assumes the form [17],

  

X pq k( ) = −
1

2
dk ' Psr

r,s
∑ k '( ) X psrq k,k '( )

−1/2

1/2

∫

= −
1
2

1
a0

dk ' Psr
r,s
∑ k '( )

−1/2

1/2

∫

×
dq0

q0
2 + m + k − k '( )2 S ps k ',qm +k −k '( )Srq k,−qm+ k − k '( )∫

m= − ∞

∞

∑

(21)

where q0
2 = qx

2 + qy
2  and 

  
qm +k −k ' = qx,q y,m + k − k '( ).  The generalized overlap integrals

  Spq k,q( ) arising in Eq.(20) are defined as:

Spq k ,q( ) = exp 2 ikm( )
m =−∞

∞

∑ dr p
0 r( ) q

m r( )exp i
2

a0

q.r
 
  

 
  ∫

= exp 2 ikm( )
m =−∞

∞

∑ Spq
m q( )

(22)

It would be beyond the scope of the present article to carry out an explicit and detailed

analysis of the working expressions by which the   X pq k( ) matrix elements are actually

computed.  It suffices here to say that the Fourier transform concentrates near the origin of the

q-space most of the problematic features of the exchange which can then be dealt with

formally and practically.  In the case of Gaussian basis sets, it has recently been possible to

develop accurate summation procedures based on a combination of the Poisson summation

formula and the Ewald method.  These do require efficient algorithms to evaluate incomplete

Bessel functions   Kn x, y( ) [28, 29], which are new in the field of quantum chemistry.  With
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this it has become possible to carry out the exchange lattice summations to great accuracy and

without approximations of the kind needed in the multipole expansion.

A prototype program (FTCHAIN) based on the Fourier representation method has been

implemented, but is presently limited to s-type Gaussian functions.  To apply it to the study

case of the infinite chain of beryllium atoms and demonstrate the potential of the Fourier

approach, we simulated the 2p functions using a distributed basis set of s-type functions

(DSGF).  Thus, three s-type atomic functions are centered on the Be atom using the same

contraction scheme (exponents and contraction coefficients) as in the standard 3-21G basis.

Each p-type orbital is represented by two identical s-type Gaussian functions symmetrically

centered about the nucleus, at distances corresponding to the position of the maximum of Be

2p orbital in the 3-21G basis set (0.1304 nm) with exponent equal to 0.3 bohr-2.  Total

energies per atom and the occupied orbital energies for Be and Be2 (RBe-Be = 0.232 nm)

computed with the 3-21G and the DSGF bases are reported in Table I. These calculations

carried out with the GAUSSIAN 98 program [30] confirm that the DSGF basis is reasonably

representative of the 3-21G basis.  Computations on the infinite chain of beryllium atom,

(-Be-)∞,, with the PLH program using the DSGF basis also fail to converge to physically

meaningful values. After 32 cycles of SCF iteration, the maximum value of the LCAO density

matrix 
  
Ppq

0m  for m = 30 is equal to 57.215 and the total energy per atom in the chain is

-76.0220 hartree, while the minimal eigenvalue of the overlap matrix,   S k( )  is larger than

10−3 .
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Table I.  Total energies per atom and one-electron energies (in hartree) of the occupied

orbitals of Be and Be2.

  ET   1s   1s   2s   2s

Be (3-21G) -14.4868 -4.6884 - -0.3056 -

Be (DSGF) -14.4889 -4.6906 - -0.3053 -

Be2 (3-21G) -14.4058 -4.7306 -4.7301 -0.3599 -0.1633

Be2 (DSGF) -14.4762 -4.6989 -4.6985 -0.4036 -0.2374

Be∞ (FTCHAIN) -14.7849 -4.6455 -4.6454 -0.4001 -0.0941

In the case of (-Be-)∞ the reported values are the lowest and highest energy values of the two

occupied bands.

Computation on the infinite chain of beryllium atoms, (-Be-)∞, with the FTCHAIN

converges, after 20 cycles of SCF iteration, yielding sensible values as seen in Table I.  The

total energy per beryllium atom has slightly decreased, as expected, compared to those of the

isolated atom and the diatomic molecule.  The one-electron energies correspond to the lowest

and highest values obtained from energy bands   1 k( )  and   2 k( ).  These values compare with

those of Be atom and molecule.  The fact that the FTCHAIN program treats this problem

effectively indicates at least two points.  First, it is not a problem of linear dependency that is

at the origin of the failure with the direct space calculation.  As a matter of fact, true linear

dependencies, with double precision calculations, are usually diagnosed for eigenvalues of the

metric or overlap matrix,   S k( ) , smaller than 10−7[26].  Second, it supports the idea that very

careful and accurate calculations of all contributions to the Fock matrix elements are essential

for successful ab initio calculations on extended systems.  This applies to kinetic, Coulomb

and exchange terms.  In the latter case, one should once and for all eradicate the idea that

these contributions scale with the overlap matrix decay and accordingly are of rapid

convergence.
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4. Conclusion and perspectives

The purpose of this article was to point out to the scientific community interested in

Hartree-Fock ab initio calculations that accurate calculations of the exchange contributions

are essential to get meaningful results. Even an extremely simple system with 1D periodicity,

the infinite chain of beryllium atoms treated at the 3-21G level, requires this kind of attention.

In that respect, the Fourier representation method appears to be capable of handling with the

necessary accuracy all the terms, including exchange, needed for stable results. It has also

been shown that this method can be turned into a very effective scheme [16-18]. However, it

still awaits further development before it can be proposed for general use, including

implementation for atomic functions of non zero angular momentum. It will also be important

to go beyond the RHF approximation using perturbative or coupled-cluster techniques.
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